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Formal Languages



Languages Formally

• A word is a finite, possibly empty, sequence of 
elements from some set Σ 
Σ – alphabet,  Σ*  - set of all words over Σ 

• By a language we mean a subset of Σ* 

• uv denotes the concatenation of words u and v 
• Concatenation of languages and Kleene star:

L0   = {ε}     ε = empty word = empty sequence

L1 L2 = { u1 u2 | u1 in L1 , u2 in L2 }

Lk+1 = L Lk
   L* = Uk Lk    (Kleene star)



Examples of Languages

Σ = {a, b} 
Σ* = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, ... } 

Examples of two languages (subsets of Σ*): 

L1 = {a, bb, ab}    (finite language, three words) 
L2 = {ab, abab, ababab, ... } 
    = { (ab)n | n > 0 }  (infinite language)



Examples of Operations

L = { a, ab } 
L L = { aa, aab, aba, abab } 
L* = { ε, a, ab, aa, aab, aba, abab, aaa, ... } 
(is bb inside L* ?) 
   = { w | immediately before each b there is a }



Formal Languages and Compilers
• Lexical analyzer of a compiler recognizes the different tokens 

of a programming language 
• Keywords: class, while, if, … 
• Names of variables, parameters, methods, classes, etc. 
• Operators and delimiters: +, -, *, /, %, ;, … 
• Alphabet Σ of the lexical analyzer: characters 

• Syntactic analyzer (parser) of a compiler recognizes syntactic 
constructs (statements, expressions, variable declarations, etc.) 

• Alphabet Σ of the syntactic analyzer: tokens



Regular Expressions



Regular Expressions
• One way to denote (often infinite) languages 
• A regular expression is an expression built from: 

– empty language  ∅ 
– {ε},  denoted by ε 
– {a} for a in Σ, denoted simply by a 
– union, denoted |  (or, sometimes, +) 
– concatenation, as multiplication (dot), or omitted 
– Kleene star * (repetition)  



Example 1
• Names of labs in DD1362: 

• F1, F2, F3, S1, S2, S3, Inet, X1 
• We could describe this set of strings with the following 

regular expression: 
• F1 | F2 | F3 | S1 | S2 | S3 | Inet | X1 

• Explanation: 
• Regex F stands for language {F} where F in Σ 
• Regex F1 stands for language {F1} where F, 1 in Σ 
• Regex F1 | F2 stands for language {F1, F2} where F, 1, 

2 in Σ 
• Etc.

Language = 
subset of Σ*



Example 1 Continued
• Names of labs in DD1362: 

• F1, F2, F3, S1, S2, S3, Inet, X1 
• The names follow a certain pattern: 

• either it is string Inet, or 
• it starts with F, S, or X followed by 1, or 
• it starts with F or S followed by 2 or 3. 

• This pattern can be described using the 
following regular expression: 

• Inet | (F|S|X)1 | (F|S)(2|3)



Example 2
• All binary strings: 

• “”, “0”, “1”, “00”, “01”, “10”, “000”, “001”, … 
• Fundamental difference to previous example? 

• There is an unbounded number of binary strings! 
• We cannot list them all. 

• Solution: make use of repetition operator *:   (0|1)* 
• Regex a* matches an arbitrary number of 

occurrences of pattern a (“0 or more times”)

A regular expression is a pattern 
for describing a set of strings



Syntactic Extensions for Regular Expressions that 
Preserve Definable Languages

• [a-z] = a|b|...|z                (use ASCII ordering) 
 (also other shorthands for finite languages) 
• e? (optional expression) 
• e+ (repeat at least once) 
• ek..* 

  = ek e*       ep..q  = ep (ε|e)q-p 

• complement: !e   (do not match) 
• intersection: e1 & e2   (match both)      =  ! (!e1|!e2) 



Examples of Regular Expressions
• Decimal digits 

• digit ::= 0 | 1 | .. | 8 | 9 
• Integer constants 

• intConst ::= digit digit* 
• Alphabetic characters 

• letter ::= [a-z] | [A-Z] 
• Identifiers 

• ident ::= letter (letter | digit)*  

e.g., variable names



Regular Expressions in Practice
• Regular expressions are used for a variety of 

text processing tasks 
• Syntax highlighting in code editors and 

IDEs, search-and-replace, … 
• Many tools and languages implement regular 

expression matchers 
• A number of different syntax variations 
• Check documentation for regex syntax of 

specific tool



Regular Expressions in Unix Tools
•  grep '<regex>' <file> 
• Outputs all lines in <file> where some text 

matching <regex> occurs
$ grep '..ing' grep_wikipedia.txt 
grep is a command-line utility for searching plain-text 
has the same effect: doing a global search with the 
and printing all matching lines.

•  sed 's/<regex>/<replacement>/g' < <file> 
• Replaces all occurrences of text matching 
<regex> by <replacement>

$ sed 's/Bell/Whistle/g' < grep_wikipedia.txt > 
grep_wikipedia_funny.txt



Regular Expressions in Java
• Package java.util.regex contains classes “for 

matching character sequences against patterns 
specified by regular expressions.” 

• “An instance of the Pattern class represents a regular 
expression that is specified in string form” 

• See JDK API documentation 
• Example:

import java.util.regex.*; 

Pattern p = Pattern.compile("cat"); 
Matcher m = p.matcher("one cat, two cats in the yard"); 
String s = m.replaceAll("dog"); 
// --> s = "one dog, two dogs in the yard"

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/regex/package-summary.html


Finite Automata



What is a Finite Automaton?
A finite automaton consists of: 

• An alphabet Σ 
• A finite set of states 
• An initial state 
• A set of state transitions with labels in Σ 
• A set of final states (also “accepting states”)

• Start state r 
• Final states u and v



Example 1

• Input 1: 01100101 
• Input 2: 01110101 
• Input 3: 01100100

• Start state r 
• Final states u and v

Accepted 
Not accepted 
Not accepted



Example 2

• Q: How to find example strings that the 
automaton accepts?  

• A: Follow the arrows to find a path ending 
with an accepting/final state! 

• Accepted strings: ab, cb, cbcab, abcab, ..



Using DFAs to Recognize Languages

digit digit* . digit digit*

Exercise: what if the decimal part is optional?

DFA for recognizing valid floating-point 
numbers?

Corresponding regular expression?


