
DD1362 
Programming Paradigms

Philipp Haller

March 29th, 2021

Formal Languages and Syntactic Analysis 
Lecture 1

About Myself
• 2006 Dipl.-Inform. 

Karlsruhe Institute of Technology (KIT), Germany

• 2010 Ph.D. in Computer Science  
Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland

• Jan 2011—Jan 2012 Postdoctoral fellow 
Stanford University, USA and EPFL, Switzerland

• Feb 2012—Nov 2014 Consultant and software engineer 
Typesafe, Inc.

• Dec 2014—Nov 2018 Assistant Professor of Computer Science 
Dec 2018—present Associate Professor of Computer Science 
Jun 2018 Docent in Computer Science 
KTH Royal Institute of Technology, Stockholm, Sweden

Formal Languages

Languages Formally

• A word is a finite, possibly empty, sequence of
elements from some set Σ
Σ – alphabet, Σ* - set of all words over Σ

• By a language we mean a subset of Σ*

• uv denotes the concatenation of words u and v
• Concatenation of languages and Kleene star:

L0 = {ε} ε = empty word = empty sequence

L1 L2 = { u1 u2 | u1 in L1 , u2 in L2 }

Lk+1 = L Lk
 L* = Uk Lk (Kleene star)

Examples of Languages

Σ = {a, b}
Σ* = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, ... }

Examples of two languages (subsets of Σ*):

L1 = {a, bb, ab} (finite language, three words)
L2 = {ab, abab, ababab, ... } 
 = { (ab)n | n > 0 } (infinite language)

Examples of Operations

L = { a, ab }
L L = { aa, aab, aba, abab }
L* = { ε, a, ab, aa, aab, aba, abab, aaa, ... }
(is bb inside L* ?)
 = { w | immediately before each b there is a }

Formal Languages and Compilers
• Lexical analyzer of a compiler recognizes the different tokens

of a programming language
• Keywords: class, while, if, …
• Names of variables, parameters, methods, classes, etc.
• Operators and delimiters: +, -, *, /, %, ;, …
• Alphabet Σ of the lexical analyzer: characters

• Syntactic analyzer (parser) of a compiler recognizes syntactic
constructs (statements, expressions, variable declarations, etc.)

• Alphabet Σ of the syntactic analyzer: tokens

Regular Expressions

Regular Expressions
• One way to denote (often infinite) languages
• A regular expression is an expression built from:

– empty language ∅
– {ε}, denoted by ε
– {a} for a in Σ, denoted simply by a
– union, denoted | (or, sometimes, +)
– concatenation, as multiplication (dot), or omitted
– Kleene star * (repetition)  

Example 1
• Names of labs in DD1362:

• F1, F2, F3, S1, S2, S3, Inet, X1
• We could describe this set of strings with the following

regular expression:
• F1 | F2 | F3 | S1 | S2 | S3 | Inet | X1

• Explanation:
• Regex F stands for language {F} where F in Σ
• Regex F1 stands for language {F1} where F, 1 in Σ
• Regex F1 | F2 stands for language {F1, F2} where F, 1,

2 in Σ
• Etc.

Language =
subset of Σ*

Example 1 Continued
• Names of labs in DD1362:

• F1, F2, F3, S1, S2, S3, Inet, X1
• The names follow a certain pattern:

• either it is string Inet, or
• it starts with F, S, or X followed by 1, or
• it starts with F or S followed by 2 or 3.

• This pattern can be described using the
following regular expression:

• Inet | (F|S|X)1 | (F|S)(2|3)

Example 2
• All binary strings:

• “”, “0”, “1”, “00”, “01”, “10”, “000”, “001”, …
• Fundamental difference to previous example?

• There is an unbounded number of binary strings!
• We cannot list them all.

• Solution: make use of repetition operator *: (0|1)*
• Regex a* matches an arbitrary number of

occurrences of pattern a (“0 or more times”)

A regular expression is a pattern
for describing a set of strings

Syntactic Extensions for Regular Expressions that 
Preserve Definable Languages

• [a-z] = a|b|...|z (use ASCII ordering)
 (also other shorthands for finite languages)
• e? (optional expression)
• e+ (repeat at least once)
• ek..*

 = ek e* ep..q = ep (ε|e)q-p

• complement: !e (do not match)
• intersection: e1 & e2 (match both) = ! (!e1|!e2)

Examples of Regular Expressions
• Decimal digits

• digit ::= 0 | 1 | .. | 8 | 9
• Integer constants

• intConst ::= digit digit*
• Alphabetic characters

• letter ::= [a-z] | [A-Z]
• Identifiers

• ident ::= letter (letter | digit)*  

e.g., variable names

Regular Expressions in Practice
• Regular expressions are used for a variety of

text processing tasks
• Syntax highlighting in code editors and

IDEs, search-and-replace, …
• Many tools and languages implement regular

expression matchers
• A number of different syntax variations
• Check documentation for regex syntax of

specific tool

Regular Expressions in Unix Tools
• grep '<regex>' <file>
• Outputs all lines in <file> where some text

matching <regex> occurs
$ grep '..ing' grep_wikipedia.txt 
grep is a command-line utility for searching plain-text 
has the same effect: doing a global search with the 
and printing all matching lines.

• sed 's/<regex>/<replacement>/g' < <file>
• Replaces all occurrences of text matching
<regex> by <replacement>

$ sed 's/Bell/Whistle/g' < grep_wikipedia.txt >
grep_wikipedia_funny.txt

Regular Expressions in Java
• Package java.util.regex contains classes “for

matching character sequences against patterns
specified by regular expressions.”

• “An instance of the Pattern class represents a regular
expression that is specified in string form”

• See JDK API documentation
• Example:

import java.util.regex.*;

Pattern p = Pattern.compile("cat");
Matcher m = p.matcher("one cat, two cats in the yard");
String s = m.replaceAll("dog");
// --> s = "one dog, two dogs in the yard"

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/regex/package-summary.html

Finite Automata

What is a Finite Automaton?
A finite automaton consists of:

• An alphabet Σ
• A finite set of states
• An initial state
• A set of state transitions with labels in Σ
• A set of final states (also “accepting states”)

• Start state r
• Final states u and v

Example 1

• Input 1: 01100101
• Input 2: 01110101
• Input 3: 01100100

• Start state r
• Final states u and v

Accepted
Not accepted
Not accepted

Example 2

• Q: How to find example strings that the
automaton accepts?

• A: Follow the arrows to find a path ending
with an accepting/final state!

• Accepted strings: ab, cb, cbcab, abcab, ..

Using DFAs to Recognize Languages

digit digit* . digit digit*

Exercise: what if the decimal part is optional?

DFA for recognizing valid floating-point
numbers?

Corresponding regular expression?

