CHAPTER

Reliable Data Stream Processing

3.1 Introduction

Scalable data stream processing platforms such as Apache Flink are distributed
systems. A distributed system consists of multiple processes connected through
a network, that send and receive messages. Distributed systems are typically
designed to make all concerns related to their distributed nature transparent to
the user, offering the view of a single entity. The same transparency principle
simplifies not only the programming model but also the work of a system designer.
In this chapter, we address a crucial design challenge when it comes to distributed
stream processing, that of guaranteeing a reliable unbounded execution. Reliable
processing relates to guarantees offered by a continuously running distributed
system despite partial failures or reconfiguration phases that can occur.

In this study, we first revisit the concept of consistent snapshots, which are
replicas of the global configuration (i.e., state) of a system at a specific point of
its distributed execution. Consistent snapshots capture a complete distributed
state that can be used as a single atomic reference, to inspect [28], recover [60] or
even alter a distributed computation. Most existing snapshotting protocols are
distributed algorithms that make certain assumptions regarding the structure of a
system (e.g., strongly connected process graph) to collect all process and channel
(in-transit messages) states which are part of a snapshot.

A variety of operational challenges in distributed stream processing relate
to guaranteeing that every process in the system consumes its input messages,
updates its internal state and generates output messages without loss, even while
independent process failures occur or the configuration of the system changes [11,
9)l61]]. Past approaches [11}16263] aimed to tackle this challenge via fine-grained
communication protocols between individual processes to re-conciliate lost state
(e.g., replaying input), filter out duplicates or restricting semantics to idempotent
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26 3 RELIABLE DATA STREAM PROCESSING

operations [9]. While some of these techniques solve individual special cases of
reliable processing, they do not offer a clear specification of the guarantees they
implement. More importantly, they miss one of the most fundamental needs
in stream processing, that of a unified state management mechanism. Unified
state management should cover all aspects of application state, such as migrating,
reconfiguring, querying, recovering and versioning the unbounded execution of a
stream processing application.

In this chapter, we propose an execution model for stateful stream processing
based on the notion of epochs. Epochs define concrete points in a distributed
stream execution where state is atomically committed and thus, they can be used
to provide unified state management. We argue that epochs do not enforce a
discretized execution [12] and can instead be committed asynchronously using a
special form of distributed snapshotting aligned on epochs. Starting from Chandy
and Lamport’s original algorithm, we present all necessary modifications needed
to respect epoch order and prove the respective provided properties. Our final
distributed protocol [30, 29] manages to capture the complete state of a weakly
connected stream process graph [20] 64,9, 54, [11] after an epoch, limiting channel
state logging (in-transit messages) to graph cycles that optionally exist. Finally, this
chapter serves as a self-contained specification of the epoch-based stream processing,
its asynchronous implementation with snapshotting and its foundations. Chapter 4]
presents a concrete usage and implementation of epoch-based snapshots for various
operational needs in Apache Flink.

The chapter’s outline goes as follows: [section 3.2|offers an overview of consistent
snapshotting in the fail-stop process model and related safety and liveness properties.
Our preliminary analysis covers the concept of marker-based snapshotting, having
Chandy and Lamport’s protocol and its assumptions as a starting point, followed by
several direct yet important generalizations. In|section 3.3|we model the execution
of a data stream processing system as a special case of interest and discuss the
problem of reliable processing guarantees in that model as well as shortcomings
of the related state of the art. Section [3.4| presents the specification and protocol
for epoch-based stream processing, our proposed solution to reliable data stream
processing. Finally, section 3.5|offers a summary of our approach.

3.2 Preliminaries

In this section we present a complete model and specification for consistent
snapshots, identifying the necessary properties and known distributed algorithms
that solve this problem on any message-passing system. Then, in[section 3.3} we look
into a more restricted version of snapshots, relevant to the problem of epoch-based
stream processing.
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Figure 3.1: A process graph with three processes.

3.2.1 System Model

A distributed system model [60} 28] consists of two core components: processes
and network channels. We assume a finite set of processes IT as well as a finite
set of network channels E C TT x TI. For any two processes p;, p; € I1 p; can send
messages to p; iff (pi,pj) € E. In principle, we can represent a distributed system as
a directed graph G = (TT, E) with TT being its vertices and E representing its edges.

For brevity, we will denote a channel (pi,p;) € E simply as cyj. In we
depict the process graph G = {{p1,p2,P3},{c12,¢23,c31,C32}} as an example.

Process Model: Each process p € TT has its own local volatile state s,, that is
initially empty. Furthermore, it is statically initialized with a number of input
channels I, = Uxerr{cxpl(x, p) € E}and output channels O, = Uxer{cpxl(p,x) € E}.
In certain cases we will identify the channel on which a message is sent or received
(e.g., mqp O Mcco,), when that is necessary.

Channels and State: Channels are communication endpoints, implementing certain
behavior (e.g., FIFO delivery) between processes and we decouple them from the
in-channel state M, a multiset of all in-transit messages in the system (i.e., all
messages sent but not yet delivered). Each channel c,, 4 € E supports two types of
events: (send, m) and (recv, m). Sending a message m results into M — M U{m}
while receiving that message results into M — M/{m}. For simplicity, in this
context we assume that point to point network channels are reliable and have
unbounded capacity, thus, they cannot overflow or lose messages that are in transit.
Specification |2, presented later in the chapter, provides a formal description of a
channel interface and properties for FIFO reliable channels.
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Execution Model: The complete state or configuration of the system can be
summarized by {IT., M}, where TT,, = {s,|Vp € TT} and M its in-transit messages. An
execution of a system can be modeled via the use of transitions to its configuration
{TT., M} — {TT,, M}, where each transition is caused by a primitive step or action
executed by a single process p € IT and is summarized as (sp, m, Mour,s,,) as
follows:

* s,: The local state of p before the action.
* m: An input message m € M U{g}.
* MourT: A set of output messages Mour.

* s,: The local state of p after the action.

For a process p, an action consists of individual events that respect the following
event flow: 1) The reception of an input message m that causes that action (if m = {@}
then it is an internal action), 2) An internal computation: (m,s,) — (s{,, Mourt)
and 3) a set of send events that put messages Moyt into outgoing channels.
After an action on {IT,, M} the new system configuration {IT,, M’} contains the
updated local process state TT, =TT, U {s{)}/ {sp}and a new set of in-transit messages
M’ = (MU Mourt)/{min}. For simplicity, in the most part we will refer to single-
event actions such as (send, mqp)q and (recv, mqp)p, each of which results into a
new process state, unless stated otherwise.

Local and Global Execution: Sequences of events in a system form an execution
E. An execution contains all events that have occured from the initial state of
the system up to the events of the latest action. We often differentiate between
Ep, the subset of an execution that contains events occured in process p and the
global execution E = UpenrE,, that contains all individual events occurred across all
processes in a distributed system.

Local Event Order: For each respective process p € TT computation follows a natural

sequence of state transitions from an empty or initial state s as such: s9, sg,, ey Sp-
The respective events that cause these transitions eg, e;,, ..., €, are totally ordered

by a local causal order relation <, instrumented by its strict underlying local
execution E, = {e9,e],...,el,...} such that e}, <, e}, iff i < j. Since local event
order is a total order it satisfies antisymmetry, totality and transitivity.

Failure Model: We assume a fail-stop model according to which a process stops
and loses its current volatile state when a fault occurs. We will further refer to
a process as correct, always in respect to an observed execution E when no fault
occurs within E. We further denote a set of correct processes A C TI. The observed
execution is context specific and contains all events that occur within the execution
of a protocol (e.g., the consistent snapshotting protocol in|subsection 3.2.3).
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3.2.2 Consistent Cuts and Rollback Recovery

The concept of rollback recovery has many usages in distributed computing. It
is, in essence, a reconfiguration process that aims to restore the execution of a
full distributed system back to an intermediate point that was captured during a
failure-free execution. A full system rollback can often be used as a mechanism for
fault recovery. This is especially important in long-running system executions in
order to avoid a complete re-execution of a computation that could take days or
months. The main prerequisite of rollback recovery is to first be able to capture and
copy the global state (configuration) of a system to stable storage, i.e., all process
states as well as messages that are being in-transit.

Evidently, in a fail-stop model with volatile local state it is impossible to ensure
that a complete system configuration will be recorded at the same instant due to
the absence of a global atomic clock [28]. What is otherwise achievable by global
state snapshotting techniques is to capture a “valid” configuration, one that can
possibly occur during any failure-free execution [65]. A more acceptable formal
interpretation of which global state can be considered valid lies on the definitions
of causal event order and consistent cuts.

3.2.2.1 Global Causal Order

Given a global execution E = U,errE, including all individual events occurred
across all processes in a distributed system, it is impossible to derive a total
order relation for all events happening concurrently without a global atomic clock.
However, there exist a partial order relation, known as causal order [66], given in
Definition[3.2.11

Definition 3.2.1. Given an execution E and e,e’,e” € E, the causal partial order
relation < satisfies the following:

1 e<pe = e<e.
(2) if e and e’ correspond to (send, m,q)p and (rcvd, myq)q thene < e’.
B) (e<e' )N (e <e") = e <e” (Transitivity).

The transitivity of causal partial order is especially important for specifying the
order relation between two events that have otherwise occurred across two different
processes in the system. Event diagrams, as the one depicted in|Figure 3.2|are often
used to visually represent executions of events in a distributed system where dots
on each process line show events in the local execution of each process and arrows
pointing out the causal dependencies of respective send and receive events in that
execution between processes. In|Figure 3.2 we highlight the casual relation between
event a and d, b, e, f, g, h all of which belong to a’s transitive closure of < along the
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Figure 3.2: An event diagram highlighting events causally related to a.

causal relation path in the diagram. In the case of event c we cannot specify any
causal order with respect to a since c is not within the transitive closure of a and
vice versa, thus, in that case al|c (i.e., a and c are concurrent).

3.2.2.2 Valid Configurations and Consistent Cuts

A concept that is strongly related to the notion of distributed snapshots is a distributed
cut. Definition [3.2.2 covers the most general case of a distributed cut. Notice that
here we are including only local events preceding e.

Definition 3.2.2. Given an execution E and e, e’ € E, a distributed cutisasetC C E
which satisfies the following invariant: (e e CN\e’ <, e) = e’ €C

Example: A cut can be visually represented as a line that “cuts” through an
execution, marking a frontier where all locally preceding events are in the cut.
Figure 3.3/depicts two such cuts based on the process graph of [Figure 3.1, In the
case of cut C; (Figure 3.3(a)), only the events (send, m), and (rcvd,m’), are
included in the cut. While C; is a possible distributed cut it cannot represent a valid
state of the system since according to the included events, message m’ was received
but never sent, which is impossible. There is simply no possible execution E that
can lead to such configuration. On the other hand, cut C, (Figure 3.3(b)) represents
a valid configuration in the same execution, one where every event received was
previously sent (event m’ was only sent according to C, which does not violate any
of the properties).

A consistent cut, described in Definition 3.2.3, is one that respects causal partial
ordering and therefore, captures the notion of a “valid” system configuration.
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Figure 3.3: An example of an inconsistent (C;) and a consistent cut (C>).

Definition 3.2.3. Given an execution E and e, e’ € E, a consistent distributed cut is
a set C C E which satisfies the following invariant: (e € C\e’ <e) = e’ €.
Furthermore, a system configuration {IT¢, M¢} after an execution bounded by a
consistent cut C is also a valid configuration.

3.2.3 Consistent Snapshots: Specification and Fundamentals

Snapshotting protocols are distributed algorithms that capture a valid configuration
of a distributed system during its execution. Since snapshots are distributed
they have to be partially executed by each respective process in a coordinated
manner which results into a consistent cut. Optimally, as described by Chandy and
Lamport [28]], the execution of a snapshotting protocol should not interfere with an
application but run concurrently with it, capturing states when necessary while
the application is running. In practice, a snapshot S¢ = {T1¢, M¢} captures a valid
configuration for any consistent cut C. For brevity, we will imply that all snapshots
are “consistent”, unless stated otherwise.

Example: Consider a snapshot implementing the consistent cut C; that was
presented previously in [Figure 3.3(b). If we consider all events, messages and state
transitions occurred, as depicted in|Figure 3.4} it is more clear to visualize what the
exact configuration of the system would be based on C,. When it comes to process
states, C, interleaves with processes p1,p2 and p3 at states s, s} and s} respectively.
Furthermore, message m’ was in transit in the same cut (as being sent but never
received). Thus, for completeness, message m’ is also included in the snapshot. The
full snapshot can be summarized as such: Sc, = {TTc, = {s},s},s}}, Mc, ={m'}.

Now let us define more formally the specification of consistent cuts, in terms of
the interface of the protocol as well as the required safety and liveness properties
that it should satisfy.
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Figure 3.4: Contents of a snapshot for consistent cut C,.

Specification 1: Consistent Snapshotting (csnap)
Event Interface:

Request: (snapshot): Initiates a consistent snapshot.

Indication: (recordlp,sf,M,) : sk € Tle AM, € Mc.
Properties:

CSNAP1: Termination: A =TI = (recordlp,_) € E,,Vp € TI.

CSNAP2: Validity: Configuration S¢ : {TT¢, Mc} is valid,
where TTe = Upensp and Me = UpenM,.

Interface: Consistent snapshotting is more formally defined in Specification [1
(csnap) which summarizes the interface and expected safety and liveness properties
to be satisfied by a system component that provides that functionality. The interface
of the protocol contains two core messages: a request (snapshot) which initiates
a consistent snapshot and (record|p, s];, M,,) a response message that contains an

internal state s;; as well as M,, a set of in-transit messages captured by process p.

Properties: We further break down the requirements of consistent snapshotting
into two properties: Termination and Validity. Termination is a liveness property that
is eventually satisfied if all processes are correct during an instance of a snapshot.
The assumption that A = TT might appear too strong, however, in the context of
rollback recovery it is important to capture the complete application state. In case
any failures occur, it is required to bring the whole system back to a global state
captured during a failure-free execution, thus, no failures are tolerated during the
execution of the protocol. The Validity property is a safety property that bears
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equivalence to the invariant of consistent cuts (see Definition|3.2.3). In essence, for
every local event e that precedes the event ef that caused state s : e <}, ef itis
implied that e € C (Lemma3.2.1).

Lemma 3.2.1. For any process p € Il with snapshotted state s‘g € Tl¢ and event
eGEp:egpeg = ecC.

Proof. Lemma 3.2.1|derives from the specification of events as well as Definition
We know that a state s¥ is caused through a state transition triggered by

event ef. Thus, (1)s§ € le = ek € C. From Definition3.2.3 we also know that
(2)(e' <p e’ Ne” eC) = e’ €C. (1) and (2) satisfy Lemma[3.2.]] O
3.2.4 Snapshotting Strongly Connected Graphs

Several algorithms have been proposed for satisfying the specification properties of
consistent snapshots, targeting process graphs with specific structural characteristics
as well as network assumptions (e.g., tolerating message loss [67]) and initiation
strategies. In respect to structural characteristics of a process graph, connectivity
is more especially a critical property that needs to be taken into consideration
in the design of a snapshotting algorithm. We refer to connectivity as the set of
assumptions we can make about the reachability of every pair of processes p, q € T
as expressed in Definition [3.2.4]

Definition 3.2.4. Given a process graph G = (T1,E) and processes p, q,w € TI, the
reachability relation ~ satisfies the following:

(1) Jepg € E = p~aq.
2) p~qANg~w = p~w (Transitivity).

One of the most popular algorithms from classic computer systems literature is
the one by Chandy and Lamport [28] (C-L for short). The C-L algorithm captures a
valid system configuration and terminates if the protocol is initiated by any given
process in a strongly connected graph. A strongly connected graph is a process
graph for which every process is reachable by another process (Definition|3.2.5).

Definition 3.2.5. A graph G : (IT, E) is strongly connected iff p ~ q, Vp, q € TI.

In the most general case, the C-L algorithm relies on a strongly connected
process graph to guarantee termination. Furthermore, it depends on reliable
network channels with strict FIFO delivery order for ensuring validity. Despite
having relatively strict connectivity assumptions, the C-L approach has been highly
influential to the current work since it exhibits the use of a non-coordinated and
non-blocking mechanism for capturing the configuration of any strongly connected
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Specification 2: FIFO Reliable Channel (fiforc)
Event Interface:

Request: (send, m): M — M U{m}.

Indication: (rcvd, m): M — M/{m}.
Properties:
FIFORC1: Reliable Delivery: p,q € A:mpq € M = (rcvd, mpq) € Eq.
FIFORC2: No Creation: (rcvd,m) € E — m € M.
FIFORC3: No Duplication: V(rcvd, m), (rcvd, m’) e E —= m #m’.

FIFORCA4: FIFO Delivery: Vp € Tl,q € A
(send,m)pq <p (send,m’)pq & (revd, m)pq <q (revd, m’)pg.

component. In this section we describe the C-L, starting from the formal specification
of FIFO Reliable Channels.

FIFO Reliable Channels: Specification |2 summarizes the interface and expected
properties of a FIFO Reliable channel in the semantics of our model. For brevity, we
assume that this component is instantiated per directional channel in the system
(one endpoint at the sender and another at the recipient process) and thus omit
to include the addresses of the processes in the events of its interface, whenever
that is unnecessary. Typically, FIFO reliable channels can be implemented on top of
reliable point to point links which in turn build on fair-loss links [68]. In practice,
TCP channels adequately satisfy the properties of this abstraction.

Algorithm Semantics: Regarding the notation of the algorithms throughout this
part of the dissertation, we adopt an event-based algorithmic specification [68]
describing the logic executed by the protocol within message-handling function
literals (upon <msg> on <interface>). We assume that message-handlers are ex-
ecuted by a single thread, thus, there are no concurrent executions of respective
handlers when it comes to a single component instance. Events are triggered on
interfaces (e.g., fiforc and csnap) and respect a provided specification. Further-
more, we use <variable> « <value> to mark assignments and <interface> —
<message> for triggering messages on respective interfaces. In fact, every event
handler implements an atomic action for that process (altering internal and network
state). The internal computation (application logic) is executed within the process:
(m, sp,0p) — (s},) function and yields a new internal state and output messages
(triggered on the channels passed).
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3.2.4.1 Analysis of Chandy-Lamport Snapshots

In Algorithm [3 we present the C-L protocol by integrating its complementary
message-handling logic within the regular operation of a process. The core
intuition of the C-L protocol is to disseminate a special marker message “®” in the
computational graph which acts as a seperator between those events that precede a
consistent cut from those that come after the cut. This technique aids processes
to decide with purely local information on when they can trigger a local copy of
their state (at the instant they first receive a marker) as well as which messages
should be part of the global snapshot (in case they causally precede a marker). In
Specification 1 we describe the consistent snapshotting algorithm, as integrated
logic in the process model.

3.2.4.2 Termination

The Termination property as formulated in Specification [1 indicates that the if
all processes are correct and the protocol is initiated on any process of a strongly
connected graph then the global recorded state should eventually be indicated along
all processes in the graph: A =TT = (recordlp,_) € E,, Vp € IT. Termination can
follow a direct proof based on the deterministic order of local events, the reliable
delivery of FIFO channels and the reachability properties of a strongly connected
graph as follows:

Proof. Every process in the C-L algorithm indicates its recorded state once a marker
has been received through all of its input channels. Thus, it trivially follows that
every process indicates a full recorded state iff a marker is received through all
existing channels in E :

(recordlp,_) € E,,Vp € T & (rcvd, ®)veer € E (3.1)

Thus, it suffices to prove that

A=TT = (revd, O)ycer € E (3.2)

Now let us assume that the protocol is initiated at any process p € TT = A. Via
deterministic local ordering of events process p broadcasts a marker through its
output channels that is eventually received through FIFO reliable channels:

(snapshot) € E, = (send,®)vceo, € Ep

3.3
= Ugetmc,qc0,1(revd, ®) € Eq} (FIFORC1) (33)

Given the reachability of strongly connected graphs (Definition [3.2.4) we can
provide via induction the following generalization:
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Algorithm 3: Chandy-Lamport Consistent Snapshots

AW N e

10:
11:
12:

13:
14:
15:

16:
17:
18:
19:

20:
21:
22:
23:

24:

Implements: csnap, Requires: fiforc (I,, Op)

(I, Op) « configured channels;

Sp — I > volatile local state
Recorded + 0; > channels under logging
sp 0 My 0 > state in snapshot

Upon (rcvd, m) on cqp ¢ Recorded, m # ©
L Sp ¢ process(m, sy, Op); > regular process logic

Upon (rcvd, m) on cqp € Recorded, m # ©
My — M, U{m}; > record in-transit message
| sp < process(m,sp,0p) ;

Upon (revd, ©) on cqp € I,
if s; = empty then
L startRecording();

Recorded = Recorded —{cqyp};
if Recorded = () then
| csnap — (recordlself, sy, My);

Upon (snapshot) on csnap
startRecording();
if Recorded = () then

| csnap — (recordlself, s, 0);

Fun startRecording()
Sp ¢ Sp; > record local state
foreach out € O, do

| out — (send, ®);
B Recorded « I,

& ... & Ugemp-ql(send, ®) € Eq} (3.4)

and hence, via deterministic processing and FIFO reliable channels:

" — quﬂ:p~q{<TCVd»®>Vc€Hq S Eq}

& Ugemp~qi(send, ®)vceo, € Eq}(local event order) (3.5)

< (revd, ©)veer € E (FIFORC1)

O
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3.2.4.3 Validity

We should prove that every snapshot acquired via the C-L protocol is valid. It
suffices to show that the events that are included in the cut compose a consistent
cut in the execution of a system as it was shown in|Theorem 3.2.1.

Proof. Given two events ey, eq € E for which e, < eq we need to prove that if
eq <p elfl then this implies that e, <, e;. From Lemma [3.2.1|we know that this
condition satisfies the requirement of consistent cuts.

Let ey represent the local snapshot aquisition step within a process p. Based on
the marker-forwarding logic of the C-L protocol, process p captures its local state
s‘é and forwards the marker further in the same computational step eg , therefore
ey = €. No other local event can possibly occur between a (rcvd, ®) and a
respective (send, ®) event to alter the state of process p. It therefore suffices to
prove the following: for two events e, eq € E for which e, < eq, if eq <q €
then this implies that e, <, eg. We identify two possible cases (I) (p = q) and (II)

(p # q).

MDp=gq

Given that p = q, let us call the two events e, and ey, so that e, <;, e, (1). If e},
is part of the snapshot, then 61/7 <5 eg (2). From (1) and (2) it derives directly that
ep <p e, <p e and therefore, e;, should also be part of the the cut.

IDp#q
Assume that p and q are directly connected through a FIFO reliable channel

Cpq € E. We need to prove the following for causal consistency to be satisfied:
eq <qey = ep <pey. (3.6)
By contradiction, suppose that the following statement is true:

e <pepNeq <qef (3.7)

Given that e, < eq and p and q are directly connected processes we can assume
that e, = (send, m)pq eq = (rcvd, m)pq. Since cpq implements a FIFO Reliable
Channel (Specification|2) we know that every message m sent is delivered (FIFORC1)
and all messages in a channel maintain FIFO delivery order (FIFORC4).

e <p (send, m)pq = ef <q (revd, m)pq (3.8)

If we however infer FIFO delivery order Q?ﬁ) on Qﬂ) we arrive to the following
contradiction.

ey <q (revd,m)pq A (revd, m)pq <q ef =4 (3.9)
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Figure 3.5: Examples of weakly connected graphs with possible protocol initiators.

Finally, by using (3.6) as an induction step we can trivially generalize for any
causally related events that can occur along the chain of reachable processes from p
toq,p,q € TTwherep ~ q.

(cpq €ENep <eq) = (eq<qe; = ep <pey)
& ... & (induction) (3.10)
(P~qNep <eq) = (eq<qef = ep <pe)

Since we assume a strongly connected graph|[Equation 3.10 is satisfied for Vp, q €
TT, therefore in that case causal consistency can never be violated. Furthermore, in
Theorem|3.2.2 we summarize a general observation regarding validity in marker-
based snapshotting protocols.

Theorem 3.2.2. Marker-Based Snapshotting: A valid snapshot can be acquired via
the use of a marker-forwarding logic in a process graph with FIFO reliable links.
According to that logic, a local snapshotting action e in a process q € TTis causally
related to the snapshotting action ey of an adjacent process p (i.e., e < ef) via
the the forwarding of a special marker ® included in that action that separates all

events the precede and follow a consistent cut.
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3.2.4.4 Applicability of Marker-Based Snapshotting

The marker-based protocol of C-L creates a single snapshot and guarantees ter-
mination if initiated by a single process in a strongly connected graph. We will
now examine alternative protocol initiation strategies that apply to non-strongly
connected graphs. As it was shown in the termination analysis in paragraph3.2.4.2}
termination is based on strong connectivity, i.e., p ~ q for any pair of processes
P, q € T (Definition[3.2.5). However, the applicability of the protocol can be gener-
alized further by lifting two of its main assumptions (I) strongly connected process
graphs and (I) single initiator.

(I) Supporting Weakly Connected Graphs

A directed graph is weakly connected if by replacing all of its directed edges with
undirected ones it produces a strongly connected graph. In principle, any graph
that forms a connected component is a weakly connected graph. Consider the
process graph of|Figure 3.5(a). Since not every process is reachable from any other
process (e.g., ps ¥ p2) the marker-based protocol is not guaranteed to terminate if
started from any single process. However, in the same process graph p; ~ p,Vp € 11
thus, if initiated upon p; the C-L protocol will terminate. Lemma 3.2.3|summarizes
this observation.

Lemma 3.2.3. Given a weakly connected process graph G = (IT,E), a marker-
forwarding snapshotting protocol can terminate with a single initiator iff there
exists p € ITso that Vq € TT q is reachable from p (i.e.,, p ~ q).

(IT) Supporting Multiple Initiators

We can generalize the applicability of C-L snapshots even further, to any weakly
connected process graph for which we can coordinate more than a single initiating
process. In the simplest case we can naively initiate the protocol on all processes
which is guaranteed to terminate on any graph trivially. However, it is feasible to
select a minimal set of initiators A C TT that can, in combination, reach every other
process. This observation follows trivially from Lemma [3.2.3 and generalizes it
further since the union of reachable processes via A yields the remaining processes
in the process graph. We summarize this generalization in Deﬁnitionw

Definition 3.2.6. Given a weakly connected process graph G = (T, E), a marker-
forwarding protocol can terminate with any set of initiators A C IT:
M/AC{qelFpp e ANp~q)}

In the example of [Figure 3.5(b) consider A = {p1,p2,p3,p4,Ps5,Ps}. From
Definition [3.2.6| we know that we can reach {p7, ps, P9, P10, P11, P12, P13} = TT/A.
Notice that if we exclude e.g., p5 from A then we can only reach TT/{A, ps}, however,
/A ¢ TI/{A,ps}. In other words, while the same processes can be reached as
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before without ps e.g., ps ~ P10, no process can reach ps itself and thus, ps should
be part of the initiators in A. In this example, A is also a minimal set.

3.3 Issues in Reliable Stream Processing

Stateful, stream processing graphs are special-purpose distributed systems that are
used for pipelining computational tasks and their interdependencies in continuous,
possibly infinite executions. In this section, we present the special properties of
stateful stream processing, as well as open problems that can be reduced to the core
issue of reliable processing in long-running executions.

3.3.1 Specification of Stateful Stream Processing

First, we make a set of model assumptions for data stream processing which we
distill from the common characteristics of known scalable stream processors (e.g.,
Flink [43] , Apex [39], IBM Streams [56], Storm [5], SEEP [10, [11] and Heron [69]).

3.3.1.1 Stream Process Model

A stream processing system (depicted in|Figure 3.6) can be modeled as a special
purpose process graph G = {IT, E} that, as a single unit, receives ordered sequences
of messages as an input, updates its volatile state and generates ordered sequences of
output messages. Internally, individual processes that we call “tasks” follow a strict
message-driven execution of computational steps, as described already in|section 3.2,
We further call each step a stream process action and denote (proc, m, My),, a process
action of a task p that is triggered by an input message m € M (i.e,, m # {@}) and
produces a set of output messages M; associated with that action.

The internal computation logic within a stream process action is encapsulated
within a function process: (sh,mi) — (si"',M;) that typically maps to the
invocation of a higher-order function (e.g., map, filter, fold) and its corresponding
user-defined function literals (see Flink’s model as a reference in|chapter 2). More
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complex functions can be composed on top such as binary stream logic (e.g.,
join, co-map, co-flatmap) as well as blocking operator logic that is common in
stream processing (see stream windows and iterations in Chapters|5 and [6). For
example, event-time windows are also invoked via a stream process action triggered
by watermarks which are input messages, discussed in detail throughout|chapter 6|
In this chapter, we will consider stream computation at the lowest processing level
(i.e., that of a stream process action and corresponding events). Finally, we assume
that all tasks operate on a fail-stop processing model, and thus, they stop their
execution upon any failure and lose their volatile state.

3.3.1.2 Stream Process Graphs

The process graph of a stream processing system, also referred to as “stream process
graph” is, in the most basic case, a connected directed acyclic graph!|which contains
two special types of tasks: sources and sinks.

Sources: We term as “sources” a non-empty set of tasks that contain no input
channels from other tasks and can, in combination, reach all other tasks in the
graph. Since sources share the same properties as the initiators in Definition 3.2.6
we will use the same notation A C TI. In practice, sources serve as the main entry
point for input streams in the graph and typically bind to message queues that are
external to the system. However, it is also possible for sources to generate streams
deterministically. In either case, message generation internally occurs within the
regular stream process action of the sources and follows a strictly deterministic
execution. This is achieved either via pulling data from logged input streams (using
a partitioned log [51, 70]), a deterministically generated sequence of records (e.g.,
Fibonacci sequence) or a mixture of logged and deterministically generated input
(e.g., records and derived low watermarks).

Sinks: We define another special set Q C IT of tasks that have no output channels
to other tasks in G, referred to as “sinks”. In practice, sinks serve as an exit point of
a stream process graph by pushing sequences of messages outside the system, e.g.,
to file systems, message queues or DBMSs via external communication mechanisms.
Sinks are especially important for committing external side effects (i.e., output
message streams) consistently, as it will be shown in|chapter 4|

3.3.2 Productions and the Problem of Reliable Processing

An inherent relation between actions on the strictly message-based execution model
of stream processing tasks is the one of productions. In|[Figure 3.7(a) we depict a
simple process graph consisting of two sources py and p, and a single sink p4. A

Isection [3.4.4.4|covers cycles as a special case, while elaborates further on semantics and

incorporation of arbitrarily nested cyclic computation in stream process graphs.
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Figure 3.7: Example of a stream process graph and a possible execution

corresponding event diagram in [Figure 3.7(b) shows a possible execution based on
that process graph. Notice that every stream of messages initiated via p; and p;
respectively creates a tree of stream process actions often along the whole diameter of
the process graph. We call each relation within a tree a “production” and define it
further as a partial order relation ~~ in a stream execution E in Definition[3.3.1

Definition 3.3.1. Given an stream process graph execution E and e,e’,e” € E, the
production partial order relation ~+ satisfies the following:

(1) ifeand e’ correspond to (proc, mi, M;) and (proc, mj, M;) respectively where
mj € M; thene ~ e’

(2) (e~ e )N (e ~e") = e~ e’ (Transitivity)

In [Figure 3.7(b) we highlight the transitive closure of each production with a
separate color and call each of them, a production tree. We can further generalize
that each production tree is in fact a subset of an execution, related to the transitive
closure of an input event (occurring at a source) since no internal events can occur.
Furthermore, due to the finite, directed acyclic structure of a stream process graph,
productions can only be finite sets, e.g., in the previous example e] ~ {el, e}, e7}
and e? ~ {e3}. Event productions imply causality but the inverse is not true. In
fact, due to the local event order there is a causal relation between most events that
occur from the very beginning of a computation up to its indefinite execution. We
can further reduce the causal ordering relation to stream process graphs as defined
in Definition (modification in blue).

Definition 3.3.2. Given an stream process graph execution E and e, e’,e” € E, the
causal partial order relation < satisfies the following:

1 e<pe = e<e.
2 e~e = e<e’.
B) (e<e')N(ef<e") = e=<e”.
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Figure 3.8: A highlight of all events that produce (blue) and cause (red) e3.

To visualize the two relations, consider a continuation of the previous execution
of [Figure 3.7(b) including mappings of source and sink events to input and output
streams as depicted in A selected event e is part of the production
tree of e} since e} ~~ {e3, 3} and causally succeeds most events of the distributed
execution up to this point (as shown in red in the figure). It is noticeable that
throughout an execution every individual event contributes to side-affects both to
the stream output with its productions but also to all causally succeeding events
via internal state transitions.

Problem Intuition: Given the unbounded nature of stream processing executions
and the large number of tasks allocated in data centers, we expected failures to
occur especially often during the lifetime of an application. If we ought to strongly
rely on such an execution (e.g., processing medical records or financial transactions)
and the correctness of its corresponding results we have to ensure that the system
hides inconsistencies from the outside observer. This means the observed system
execution (inferred by looking at each individual state transition) should hide
events that correspond to incomplete or abnormal state that might have occurred
at its tasks (e.g., incomplete productions, undetected event patterns etc.). Before
providing a clear definition of the problem of reliable stream processing we will
first retrospect over the state of the art as well as the basic modern needs for reliable
processing.



44 3 RELIABLE DATA STREAM PROCESSING

3.3.3 Reliable Stream Processing: Past and Current Considerations

While in our design we have adopted a fail-stop failure model, there have been several
approaches in that past that assume a fail-recovery model, where tasks can restart
independently from failures and employ different mechanisms [63} 62} 9] [11} [10]
to amend their execution to reproduce computations that were possibly lost. We
briefly discuss two such related approaches and their considerations.

Task-Level Rollback Recovery: One approach to provide fault tolerance as well as
aid reconfiguration is to allow processes to checkpoint independently their channel
and internal states to stable storage during arbitrary points in their execution
and recover from there independently. However, this creates several non-trivial
complications. Consider in the previous example of [Figure 3.8|a failure of task p;
right after executing event e3.

Assuming a fail-recovery model, p3 could restart from a previously captured
state, e.g., s} and it would have to ensure that 1) pending messages are re-executed
strictly in the same order (i.e., processing the message sent from p, after the two
messages sent by p1) and 2) consumer tasks do not execute duplicate computation.
In our example, task p4 would have to avoid processing duplicate messages since
that would result in an abnormal execution that does not reflect the case of no
failures occurring (e.g., if €5 has already already occurred). Several existing
approaches consider extensive input logging and complex reconciliation protocols
with reachable processes [11} 71, [62] in the graph that is often infeasible with
one-directional communication. Furthermore, given the fine-grained nature of
task-level rollbacks, from the user- or consuming service-level there is no clear
distinction on which parts of the global computation have been committed, thus, no
clear guarantees can be made trivially on the state of the application and globally
committed output.

Transactional Productions and Idempotency: Another related approach to the
problem is to commit each single production as a transaction using an external fault-
tolerant storage system, before delivering it to a consumer service or user. Google’s
Millwheel stream processing system [9] is using BigTable[72] for that purpose
which provides support for distributed transactions, committing a production [
of an input record carrying a specific key with the same transaction identifier (for
idempotency). This works trivially in purely data-parallel computations (per-key)
where task-level causal order can be possibly violated and all that is needed is to
guarantee that each operation per key has succeeded. However, since the more
general stream processing model presented here addresses the complete state of each
task (across all keys) this approach cannot be generally applicable. Furthermore, the
same approach suffers from non-trivial optimisations (e.g., deduplication, batching

2Millwheel calls this concept a strong production and differentiates it from weak productions that
related to task-level rollback recovery and avoid pre-commits for naturally idempotent productions.
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transactions) and also falls short of offering broader application-level guarantees if
anything more than committed aggregates per-key are needed.

3.3.4 Related Open Problems

Evidently, there is a need for an application-level consistency model for reliable
data stream processing that goes beyond the scope of task or procuction-level fault
tolerance. We have identified a set of emerging system needs that relate indirectly
to the same problem but cannot be collectively covered or composed by prior
approaches.

Support for Reconfiguration: The stream process graph G as well as user-defined
logic (e.g., function literals) that is being executed within the tasks is not necessarily
static. Given that a stream system does not typically run for a few minutes or hours
but is meant to do continuous processing it is often required to apply system-level
changes. For example, there is commonly a need to increase or decrease the number
of task instances that execute a logical operation in parallel, also known as scale-
out or scale-in operation in a cloud computing infrastructure. This problem also
demands flexibility on how state is partitioned and re-allocated to different numbers
of tasks. Changes in task logic (the process function) is also a common case of
reconfiguration, associated with “bug fixing” or issuing upgrades on the application
logic ran by specific tasks. The main challenge of any type of reconfiguration, is to
apply all changes in a reliable and transparent way, similarly to fault recovery.

Execution Migration and Provenance: Stream processing executions mightbe long-
running, however, this is not always the case with the underlying infrastructure.
Given the vast amount of diverse laaS platforms for both on-premise and cloud
deployments there is an increasing need for flexibility on where an execution is
physically occurring. For a reliable stream processing system that means that there
is an inherent need to first identify, capture and version the global state of a stream
execution e.g., EV! in order migrate to EV2 where E¥! C EV2. To enable this, all
production trees would need to maintain causal dependencies from EV! to EV2.

State Access Isolation: Following the recent trend of main-memory databases,
many latency-critical applications today rely on fast read access. The state of of
individual processors in stream processing graphs poses an attractive alternative
to main-memory databases [73], since among other things, it always reflects an
up-to-date summary of long sequences of input records. Given that this state
unlike DBMSs is not transitionally committed it is restricted, by definition, to dirty
reads. That yields a need for a form of version control for task states in stream
processing, separating state that is potentially safe to read from volatile state that can
be invalidated. That can further allow the possibility of access isolation mechanisms
that can guarantee causal consistency to external queries.
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Figure 3.9: Overview of Epoch-Based Stream Processing.

3.4 Epoch-Based Reliable Stream Processing

The concept of epoch-based stream processing offers a uniform solution to reliable
streaming and fulfills all relevant state management needs discussed in
In this section, we introduce the concept and describe several design
approaches to materialize it, while aiming to satisfy principal design properties
(uncoordinated and blocking-free execution, transparency and compositionality).

3.4.1 Concept Overview

In[Figure 3.9|we visualize the essential idea of epoch-based processing at a conceptual
level. We assume, as before, a stream process graph G with a fail-stop model and
a deterministic event sequence at its sources (e.g., logged streams). The main
goal is to expose a continuous execution that satisfies reliable processing, i.e.,
maintaining all event productions and respecting causality. However, instead
of reasoning about individual events, we distinguish discrete stages, or “epochs”
that represent finite intermediate subsets of a continuous execution E as such
E€PT C E®P2 CE°P2 ... CE.

Conceptually, each epoch represents a part of the computation that is atomically
processed (either completes or restarts). This allows us to lift all concerns regarding
reliability from the level of individual records or productions to the coarse-grain
level of epochs. Once an epoch has been committed all the states of the process
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Figure 3.10: Example of Synchronous Epoch Commit.

graph in addition to external output streams reflect the full state of an execution up
to that point. In case of failure during the execution of an epoch ep,, we can simply
rollback the deterministic input and global state of the process graph to a previously
completed epoch (e.g., epn—1). A core requirement for employing an epoch-based
execution is to be able to capture all individual task states of the system upon the
completion of an epoch on stable storage. It is, in essence, the configuration of
the system at the exact point that the input of epoch ep; (and nothing more) has
been fully processed. Thus, a snapshot S.p,, of that configuration would consists
only of local task states Sep,, = {ITep, }. It is important to note here that there are
many possible executions up to an epoch completion, e.g, E¢p, # Eg,,, since no
total processing order is guaranteed in a distributed stream execution. However, a
committed epoch includes the result of a single possible execution up to an epoch.
This notion relates to the informal use of exactly-once [9},29] end-to-end processing
semantics which, in this case, it specifically refers to “exactly one” epoch commit.

3.4.2 Synchronous Epoch Commit

In the simplest case, epoch-based stream processing can be achieved via staging the
underlying execution. Staging is typically implemented using an atomic commit
protocol between a coordinator process and the tasks of the graph.

In[Figure 3.10/we show how a synchronous (two-phase) atomic commit protocol
can be used to stage epochs in a stream processing execution. The first phase
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ensures that all computation has been completed and the second phase completes
once all side effects have been persisted to stable storage (i.e., task states and stream
output). While this approach works in practice, there is one major downside, it
enforces a blocking coordination protocol. The core of the problem of staging is that
most tasks will have to remain idle 1) until every other task has finished computing
and 2) while every other task commits its state and side effects to stable storage. The
latter can be potentially avoided with asynchronous copying methods, however, if
epochs are frequent the communication overhead of the protocol itself can often
overtake the actual computation time. On the other hand, if epochs are infrequent,
tasks are less idle but the end-to-end latency between the ingestion of input streams
and the time results are committed can be too high and thus, too late for many
applications (e.g., critical event monitoring).

3.4.2.1 The Case of Micro-batching

Stream micro-batching [12] is a mechanism that emulates stream processing ca-
pabilities on batch processing systems which employ short-lived task execution
(i.e., Spark [27], MapReduce [8]). In essence, micro-batching is equivalent to the
synchronous epoch commit protocol. The main idea is to have a coordinating
process (i.e., the driver in Spark) that periodically divides a stream into batches and
then schedules a job (process graph of short-lived tasks) per batch. In the case of
micro-batching, a new set of tasks will be scheduled to overtake the computation
on each epoch. In case of a failure, a batch is re-executed by the same or a new
set of tasks (parallel recovery[12]). This grants the flexibility to re-allocate and
reconfigure the computation per batch, however, it also introduces additional
scheduling overhead on top of the synchronous epoch commit costs mentioned
before. Furthermore, the original version of discretized streams enforced the use of
time-discretized batches in its programming model, making the whole architecture
non-transparent to the user-facing programming model. This problem can be
attributed to an initial design choice in the context of batch execution rather than
being an inherent property of epoch-based stream processing, as newer versions of
Spark Streaming offer a more fluid stateful programming model (e.g., Structured
Streaming [74]).

3.4.3 Asynchronous Epoch Commit

We seek for non-blocking mechanism for committing epochs in a stream computa-
tion, one that does not halt the regular execution of the stream processing graph
and allows tasks to progress asynchronously across epochs without the need to
remain idle for blocking synchronization. A possible solution to satisfying this
fundamental requirement lies at the use of consistent snapshots, regulated to respect
epochs in order to bypass the need for staging the overall execution.
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3.4.3.1 Epoch Events and Cuts

First, we will examine the notion and implications of epochs in a continuous
execution. An epoch marks a logical time for a distributed stream computation
known at all sources of a stream process graph. We will denote as ep; the epoch of
time i € Z and further assume that sources are notified about the completion of an
epoch, e.g., epy, through special epoch events : (epy).

Epoch events can be either issued by an external coordinator process to all
source tasks, or instructed by a user or simply inferred through special punctuation
events pulled from incoming data streams. For generality, we will make no special
assumptions at this point on how epoch events are triggered, though, we will
assume that they are eventually triggered at all sources A C TT of a stream process
graph and are monotonic (given in Definition [3.4.1).

Definition 3.4.1. Epoch Event Monotonicity: Given a source task p € A and two
local epoch events in Ej,: el = (epi) and e}, = (ep;) theni <jiff k < L.

The notion of epoch events can help us reason about a complete preceding
computation in a stream process graph. In Definition [3.4.2, we introduce “Epoch
Cuts”, a stricter form of a consistent cuts expressing not only a causally consistent,
but also a complete execution of a stream process graph in respect to an epoch.

Definition 3.4.2. Epoch Cut: An Epoch Cut Cey, satisfies the following invariants
in stream process graphs (acyclic) for e,e’ € Eand p € A:

D) (epi) <€) = (e ¢ Cep,)

(2) (e < (epi)) = (e €Cep,)

() ((e €Cep ) N(e~e')) = (&' €Cep,)

4) ((e €Cep, )N (" <e)) = (e’ € Cep,) (consistent cut)

We will be using invariant (4) in order to describe Causal Consistency and (1-3) as
the necessary conditions for Epoch Completeness in a cut.

Example: Consider the execution illustrated in|Figure 3.11 which is based on the
process graph of [Figure 3.1 and includes epoch events for ep;,. The events marked
as green denote everything that locally precedes epoch events, including their
productions, while all succeeding production trees are marked as red. Based on
Definition[3.4.2} the epoch cut Ce},,, should contain exactly all green events including
the epoch events. Both C; and C; satisfy Causal Consistency, yet, only C, satisfies
Epoch Completeness and therefore, C; = Cep,.. In the case of C; we identify two
invariant violations for Epoch Cuts. First, events e}, e3 € C; while (epn) <p1 €]
and (epn) <p2 €3 which violates invariant (1) of Definitionl?ﬁl Second, e3 ¢ Cy,
however, according to Definition[3.4.2(3) it should be part of the epoch cut since
(e2 € C1) A (e ~ e3). Therefore, C1 # Cep.,.
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Figure 3.11: An example of two consistent cuts where C; = Ceyp,, -

3.4.3.2 Feasibility of Epoch Cuts

Evidently, epoch cuts are a quite strict form of consistent cuts since they impose
constraints on the possible executions where they can be feasible. In|Figure 3.12/we
show another possible execution based on the process graph of [Figure 3.1|as before.
The problem in this execution is that no consistent cut can satisfy all invariants of
Definitionl@ For example, by invariant (1) and (4) it should be true that e € Cep
since e7 <p1 (epn) and e ~~ e3. However, this contradicts with 3 ¢ Cep, imposed
by invariant (2) since (epn) < e3. (i.e., (epn) < €3 < e3 < e3).

Intuitively, in order to make any epoch cut feasible, an execution E should
always respect event-ordering imposed by epochs. Thus, no event that is not part
of an epoch should precede an event of that epoch. We call this execution property
“Epoch Feasibility” and summarize it in Definition|3.4.3|

Definition 3.4.3. Epoch Feasibility: An execution E of a stream process graph
satisfies Epoch Feasibility iff Ve,e’ € E: ((e € Cep, ) N\ (€' € Cep,)) = €' £e.

3.4.4 Snapshots for Asynchronous Epoch Commit

If we can assure the feasibility of epoch cuts throughout a long-running continuous
execution then it is possible to prepare and commit epochs asynchronously, as
depicted in|Figure 3.13. This can be enabled through the use of snapshots, though,
we need a protocol that implements not just any consistent cut but epoch cuts.
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Figure 3.12: An example of an execution where Ce,,, is infeasible.
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Figure 3.13: Asynchronously coordinated epochs with no idle times.

Specification |4 describes the expected behavior of “Epoch Snapshotting”. Epoch
snapshots are consistent snapshots that capture an epoch-complete configuration
Sec.,, in respect to an epoch cut Cep,,. The specification essentially describes a
recurring consistent snapshot that terminates per epoch in a continuous execution.
When it comes to safety properties an epoch snapshot should satisfy Validity
(identical to the consistent snapshot specification) as well as Epoch Completeness.
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With epoch completeness we refer to the notion of capturing the (local) execution
of an epoch ep, in a process p, also denoted as EpP™. Given that every full epoch-
complete snapshot implements an epoch cut, all message productions are included
in the snapshot and therefore, no messages in transit are considered in a captured
configuration. Mind that in this specification snapshots are not single-shot but
recurring and should satisfy Termination if no failures occur up to the complete
execution of an epoch.

Specification 4: Epoch Snapshotting (esnap)
Event Interface:

Indication: (recordlp,n,s)
Properties:

ESNAP1: Termination: A =TTin E®?P» — (record|p,n,_) € E,,Vp €Tl

ESNAP2: Validity: Configuration S¢, = {ITep,, } is valid

ESNAP3: Epoch-Completeness: Configuration Sc,, is epoch-complete

Snapshotting Approach: The in-flight marker-based snapshotting mechanism by
Chandy-Lamport that we analyzed previously injsubsection 3.2.3 demonstrates how
to capture a consistent snapshot concurrently to the execution without the need for
blocking coordination. However, in the context of epoch-based processing it is not
capable of offering epoch-cuts as is. In the rest of this section, we present step-by-step
an alternative marker-forwarding protocol that satisfies validity (Theorem [3.2.2)
similarly to Chandy Lamport while also guaranteeing epoch completeness. For
better understanding, we break down our approach into three parts: 1) Snapshot
Initiation, 2) Epoch Alignment and 3) Cyclic State.

3.4.4.1 1) Snapshot Initiation

The Termination property of esnap hints that the protocol has to eventually yield
a snapshot per epoch. Therefore, we need a mechanism that initiates a snapshot
per epoch and eventually terminates for every task in TT. In Theorem [3.2.6 we
generalized the applicability of marker-forwarding snapshotting protocols to any
weakly connected graph. More concretely, we have proven that the marker-based
protocol terminates if initiated on a set of processes A that can in combination reach
the full graph. In the context of stream process graphs, the set of source tasks
satisfies this property. That means that an instance of the marker-based protocol
would eventually reach all processes if executed on a set of initiator processes A.
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Algorithm 5: Epoch-Based Snapshots (Sources)

Implements: Epoch-Based Snapshotting (esnap)
Requires: FIFO Reliable Channel (I,, O)

Algorithm:
1: @p « configured_channels;
2: Sp — I, > volatile local state
3: /* Source Task Logic */

4: Upon (rcvd, m)
L (sp)  process(sp, m, Oyp);

%]

Upon (ep[n)
esnap — (record|self,n,sy);
foreach out € O, do
| out — (send, ®n);

O 0 N O

Given that every source task eventually becomes aware of an epoch change at
the moment it processes an epoch event (e.g., (epr) for epoch n), it is natural to
also initiate the protocol at that very instant. Inalgorithm 5/ we summarize the
epoch-based snapshot initiation logic for the source tasks. Mind that despite the
fact that source tasks always follow a strictly deterministic order of events, they do
have internal state. The internal state of the sources typically encapsulates the exact
point in their deterministic execution. For example, if a source task reads messages
from a logged message queue, its state is the read offset or pointer in that queue.
Furthermore, we attach the epoch number to markers, in order to make the current
epoch known to all receiving tasks and later simplify the collection of states based
on their respective epoch that they were captured. Overall, given that source tasks
have no input channels, the logic here is identical to that of the C-L algorithm.

3.4.4.2 1l) Epoch Alignment

As we have concluded in Theorem 3.2.2, the marker-based “snapshot-and-forward”
logic can guarantee validity. It remains to examine the necessary modifications
needed to satisfy epoch completeness. In |Figure 3.14|we depict a possible cut
consistent and associated (valid) snapshot based on the previous example of an
execution where epoch cuts are infeasible. Mind that message m is captured as part
of the snapshot. Instead, an epoch-complete cut should incorporate all remaining
productions e? ~ {e3, eJ}. We can do so via a form of prioritization that we call
“epoch alignment”.

The epoch alignment mechanism allows tasks to complete all computation
associated with an epoch before proceeding further in an orthogonal manner to
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Figure 3.14: A consistent but not epoch-complete snapshot using C-L.

Algorithm 6: Epoch-Based Snapshots (Regular Tasks)
Implements: Epoch-Based Snapshotting (esnap)
Requires: FIFO Reliable Channel (I,, O)
Algorithm:
1: (I,,0p) « configured_channels;
2: Enabled I ;
31 Sp — O > volatile local state

4: /* Common Task Logic */
5: Upon (rcvd, m) on ¢ € Enabled
6: | sp « process(sp,m,0p);

7: Upon (rcvd, ©n) on ¢ € Enabled
8: esnap — (record|self,n,sy);
9: Enabled «+ Enabled/{c};

10: if Enabled = () then

11: foreach out € O}, do
12: L out — (send, ©n);
13: Enabled « I ;

the marker-forwarding logic that guarantees validity. The goal is to turn any
execution into a feasible one for epoch-cuts and therefore, obtain a snapshot that is
both causally consistent (valid) and epoch-complete. Infalgorithm 6 we describe
the complete logic of epoch alignment, as a minor modification of the core C-L
protocol. Epoch markers are again disseminated throughout the graph, though,
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with alignment we first make sure that all markers have been received along the
inputs before capturing the task state and disseminating further.

a) b)

\l/
VA

c) d)

y

/]

JAYA!
\l/

/N

Figure 3.15: Alignment and Snapshotting Highlights.

Figure 3.15|depicts the steps prior to and during snapshotting in more detail.
When a task receives a marker on one of its channels, it removes that channel from
the “enabled” ones since all computation associated with the current epoch has
to complete before continuing further (Figure 3.15(a)). Once markers have been
received in all inputs (Figure 3.15kb)) the task can further capture its full state and
notify downstream tasks based on the marker-forwarding logic that maintains
causal consistency along the recording process of the global snapshot in the graph.

Example: In|Figure 3.16 we visualize how epoch alignment can make epoch cuts
feasible in the context of the execution visited previously. Alignment takes place in
task p3 once it processes the epoch marker in event e3. At that point e,3 is removed
from the pending channels of p3, prioritizing messages through e3. Eventually,
the last epoch marker is being processed in €3 resulting into p3 dropping alignment,
snapshotting its state and propagating the epoch marker further to p4. The resulting
cut C; satisfies all properties of an epoch cut and thus C; = Cep,, -

3.4.4.3 Alignment vs Synchronous Epoch Commit

Epoch alignment effectively results into equivalent executions as the synchronous
epoch-based approach (commit per epoch). However, in contrast to the synchronous
approach, alignment does not hinder blocking synchronization since all tasks
continue their regular operation, while prioritizing pending work to complete an
epoch in a coordination-free fashion. The sole cost of alignment is limited to extra
in-transit latencies for messages within non-enabled channels (measured further in
lchapter 4/[section 4.4). In a typical push-pull messaging model that is employed in
most stream processing systems, channel omission can lead, in the worst case, into
disk spilling when allocated memory for network buffers reaches its limit. However,
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Figure 3.16: An epoch-complete snapshot using epoch alignment.

credit-based flow control can also be issued in order to avoid pushing messages on
channels that are non-pending from receiving tasks.

3.4.4.4 1ll) Cyclic State

So far we have only considered the case where the stream process graph is a
directed acyclic graph. However, it is often required to incorporate closed loops of
tasks in stream processing graphs (e.g., in machine learning and graph processing
applications). We identify two main challenges related to cyclic graphs : 1) A
production tree within a cycle is not guaranteed to be bounded and thus, it can
potentially progress infinitely. That would in turn mean that an epoch is not
guaranteed to complete. 2) Epoch alignment deadlock as-is if there existed a loop in
the graph. That is due to the fact that the protocol progresses only if all preceding
computation on an epoch has completed. Hence, a circular dependency would
make such a condition unsatisfiable.

Given that explicit loops disallow epoch-based execution we can only deal
with such issues indirectly. Consider a process graph with cycles, such as the
one depicted in|Figure 3.17| Loops are formed by strongly connected components
in a stream process graph. Conceptually, if we collapse each strongly connected
component into a single task (e.g. loops A and B in|Figure 3.17) we get a directed
acyclic graph. Assuming that we are able to employ any epoch-based execution in
that conceptual level, the complete state of Loop A and B at the pass of an epoch
would in fact be their in-progress computation, a combination of internal states
and in-transit messages. This concept encapsulates our approach to dealing with
loops which we describe in a methodology comprising of two steps: 1) Back-Edge
Identification and 2) Loop Expansion, as described below. Our methodology is
general and it can be used to break loops in any strongly connected component.
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Loop A . sources

O sinks

Loop B

Figure 3.17: An example of a process graph with two loops.

Back-edge Identification: In the best case, loops can be explicitly defined at a higher
level programming model (see|chapter 6). However, there also exist compositional
dataflow programming systems that allow loops to be composed arbitrarily (e.g.,
Apache Storm [38]]), similarly to go-to statements in imperative programming. In
the most general case each loop can be inferred using a typical strongly connected
component detection algorithm [75] in a depth-first traversal of the process graph
at compilation time. Given a set of tasks per loop it is then possible to define an
entry task based on the highest dominance value [76]. Typically, in stream process
graphs the entry task corresponds to the one that maintains the most input edges
external to the loop (since all stream flow passes through that node). An edge
(channel) within the cycle that points to the entry task is also known as a back-edge.
In|Figure 3.18(a) we highlight in red each selected back-edge per loop.

Loop Expansion: Given that we all back-edges are identified, the next step is to
eliminate cycles via a process we call “Loop Expansion”. We replace each back-edge
with two tasks, a source task called “Loop Head” and a sink task called “Loop Tail”.
Each pair of Head and Tail is interconnected with a hidden channel that we call
phantom channel. All messages that traverse the phantom channel are processed by
the Head as regular input records. This way our graph is a directed acyclic graph
and can respect epochs since each Loop Head is able, as every other regular source
to process epoch events and therefore determine which part of the in-transit (cyclic)
computation belongs to an epoch. This approach works seamlessly for nested loops
as well since every cycle will be transformed into an acyclic graph with a source and
a sink, eliminating any cyclic dependencies and allowing epoch-based progress.
The Loop Head tasks incorporate our final variant of the epoch-based snapshot-
ting protocol, summarized injalgorithm 7|which guarantees to capture the current
state of each loop (messages in transit) at the moment an epoch changes. The overall
logic is identical to Chandy-Lamport snapshots since all in-transit messages are
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Figure 3.18: Process Graph Transformation Steps for Loops

recorded up to the completion of an epoch. However, we only apply this logic at
Loop Head nodes, where that functionality is necessary in the context of a strongly
connected component.

We visualize each step of this algorithm variant in [Figure 3.19, starting at the
instant that a loop head task receives an epoch change event. As depicted in
[Figure 3.19(a)), markers are first inserted within the respected cycle through the
head task. From that point until a marker is processed back at the head (after
traversing the whole cycle) all messages forwarded at the head through the phantom
channel are being also logged into the head’s snapshotted state since they precede
the marker and therefore belong to preceding epochs (similar to the C-L algorithm).
Once the marker is received back at the head (Figure 3.19(c)) its message log is
committed as part of its internal state and the protocol terminates (Figure 3.19kd)).

3.4.5 Analysis of Asynchronous Epoch Snapshots

The epoch-based snapshotting protocol presented inherits the core invariants of the
C-L protocol when it comes to termination and validity, while also satisfying epoch
completeness. In this section, we will examine these properties and prove them in
the context of epoch-based stream processing.

3.4.5.1 Termination

In section|3.2.4.2|we have proven the termination property of the marker-forwarding
logic in the C-L protocol which we further generalized to weakly connected graphs
with multiple initiators in Definition[3.2.6| According to these observations, any
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Algorithm 7: Epoch-Based Snapshots (Loop Heads)
Implements: Epoch-Based Snapshotting (esnap)
Requires: FIFO Reliable Channel (O,,)
Algorithm:
1: (Op)  configured_channels;
2: recording « false;
30 sp — 0 > logged in-transit state

/* Loop Head Logic */
Upon (ep[n)
recording « true;
foreach out € O, do
| out — (send, ®n);

0 N O v

9: Upon (rcvd, @) on phantom_channel
16: esnap — (record|self,n,s,);
11: sp — 0;
12: Upon (rcvd, m) on phantom_channel
if recording then

| sp e spumg

foreach out € O, do

13: | out — (send,m);
Loop Head Loop Tail
a) o
X 4 A\ .
O / \ /
d) commit

Figure 3.19: Cycle Snapshotting Highlights.
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marker-forwarding protocol for snapshotting can terminate if a marker reaches all
channels in a process graph. The alignment logic that we have added for epoch
completeness affects only prioritization across channels and does not alter the fact
that a marker will be in fact delivered across a channel if it has been previously sent
(including the phantom channel we have introduced in loops).

Proof. It suffices to show that the following two conditions are satisfied:

1 There exists a set of initiating processes A C TT:
M/AC{qeNFp(peANp~q)}

2 The protocol is instantiated on every initiating process per epoch.

Condition 1. is satisfied by the properties of a stream process graph itself, including
the transformations we introduced for strongly connected components. Effectively,
the set of regular sources and the loop heads satisfy the necessary reachability
condition.

Condition 2. is satisfied by Algorithms|5|and [7]that describe the initiating logic in
both regular sources and loop heads. Given that an epoch event is guaranteed to be
received during an epoch change (epli) € E,,,Vp € A, the algorithm proceeds with
the regular marker-forwarding logic within the same action. Furthermore, based
that monotonicity property of epoch events given in Definition{3.4.1]it is guaranteed
that the protocol will be initiated and terminated in strict epoch order.

Finally, we should add that similar to the C-L algorithm, the termination of an
instance of the protocol can only be guaranteed if all of the participating processes
are correct during the system execution, up to its completion. O

3.4.5.2 Validity

Despite the addition of the alignment mechanism, epoch-based snapshots preserve
the same marker-forwarding logic of C-L according to Theorem 3.2.2|and also rely
on FIFO reliable channels to guarantee validity.

Proof. Each local snapshotting action e in a process q € ITis causally related to

the snapshotting action efy of an adjacent process p in a stream process graph (i.e.,
ey < e) via the the forwarding of a special marker © included in that action that
separates all events the precede and follow a specific epoch cut. In Section|3.2.4.3}
we have proven that this principle is equivalent to maintaining causal consistency
during snapshot acquisition (summarized in Theorem [3.2.2) and therefore it is

guaranteed that the final configuration of each epoch snapshot is valid. O
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3.4.5.3 Epoch Completeness

Epoch-completeness is satisfied via the the special initiation of the protocol based
on epoch events as well as the alignment mechanism. In fact, the action of an epoch
change at a source task corresponds to a marker-based snapshot initiation. Then
alignment makes sure that all pending productions of an epoch, relevant to a task,
are being processed before any message that belongs to a succeeding epoch.

Proof. There are three invariants associated with epoch-completeness that have to
be satisfied by a snapshot Sc,,, of an epoch ep; .

Inv. 1. ((epi) <e) = (e & Cep,)
Inv. 2. (e < (epi)) = (e € Cep,)
Inv. 3. ((e € Cep, ) N(e~e')) = (e’ €Cep,)

Proof [Inv. 2]: Given that epoch change events occur solely on source tasks, and no
event at a source task is causally dependent on events occurring on other processes,
the condition e < (epli) applies only to local event order at a source. Therefore, we
only need to prove that for each source task p € A, (e <, (epli)) = (e < eg).
Based on the source task logic described in jalgorithm 5, the snapshotting action
e occurs at the reception of an epoch marker and thus, e = (epli). It therefore
derives directly that invariant 2 is always satisfied. Note that the same epoch
change occurs on Loop Head source tasks. The only difference in the case of Loop
Heads is the in-transit logging of messages in a loop which correspond to pending
productions of the currently snapshotting epoch (until the marker arrives back via
the phantom channel), thus it is guaranteed that (e < (epi)) = (e € Cep,) even
in that case.

Proof [Inv.1+43]: Inv.1 refers to the exclusion of events corresponding to messages
after an epoch change, while, Invariant 3 refers to the inclusion of all events caused
by messages preceding an epoch change. We need to prove that both are satisfied
on every task in the system. Given the algorithm variants we further separate the
cases of source and regular tasks.

I) Source Tasks(p € A): Given the strict local execution order and the fact that
eg = (epli), inv.1 is always satisfied. Furthermore, Inv.3 considers event productions
and hence it can never be violated for source tasks given that they don’t consume
input messages.

IT) Regular Tasks(p € TT/A): The epoch alignment mechanism of algorithm 6/ with
FIFO channels suffice to satisfy both. According to epoch alignment, an input
channel ¢, 4 of a task q € TTbecomes disabled from the time a marker arrives in a
channel until the last marker is received and the process p executes the snapshotting
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and marker-forwarding action. For brevity, we will refer to those two events as
e and e respectively and summarize the alignment condition in

Alignment Condition: Given adjacent processes p, q € TT/A the alignment

mechanism enforces the following condition:

©

_ O]
Aeq = (proc,Mpq,M)q € Eq:eqP9 <qeq <q €

(3.11)

Via (3.11) the proof of Invariants 1 and 3 follows a similar logic: For Inv.1, assume
by contradiction that (epli) < eq/\eq € Cepi,. Based on the marker forwarding logic
in a channel, let that be c,, it is known that egP9 < e, since eq = (proc, mpq, M)
(1). From (1) and it can only be true that e§?9 < e <4 eq and thus,
eq & Cep, which leads to a contradiction =<.

Similarly, for invariant 3, given an event e,, € E,, and the production e, ~+ eq,
let us assume by contradiction the following: (e, € Cep,) N\ (eq &€ Cep,). Since
ep € Cep,, that event precedes the snapshotting event on process p: e, <, ey (2).
Both of these events create productions in process q: e, ~ eq and e;) ~ egPe.
Via FIFO delivery (FIFORC4) we can maintain the delivery order of (2) to their
productions from p to q given the fifo property of c,,4. Therefore, eq <q €574 (3).
However by applying the epoch alignment condition @) to (3) we have eq <q e
and finally arrive to contradiction eq € Cep, /\eq & Cep, =¢.

We thus know that Inv.3 is satisfied for a single production. Via the transitive
property of productions the proof extends trivially to arbitrary production trees via
induction on the path of channels from p to q where p ~ q.

O

3.5 Summary

In this chapter, we introduced the fundamental execution model primitives and
specifications of reliable data stream processing. Our analysis addresses a set
of universal challenges when it comes to reliable stream processing, including
the ability to recover from failures, reconfigure a continuous stream processing
execution as well as to version and identify side effects of a distributed, event-
based stream computation in a causally consistent manner. To that end, we
proposed the Epoch-Based Stream Processing model according to which a stream
computation is divided into a series of epochs that atomically commit the state of
an execution. Furthermore, we showed how the epoch commit protocol can operate
asynchronously to the stream computation via epoch-based snapshotting, a stricter
form of a causally consistent snapshot that extracts a valid system configuration
while respecting epoch order, a necessary property in our execution model. Our
proposed marker-based mechanism can work on any weakly connected, static graph
of processes with optional cycles and it has been proven to satisfy all necessary safety
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and liveness properties of epoch-based snapshotting. Given that this chapter focuses
solely on the fundamentals, we skip the discussion on design principles and instead
summarize the complete analysis in |chapter 4 The integration of asynchronous
epoch commits in Apache Flink further showcases how this underlying execution
model can support complex operations in a widely deployed, production-grade
scalable stream processing system.






CHAPTER

State Management in Flink

As presented previously in|chapter 3| asynchronous epoch commits via snapshotting
suffice to offer transactional processing guarantees without blocking synchronization
and coordination in the context of distributed data streaming. This chapter presents
in more detail a concrete adaptation of these techniques within Apache Flink’s
end-to-end runtime. We describe how the principles we introduced work in practice
and drive stateful processing inside and outside the Flink system. Flink’s runtime
can support continuous long-running task executions without interruptions, while
allowing side effects of epochs to commit asynchronously, outside the critical path
of the computation. Aside the core snapshotting mechanism, many other related
operational mechanisms are made transparent to the user, posing no restrictions on
Flink’s expressive programming model and thus allowing arbitrary operations on
partitioned state.

The outline of the chapter goes as follows: |section 4.1 describes the internal
runtime components of Flink that participate in the state aquisition mechanism
and the concrete end-to-end epoch commit protocol as well as its interactions with
various backends developed by the Flink community. Then, [section 4.2||!offers
an in-depth overview of Flink’s reconfiguration mechanism and related choices
regarding repartitionable state in the system. Section 4.3|introduces the concept of
external query isolation and application execution provenance tracking, two useful
operations that build on epoch commits. Then, [section 4.4/presents the costs and
benefits of epoch-based snapshots based on production statistics gathered during
a long large-scale deployment of Flink. Finally,|section 4.5|discusses existing and
potential optimisations such as incremental snapshots and dynamic reconfiguration,
followed by acknowledgements in[section 4.7jand a summary in|section 4.8|covering
the use of our core design principles.

1Sections 4.2|and |4.4|include previously-published content [29] as-is.

65
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Figure 4.1: A Detailed Overview of Flink’s Runtime.

4.1 Asynchronous Epoch Commit Integration

Flink’s distributed runtime has a master-slave architecture similar to Spark and
Hadoop MapReduce. Yet, in contrast to batch-centric application management [12]
that builds on staged, short-running computation, Flink employs a schedule-once,
long-running allocation of tasks. Nevertheless, through the use of epochs and
corresponding state backends that abstract operations on state the system is able
reconfigure applications (e.g., scale-out) and re-allocate application state on-demand
while offering reliable processing guarantees (via atomic epoch commits). This
approach minimizes management overhead while allowing for further adaptation
to hardware or software changes or partial failures that can potentially occur. We
first explain the overall design choices and then focus on each respective mechanism
related to epoch-based snapshots in more detail.

4.1.1 Architecture Breakdown

In we provide an overview of all Flink runtime components and their
purpose, which we describe in more detail below.

Client: The client library provides support for static type checking and compilation
of Flink programs. In |chapter 2|we sketched most operational semantics of stream
operations from the programmer’s perspective. An operation corresponds to a
unary (e.g., map, filter, fold, window) or n-ary higher-order function (e.g., join,
co-map, co-flatmap) and is parametrized with user-defined function literals. The
Flink client compiles operations to a logical graph of tasks, encapsulating each
independent application component and its data dependencies to other components.
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A task in the final optimised graph corresponds to a single or multiple (chained)
logical operators compiled by Flink’s graph generator and optimiser (see [chapter 2).
The client provides a command line interface (CLI) to compile, submit, monitor and
reconfigure running applications and thus serves as a complete interface to Flink’s
distributed runtime.

JobManager: The JobManager is a JVM process that maintains a global view and
control of each running application, including corresponding tasks and their locally
managed states. The role of the JobManager is crucial to epoch-based execution since
it is the intermediary that triggers epoch-change events, collects recorded snapshots
and notifies back tasks about completed epochs, as part of the asynchronous epoch
commit protocol. Furthermore, it employs heartbeat-based failure-detection and
monitoring of all Flink cluster resources. Every action of the Job Manager that alters
the metadata of an application (e.g., scheduling, reconfiguration, epoch completion
etc.) is first committed in a Zookeeper quorum [77]. This allows for passive-standby
deployments that can guarantee a consistent system execution which can deal with
all types of failures, including master node failures. All communication with the
client and the local workers (TaskManagers) respects an asynchronous RPC-based
protocol that does not interfere with data channels used by the application tasks.

TaskManager: Each logical task of an application is scheduled and physically
executed in parallel across multiple workers. Physical tasks are granted access to
two major resources: network channels and state. The overall resources available in
a worker should be shared efficiently and in isolation by multiple physical tasks
(typically assigned to dedicated containers using YARN [48] or Mesos [49]). This is
the work of the TaskManager JVM process, which also serves as the main proxy
between physical tasks and the JobManager. JobManager processes are stateless and
employ policy-based networking and state access while executing requests received
from the JobManager. Data channels between task threads are multiplexed into
shared TCP connections with shared buffers for serialization/deserialization needs
and deadlocks are typically avoided through in-flight flow control. State backends
are a modular way to make state operations transparent to the physical state’s
location and representation. Flink supports plug-in backends for locally embedded
databases (e.g., RocksDB), external partitioned logs (Kafka, Pravega, Kinesis etc.)
and external multiversion concurrency control-enabled (mvcc) databases without
requiring any changes in the user program. Most importantly, physical state
is almost always kept outside the heap and managed externally to the JVM for
scalability and performance (no garbage collection).

4.1.2 Task Design and Process Model

Physical tasks in Flink adopt the stream process model presented in [subsubsecq
tion 3.3.1.1 and therefore follow a strict message-based control flow, manipulating
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Figure 4.2: Component Design of Physical Tasks.

state and generating output records within an atomic action triggered by an input
message. In an epoch-based execution with reliable processing guarantees no
indirect communication or external connections are supported in that critical path.
However, external asynchronous communication mechanisms are used for auxiliary
purposes such as the epoch commit protocol presented later.

In[Figure 4.2lwe depict how physical tasks are modeled from a component design
point of view. The logic within a physical task gets invoked per input message
received from one of its FIFO channels. A task can read, write or issue snapshotting
operations on its managed state as well as send output messages through a collector
interface (“collect” flushes messages downstream). Both implementations of FIFO
channels and managed state are provided by the TaskManager. Furthermore, at
the end of a complete epoch, each task provides a reference of its snapshotted
state which is collected via asynchronous RPC issued by the Job Manager. For
convenience, the channel prioritization logic required by the alignment phase of
the epoch-based protocol is implemented by the FIFO channels provided by the
IOManager component.

4.1.3 Protocol Implementation

Flink makes use of the Asynchronous Epoch Commit protocol (see
, guaranteeing that all events in an execution up to an epoch and their
internal and external state operations are atomically committed to stable storage.
The implemented protocol includes all asynchronous communication steps between
a Snapshot Coordinator process (JobManager), Physical Tasks (TaskManager) and
respective state backends. An instance of the protocol runs per epoch change and is
initiated by the coordinator while supporting concurrent instances of the protocol.
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The Epoch Commit Protocol
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Figure 4.3: Overview of Epoch Commit with Snapshots.

If an instance gets aborted (e.g., due to a partial failure) the system rolls-back
all pre-committed changes and the execution restarts from the latest committed
epoch. Most importantly, the epoch commit protocol is being executed concurrently
with the physical task execution and does not influence the critical part of the
computation. In we visualize each communication step of the epoch
commit protocol and further explain each step below.

Prepare Phase: The prepare phase starts once the snapshot coordinator issues an
epoch change. This can occur periodically (e.g., every 20 seconds) or as an adhoc
request from the user. In both cases, the coordinator broadcasts an epoch change
message (la) to all TaskManager nodes which in turn initiates the epoch-based
snapshotting protocol described in[section 3.4/at all source tasks including marker
dissemination and epoch alignment. Eventually, if no failures occur, every physical
task triggers a local snapshot on its managed state and an acknowledgment is
sent back to the coordinator (record notification). We call each local snapshotting
operation a pre-commit step (1b). In the case of operators with a local state backend
the pre-commit is a copy operation of the state to an external file system. However,
in the case of an external state backend, a pre-commit locks remote changes to
allow for no further operations and to prepare it for the final commit. Nevertheless,
neither the snapshotted states nor the externally pre-committed states should be
accessible at this point since the epoch is not yet committed. The prepare phase ends
once all tasks have notified the coordinator with a “prepared” acknowledgment (1c).
That can only happen after the snapshotting algorithm has finished. If a partial
error (abort message) or global timeout occurs during the process the protocol
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aborts.

Commit Phase: The commit phase begins once all “Prepared” commands are
received by the coordinator. The purpose of the commit phase is to confirm
all pre-commited states for external access. The Snapshot Coordinator initiates
the commit phase by broadcasting a “Commit Epoch” message to all tasks (2a)
which in turn commit pending epochs at the backends (2b). This action can be
invoked concurrently to the task execution by the TaskManager, thus, inducing no
performance impact on the critical execution path. The commit phase is especially
important for external state backends in order to make all external changes visible
to the outside (e.g., pre-committed output streams). Failures can potentially occur
during this phase which can lead to incomplete committed changes in an epoch.
However, this does not violate any system guarantees. Given that all changes are
at least guaranteed to be pre-committed at this point, pending commits can be
eventually re-issued during the rollback mechanism (explained below) to finalize
the process.

Summary: Epoch commit is a special-purpose two-phase commit protocol that pro-
vides transactional processing guarantees. The usage of asynchronous epoch-based
snapshots for pre-committing all side-effects yields several important observations.
First, no commit operation affects the runtime performance (i.e., throughput) of the
system. The commit protocol simply makes all side effects of an epoch externally
visible once it is guaranteed that everything is stored to some form of stable storage.
Second, it allows pipelining of multiple concurrent epoch commit instances with
the use of asynchronous epoch-based snapshots. In the example of [Figure 4.3,
we can see the case of three possibly concurrent epochs. For epoch ep; all side
effects are committed while ep, has been pre-committed and the commit phase is
pending. Finally, eps is in the pre-commit phase which means that the snapshotting
algorithms is being currently executed. In the same example, it is safe to rollback
from ep, given that all states are stored to stable storage at that instant.

4.1.3.1 The Rollback Procedure

Flink’s rollback mechanism is initiated either when a partial failure gets detected
during normal operation (fail-stop model), or when reconfiguration is requested or
upon an aborted epoch commit instance. Rollback respects a “stop, reschedule and
restore” procedure whether the reason is failure recovery or reconfiguration (see
Figure 4.4). In all cases, the system (JobManager) picks the latest prepared (but not
necessarily committed) snapshot to restart an execution from. Eventually, all states
within the pipeline are progressively retrieved and applied to reflect an exact, valid
distributed execution at the restored epoch. Below, we identify several special cases
of a task rollback:

Loop Head Tasks: In the case of Loop Head tasks, all records logged during
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Figure 4.4: Rollback examples.

the snapshot are recovered and flushed to output channels prior to their regular
record-forwarding logic. This way, it is guaranteed that the state of the loop returns
back to its snapshotted execution (that is, the sum of the in-transit records).

State in External Backends: In order to circumvent the case of permanently
uncommitted external states, all external state backends issue a preemptive commit
in the beginning of a rollback in order to guarantee that no uncommitted changes
will persist past the recovered execution point.

Regular Sources: All data sources need to restore their (deterministic) execution
back to the current offset of each stream when the snapshot occurred. Flink’s data
sources provide this functionality out-of-the-box by maintaining offsets to the latest
record processed prior to an epoch from external logging systems. Upon recovery
the aggregate state of those sources reflects the exact distributed ingestion progress
made prior to the recovered epoch. This approach assumes that external logging
systems, that sources communicate with, index and sequence data across partitions
in a durable manner (e.g., Kafka, Kinesis, PubSub and Distributed File Systems).

Selective Rollback: Depending on the rollback cause, certain optimized recovery
schemes can be employed. For example, during a full restart or rescaling, all tasks
are being redeployed, while after a failure only the tasks belonging to the affected
connected component (of the execution graph) are reconfigured, if more than one
connected components exist.

In essence, known incremental recovery techniques from micro-batch processing
[12] are orthogonal to Flink’s rollback approach and can also be employed. A
snapshot epoch acts as synchronization point, similarly to a micro-batch or an input-
split. On recovery, new task instances are being scheduled and, upon initialization,
retrieve their allocated shared of state back to their respective backends, from
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externally stored snapshots.

4.1.4 Backend Integration

Several backend implementations have been contributed to Flink by its developer
community which integrate seamlessly with Flink Epoch Commit protocol. In
Table 4.1 we summarize some of the existing and possible backends and the
required operations to integrate with Flink’s Epoch Commit. In general, each
backend supports four operations: 1) Start, 2) Pre-Commit, 3) Commit and 4) Abort.
For several backends that allow some form of transactional writes the operational
needs are satisfied out of the box. These include recent versions of partitioned
logs such as Kafka (> 0.11) and Pravega as well as DBMSs with multi-version
concurrency control. For example Apache Kafka 0.11 introduced support for
exactly-once delivery for producers. Flink’s Kafka 0.11 transactional sink basically
issues a new transaction per epoch which can be committed atomically by Kafka
itself. Pravega is another example of a newer system which comes with built-in
support for transactional cross-partition writes already in its model. Pravega’s
segments represent self-contained partitioned logs which can be atomically started
and sealed, integrating tightly with Flink’s epoch-based processing since a segment
per epoch can be started, sealed (committed) and deleted in case of an epoch abort.

In the rest of the cases, the implementation of two-phase commit has to be solved
indirectly by the developer of the backend. Examples of non-transactional backends
are non-MVCC databases and File Systems. For example, the HDFS transactional
sinks in Apache Flink persist all state append operations to temporary files and rely
on HDFS truncate to abort an epoch and atomic move operations to move a closed
HDFS file of an epoch to a “read-committed” directory. In the case of DBMSs or
other external store systems a general strategy that works at an additional latency
and storage cost is to maintain a Write-Ahead-Log (WAL) for all uncommitted
external operations in local state. Upon an epoch commit phase (or recovery) the
WAL can be executed and get discarded from the local state.

In general local backends are needed to complement the snapshotting of all
metadata needed to persist external two-phase commits. For example, WALs, log
offsets, transaction IDs etc. are important metadata that requires bookkeeping to
eventually finalize any pending asynchronous message-exchange protocols that
have been initiated with external systems.

4.2 System Reconfiguration

Asynchronous epoch snapshots and the rollback procedure cover the needs of
reconfiguration but only in part. A typical need in any data-intensive application
deployment is to be able to modify the scale (i.e., parallelism) of certain logical tasks.
For tasks that have declared managed state we need to consistently allocate data
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Figure 4.5: State Allocation and Metadata Alternatives

stream partitions and further re-allocate in the case of reconfiguration. In
we covered the different managed state representations in Apache Flink. In fact,
most scalable operations and respective state are scoped by a user-defined key with
a key space K. For load balancing, both streams and respective states are sharded in
the space of a consistent hashing function h: K — N*.

4.2.1 Key-Group Partitioning and Allocation

Flink decouples key-space partitioning and state allocation similarly to Dynamo|[78].
The runtime maps keys to an intermediate circular hash space of “key-groups” :
K* € N* given a maximum parallelism -max and a hash function h as such:

K* = {h(k) mod =-max | k € K, =max € N*,h: K — Nt}

Given that snapshots should contain all information needed to find and re-
allocate state, there is an evident trade off between the overhead of a rollback (I/O
during state scans) and snapshot metadata needed to re-allocate state to different
numbers of instances. On one extreme each parallel task could scan the whole
state (often remotely) to retrieve the values of all keys assigned to it. This yields
significant amounts of unnecessary I/0 (Figure 4.5(a)). On the opposite extreme,
snapshots could contain references to every single key-value and each task could
selectively access its assigned keyed states (Figure 4.5(b)). However, this approach
increases indexing costs (proportional to num. of distinct keys) and communication
overhead for multiple remote state reads, thus, not benefiting by coarse-grained
state reads. Key-groups (Figure 4.5(c)) offer a substantial compromise: reads are
limited to data that is required and key-groups are typically large enough for coarse
grained reading (if 7-max is set appropriately low). In the uncommon case where
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IK| < m-max it is possible that some task instances simply receive no state. Finally,
this mapping ensures that a single parallel physical task will handle all states within
each assigned group, making a key-group the atomic unit for re-allocation.

4.2.2 State Re-Allocation

To re-assign state, we employ an equal-sized key-group range allocation. For 7t
parallel instances, each instance t' € TT,0 < i < 7t receives a range of key-groups
from [i- =22 to | (i+1)- 722 |. Seeks are costly, especially in distributed file systems.
Nevertheless, by assigning contiguous key-groups we eliminate unnecessary seeks
and read congestion, yielding low latency upon re-allocation. Operator-State
entries, which cannot be scoped by a key, are persisted sequentially (combining
potential finer-grained atomic states defined across tasks), per operator, within
snapshots and re-assigned based on their redistribution pattern, e.g., in round-robin
or by broadcasting the union of all state entries to all operator instances.

4.3 Operations with Epoch Snapshots

Fault tolerance and reconfiguration are only a subset of the potential needs and
benefits covered by epoch-based snapshotting. In this section, we introduce
another two novel use-case examples of snapshots, namely external access isolation
guarantees for managed state and application provenance both of which have been
examined and prototyped in Apache Flink.

4.3.1 External Access Isolation

Flink allows direct adhoc queries to its managed state from outside the system. This
way external systems or users can access Flink’s keyed-state in a similar way as
that of a key/value store, providing read-only access to the latest values computed
by the stream processor. This feature is motivated by two observations. First, it is
required by many applications to grant ad-hoc access to the application state for
faster insights. Secondly, eager publishing of state to external systems frequently
becomes a bottleneck in the application as remote writes to the external systems
cannot keep up with the performance of Flink’s local state on high-throughput
streams.

Queryable state can be accessed via a subscription-based API. First, managed
state that allows for query access is declared in the original application. Upon state
declaration (see|chapter 2[section 2.1} it is possible to allow access from external
queries by simply setting a flag in the descriptor that is used to create the actual
state, having an assigned unique name for this specific state to be accessed, as such:

//stream processing application logic
val descriptor: ValueStateDescriptor[MySchema] = ...
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descriptor.setQueryable ("myKvV'")

val mutState: ValueState[MySchema] = ctx.getState(descriptor)

Upon deployment, a state registry service gets initiated and runs concurrently with

the task that holds write access to that state. A client that wishes to read the state for

a specific key can, at any time, submit an asynchronous query (obtaining a future)

to that service, specifying the job id, registered state name and key, as shown below:
//client logic

val client = QueryableStateClient(cfg);
var readState: Future[_] = client.getKVState(job, "myKV", key);

The current implementation of queryable state supports point lookups of values
by key. The query client asks the Flink master (JobManager) for the location of the
operator instance holding the state partition for the queried key. The client then
sends a request to the respective TaskManager, which retrieves the value that is
currently held for that key from the state backend.

From a database query isolation-level viewpoint, such queries access uncommitted
state, thus following the read-uncommitted isolation level. However, via the use
of snapshots it is possible to offer read-committed isolation support by letting
TaskManagers hold onto the state of committed snapshots, and use that state to
execute adhoc queries.
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4.3.2 Application Provenance and Migration

Epoch-based executions make application provenance possible and more impor-
tantly, trivial. This is due to the fact that snapshots mark a clear dependency chain
between epochs and reconfiguration actions applied throughout the history of a
long-running stream processing application. As shown in|Figure 4.6, an application
execution dependency diagram resembles that of a version control system (e.g., git),
where its distinct change is encapsulated into epoch snapshots. Furthermore, an
application can have multiple versions, forked from existing snapshots that are being
executed in different configurations (e.g., different parallelism, cluster, logic etc.).
This can further ease the development and maintenance of continuous applications
as well as granting the freedom to issue bug fixes that can rollback in the past (e.g.,
at an old epoch snapshots) and thus, re-conciliate erroneous functionality starting
from the time it actually occurred.

Another important aspect of snapshots is that they make a continuous execution
of an application purely portable. Migrating a full pipeline is as simple as rolling
back the application to a committed epoch. Given that snapshots themselves are
blobs that can be moved to different locations, this grants an important flexibility
to application developers since it makes an entire transition to different cloud
providers or on-premise clusters trivial.

4.4 Performance Analysis

At the time of writing, Flink has gone beyond a research prototype and is one of the
most widespread open source systems for data stream processing, serving the data
processing needs of companies ranging from small startups to large enterprises (e.g.,
Uber, Netflix, Alibaba, Hwawei, Ericsson, King, Zalando etc.). In the remainder
of this section, we present a performance analysis derived from live production
metrics heavily focused on the performance costs and benefits of asynchronous
epoch-based snapshots, which is the core contribution of this work. The data used
in this analysis has been extracted from production server logs at King (King Digital
Entertainment Limited), a leading mobile gaming provider with over 350 million
monthly active users.

4.4.1 A Real-Time Analytics Platform

The Rule-Based Event Aggregator (RBEA) by King [79], is a reliable live service that
is implemented on Apache Flink and used daily by data analysts and developers
across the company. RBEA showcases how Flink’s stateful processing capabilities
can be exploited to build a highly dynamic service that allows analysts to declare
and run standing queries on large-scale mobile event streams. In essence, the
service covers several fundamental needs of data analysts: 1) instant access to



78 4 STATE MANAGEMENT IN FLINK

Managed States
(out-of-core)

Kafka
[Events]

Game

P L T W . . Snapshot
! - - : Repository

: I - i consistent
P2 3 PRt qey® b snapshots
""""""""" (async)

Player "
Dynamic Kafka
Window
J—— [Results]
Kafka keyby: topic

”| [Queries] (query, aggregate)
Data
Analyst

Figure 4.7: Overview of the Flink pipeline implementing an adhoc standing query
execution service at King

timely user data, 2) the ability to deploy declarative standing queries, 3) creation
and manipulation of custom aggregation metrics, 4) a transparent, highly available,
consistent execution, eliminating the need for technical expertise.

4.4.1.1 The RBEA Service Pipeline

depicts a simplified overview of the end-to-end Flink pipeline that
implements the core of the service. There are two types of streams, ingested from
Kafka: a) an Event stream originating from user actions in the games (over 30 billion
events per day) such as game_start/game_end and b) a Query stream containing
standing queries in the form of serialized scripts written by data analysts through
RBEA'’s frontend in a provided DSL (using Groovy or Java). Standing queries in
RBEA allow analysts to access user-specific data and event sequences as well as
triggering special aggregation logic on sliding data windows.

Standing queries are forwarded and executed inside [Query Processor] in-
stances which hold managed state entries per user accumulated by any stateful
processing logic. A “broadcast” data dependency is being used to submit each
query to all instances of the [Query Processor] so it can be executed in parallel
while game events are otherwise partitioned by their associated user ids to the
same operator. Aggregation calls in RBEA’s standing query DSL trigger output
events from [Query Processor] operator which are subsequently consumed by
the [Dynamic Window Aggregator]. This operator assigns the aggregator events
to the current event-time window and also applies the actual aggregation logic.
Aggregated values are sent to the [Output sink] operator which writes them
directly to an external database or Kafka. Some details of the pipeline such as
simple stateless filter or projection operators have been omitted to aid understanding
as they don’t affect state management.
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Figure 4.8: RBEA Deployment Measurements on Snapshots

4.41.2 Performance Metrics and Insights

The performance metrics presented here were gathered from live deployments
of RBEA over weeks of its runtime in order to present insights and discuss the
performance costs related to snapshotting, as well as the factors that can affect those
costs in a production setting. The production jobs share resources on a YARN cluster
with 18 physical machines with identical specification each having 32 CPU cores,
378 GB RAM with both SSD and HDD. All deployments of RBEA are currently
using Flink (v.1.2.0) with local out-of-core RocksDB state backend (on SSD) which
enables asynchronous local snapshot invocation for copying the full application
state to HDFS (see section [section 4.5 on asynchronous snapshot invocation). The
performance of Flink’s state management layer, that we discuss below, has been
evaluated to address two main questions: 1) What affects snapshotting latency?,
and 2) How and when is normal execution impacted?

1) What affects snapshotting latency?

We extracted measurements from five different RBEA deployments with fixed
parallelism 7t = 70 ranging from 100 to 500 GB of global state respectively (each
processing data from a specific mobile game). [Figure 4.8(a) depicts the overall
time it takes to undertake a full epoch prepare phase (full snapshotting time)
asynchronously for different state sizes. Mind that this simply measures the time
difference between the invocation of a snapshot (begin of Prepare phase) and the
moment all operators notify back they have completed it through the asynchronous
backend calls (Prepared). As snapshots are asynchronously committed these
latencies are not translated into execution impact costs, which makes alignment
the sole factor of the snapshotting process that can affect runtime performance
(through partial input blocking). [Figure 4.8(b) shows the overall time RBEA task
instances have spent in alignment mode, inducing an average delay of 1.3 seconds
per full snapshot across all deployments. As expected, there are no indications
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that alignment times can be affected by the global state size. Given that state is
asynchronously snapshotted, normal execution is also not affected by how much
state is snapshotted.

2) How and when is normal execution impacted?

Alignment employs partial blocking on input channels of tasks and thus, more
connections can introduce higher runtime latency overhead. [Figure 4.9 shows
the total times spent aligning per full snapshot in different RBEA deployments of
fixed size (200GB) having varying parallelism. Evidently, the number of parallel
subtasks 7 affects the alignment time. More concretely, the overall alignment
time is proportional to two factors: 1) the number of shuffles chained across the
pipeline (i.e., RBEA has 3 x keyby for the PROCESSOR, WINDOW and OUTPUT operators
respectively), each of which introduces a form of alignment “stage” and 2) the
parallelism of the tasks. Nevertheless, occasional latencies of such a low magnitude
(~1sec) are hardly considered to be disruptive or breaking SLAs, especially in highly
utilized clusters of such large-scale deployments where network spikes and CPU
load can often cause more severe disruptions.

4.5 Additional Notes and Optimisations

It should be noted that certain performance metrics such as rollback recovery times,
the use of incremental snapshots and more are not included in our analysis since they
are orthogonal to asynchronous epoch snapshots and vary heavily between different
state backends. At the core of asynchronous epoch-based snapshotting there is
only a single “cost” within the critical path of an application, that of alignment.
Epoch commit latencies depend on how each respective backend commits changes
as well as which local backend is used (which affects the speed at which an epoch is
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pre-committed). In this section we address several important state management
optimisations that have been implemented by the Flink community to boost the
system’s performance, as well as known optimisations that can be incorporated in
the future.

4.51 Asynchronous Snapshot Invocation

The asynchronous epoch-based snapshotting protocol (algorithm 6) employed by
Flink obtains a recorded state as a local copy. There is yet another important level
of asynchrony, orthogonal to the protocol, that of the invocation of the state copy.
In reality, most state backends of Flink can execute the local snapshotting operation
asynchronously. The snapshotting protocol can still accurately pinpoint the exact
instant on which the snapshot can, otherwise asynchronously, be obtained. Flink’s
core backends such as RocksDB provide native support for asynchronous snapshots.
In RocksDB [47] a snapshot operation flushes the memTable (uncommitted operation
log) to disk, creating an SSTable (persisted operation log) and a copy process to
an external file directory begins concurrently. Once copying is complete the
notification logic to the snapshot coordinator triggers back asynchronously without
going through the critical path of the application. Asynchronous snapshots are
especially important since any synchronous copies can introduce significant latencies
to the application, especially when full snapshots are employed. In the performance
analysis presented in|section 4.4 we only considered snapshots with asynchronous
invocation. This allowed us to focus on the actual cost of the protocol (epoch
alignment) while eliminating all backend-specific performance concerns.

4.5.2 Incremental Snapshots

So far it might have seemed counterintuitive to copy a full global state of an
application per epoch. States can be as big as many Terabytes of data, generated by
billions of events throughout an application’s long lifetime. While the existence of a
full state is important for many of the purposes presented before (e.g., state queries
and reconfiguration) it is still possible to replace full snapshots with incremental
snapshots. Incremental snapshots encapsulate only the changes applied to the
managed state (i.e., writes, appends) between epochs. The actual implementation
and usage of incremental snapshots relies on the backend that implements it. For
example, Flink enables incremental snapshots through its RocksDB backend. In
fact, copying only the “commit log” of operations on state is a natural procedure in
RocksDB due to the fact that it already keeps all operations organized hierarchically
in commit logs that are backed to disk. Since a full application state is needed
periodically for a correct rollback, the system periodically compacts incremental
snapshots into a full snapshot, thus, allowing applications to recover from specified
epochs. It has been reported that incremental snapshotting can offer orders of
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magnitude of speedup, such as from 3 minutes to 30 seconds for applications with
Terabytes of state [80]. Therefore, in addition to reduced storage requirements,
this feature can further lead to lower epoch commit latency, making side effects
accessible in constantly less time.

4.5.3 Omitting Epochs

It is common in production deployments to face errors during a copy of a large
snapshot (e.g., due to a temporary HDFS, S3 error). That means that certain
instances of the epoch commit protocol might be potentially aborted. To make an
application execution less sensitive to temporary external faults, the system can
tolerate up to a specified number aborted snapshots. Mind that, when it comes to
applications without external side effects (i.e., sinks) an arbitrary number of epochs
can be ignored. If, for example, we omit snapshot of ep, but successfully obtain
a snapshot of ep3 e.g., Tep, we can still offer reliable processing guarantees by
omitting TTep,, since E€P3 C E°P3. In fact, for fault tolerance purposes the system
holds only the snapshots of the latest committed epoch. In case where transactional
sinks are used and we want to maintain reliable processing guarantees all epochs
have to eventually be committed in external state backends. In that case, the epoch
commit protocol should repeat up to a number of retries until completion.

4.5.4 Relaxed Guarantees

In several application cases, strongly transactional processing is not a strict require-
ment and users are satisfied with at-least once processing guarantees. Conceptually,
at-least-once means that given a deterministic stream input, every event production
should occur at least one time, thus duplicate productions are allowed. Flink can
provide this type of relaxed guarantees with a minor modification to its snapshot-
ting algorithm, simply by omitting channel prioritization during alignment. If
in falgorithm 6/we simply keep all channels in the pending list and snapshot, as
before, once all input barriers of an epoch ep,, arrive we have a case of a snapshot
E’ for which E€P~ C E’. If we rollback an application from that snapshot all input
records and productions of epochs > n will occur and thus, any additional events
that were included in the snapshot will be repeated. Flink allows for at-least once
processing guarantees as a configuration option which employs this strategy, further
eliminating the sole cost of epoch-based snapshots, that of alignment.

4.5.5 Dynamic Reconfiguration

The epoch alignment mechanism makes sure that each physical task completes all
work of the current epoch before going further with any processing into the next.
For cases of reconfiguration that do not alter the underlying structure of the stream
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process graph but are limited to logical changes (e.g., bug fix in a user-defined
function) it is possible to dynamically apply all changes without violating validity
or epoch completeness across configurations. The main idea is to encapsulate the
patch within the epoch markers and apply it at the instant that local check-pointing
takes place. This way we can guarantee that conceptually all changes are applied
after the completion of the epoch and no task will received records corresponding
to the updated logic prior to an epoch completion, again due to alignment. This
technique can potentially be integrated on Flink or other systems that use the same
algorithm.

4.5.6 Idempotent Sinks

A special, simplified case in the epoch commit protocol is that of deterministic
applications. This can be the case when no logical operator in the application is
sensitive to order (e.g., restricted to progress-based operators such as event-time
windows). In those cases each rollback will yield the exact same external (and
internal) side effects on its output sinks. Repeated sink commits can therefore
support idempotency (e.g., leading to the same key value store writes or database
queries) and the epoch commit protocol can be ignored all together. That is because
in that case we will always have the same external side effects no matter how many
times all events occur internally due to a rollback.

4.5.7 Hybrid Fail-Stop and Recovery Model

One of the main assumptions made throughout this work has be then one of
embedded volatile state and the fact that any data stored in the working memory
of each task is lost upon a failure. The recent development and possible future
adoption of more affordable non-volatile random-access memory (NVRAM) as well as
Remote Direct Memory Access (RDMA) for compute clusters are some of the factors
that can play a key role in the future for next-generation processing systems. These
hardware advances would possibly make fine-grained fault-recovery [10}[11] more
attractive for fault tolerance given that active state can always be accessed across
distributed compute resources even upon process failures. Despite the beneficial
usages in fault-recovery the need to address the full application state consistently
and execute system-wide operations such as querying committed state or migrating
logic would still require a form of a commit mechanism. In that context, our
asynchronous epoch-commit protocol could be defacto employed to satisfy these
needs using snapshots while allowing for local fine-grained recovery models to also
be used seemlesly in par.
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4.6 Related Work

Reliable Dataflow Processing: Flink offers coarse grained, job-level snapshot main-
tenance which grants various operational benefits. Flink bears many similarities
to SEEP [11}[10] in terms of employing partitioned embedded state and a form of
snapshotting for fault tolerance. Yet SEEP’s main focus is not end-to-end transac-
tional processing but rather fault tolerance, scalability and repartitionable state,
thus, it has not adopted an application-wide commit mechanism. IBM Streams
employs a pipelined checkpointing mechanism [64] that executes in-flight with
data streams as with Flink’s, tailored to weakly connected graphs with potential
cycles. The most distinct difference to Flink’s approach is that IBM Streams adopted
a stricter snapshotting scheme: 1) First, all records in transit are consumed in order
to make sure that they are reflected in the global state while blocking all outputs. 2)
All operators trigger their snapshot in topological order, using markers as in our
technique and resume normal operation. Flink’s protocol only drains records within
respective cycles. Furthermore, Flink’s alignment is a local operation and does
not halt global progress or hold up output in an execution graph making it more
transparent and non-intrusive. Finally, IBM Streams supports language abstractions
for selective fault tolerance. On Flink, the choice of snapshotting state is achieved
by simply using managed state versus unregistered state, without requiring further
user intervention. In the scope of a pipeline/component, snapshots can also be
enabled or disabled through Flink’s configuration.

Apache Storm [5] initially offered only guaranteed record processing through
record dependency tracking. However, the most recent releases of Storm (and
Apache Apex[39]) incorporated a variant of Flink’s algorithm to its core in order to
support transactional processing guarantees. Meteor Shower [81] employs a similar
alignment phase to Flink. However, it cannot incorporate cyclic dataflow graphs
which is a common case for online machine learning [82] and other applications.
The same solution does not cover state rescaling and transparent programming
model concerns. Naiad [20] and the sweeping checkpointing technique enforce
in-transit state logging even in subgraphs where cycles are not present. Moreover,
Naiad’s proposed three phase commit disrupts the overall execution for the purpose
of snapshotting. Finally, MillWheel [9] offers a complete end-to-end solution
to processing guarantees, similarly to Flink. However, its heavy transactional
nature, idempotency constraints and strong dependence on a high-throughput,
always-available, replicated data store [72] makes this approach infeasible in many
commodity deployments. In fact, Apache Flink’s distributed dataflow runtime
serves today as a feature-complete runner of Apache Beam[42], Google’s open-
source implementation of the Dataflow Model[55]].
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Microbatching: Stream micro-batching or batch-stream processing (e.g. Spark
Streaming [12], Comet [83]) emulates continuous, consistent data processing through
recurring deterministic batch processing operations. In essence, this approach
schedules distinct epochs of a stream to be executed synchronously. Fault tolerance
and reconfiguration is guaranteed out-of-the-box through reliable batch processing
at the cost of high end-to-end latency (for re-scheduling) and restrictive model,
limited to incremental, periodic immutable set operations. Trident [84], a higher
level framework built on Apache Storm offered a form of processing guarantees
through a similar transactional approach on predefined sets but executed on long-
running data stream tasks. While fault tolerance is guaranteed with such techniques,
we argue that high latency and such programming model restrictions make this
approach non-transparent to the user and often fall short in expressibility for a
significant set of use-cases.
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4.8 Summary: A Designh Approach Perspective

We summarize the findings of asynchronous epoch-based commits and their
applications in Apache Flink in terms of the three of our core design principles.

[D1] Blocking-Coordination Avoidance There are two types of coordination iden-
tified in epoch-based stream execution with snapshots. First, we have the centrally
coordinated phases of an epoch, i.e., issuying epoch change events and collecting
acknowledgements. The snapshotting protocol is another internal coordination
mechanism which allows different processes to aquire an epoch-complete global
system state using a distributed algorithm. In both cases, blocking synchronization
is fully avoided. In the case of master coordination, all communication steps are trig-
gered asynchronously to the underlying execution. Furthermore, the snapshotting
protocol does not impose any blocking synchronization since even during epoch
alignment all tasks continue their regular execution concurrently.
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[D2] Runtime Transparency When it comes to the snapshotting technique, it is
fully transparent to the user program. Epoch markers and local snapshotting are
handled transparently by Flink’s runtime, making zero restrictions on its program-
ming model. In comparison, Spark’s microbatching technique initially restricted
programmers to express continuous computation into RDD transformations on
processing time windows [12] . However, today we observe that these practices
are avoided and Flink state management principles are also adopted by the Spark
community for continuous processing [85] within Structured Streaming [74].

[D3] Model Compositionality Epoch-based snapshots offer a level of composition-
ality, not achievable by any other stream processing approach in the past (including
regular snapshotting methods). As we analyzed already in section this chapter
snapshots can be used for reconfiguration, fault tolerance as well as building so-
phisticated application provenance schemes on actual stream processing executions.
Other design approaches that relied on a fine-grained fail-recovery model [11} 9],
which were analyzed before achieved fault tolerance but did not consider such
a compositional, application-wide concept as the one of snapshots (e.g., used
for snapshot isolation of external queries, complete migration or provenance of
continuous applications).
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