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Abstract. We present the SC-ABD algorithm that implements sequen-
tially consistent distributed shared memory (DSM). The algorithm
tolerates that less than half of the processes are faulty (crash-stop).
Compared to the multi-writer ABD algorithm, SC-ABD requires one
instead of two round-trips of communication to perform a write opera-
tion, and an equal number of round-trips (two) to perform a read opera-
tion. Although sequential consistency is not a compositional consistency
condition, the provided correctness proof is compositional.

1 Introduction

Using fault-tolerant distributed shared memory (DSM) as a building block in
the design of a distributed system can simplify the design, as individual process
failures are masked through replication. To characterize an implementation of
distributed shared memory, we consider the following criteria:

– Consistency: a stronger consistency condition may be easier to program
against, but may provide worse performance, and vice versa.

– Multiple writers: an implementation may allow a single process, or multiple
processes, to update registers.

– Latency: the number of round-trips of communication required to execute an
operation.

– Resilience: the number of processes that can be tolerated to be faulty in an
execution, f , in relation to the total number of processes in the system, n.

In this paper, we consider the problem of implementing distributed shared
memory that is sequentially consistent, allow multiple writers, can complete a
write operation after one round of communication and a read operation after
two rounds of communication, and that tolerates f < n/2 faulty processes.
We present the SC-ABD algorithm as a solution to this problem. In Table 1 in
the conclusion section, we present a comparison of SC-ABD to two other DSM
algorithms along the mentioned criteria.
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Proving that a distributed shared memory implementation satisfies sequential
consistency can be a difficult task. Unlike some other consistency conditions,
sequential consistency is not a compositional consistency condition. Never the
less, the proof given for the correctness of SC-ABD is compositional, and we
therefore present this proof technique as a contribution in itself.

2 Model and Definitions

We consider an asynchronous distributed system composed of n processes,
denoted p1, . . . , pn, and a communication network with reliable links. We denote
by Π = {1, . . . , n} the set of process identifiers. In any given system execution, a
process is said to be correct if the process never crashes, and otherwise it is said
to be faulty. A process that crashes stops taking steps and can never recover. We
assume that at most f processes are faulty in any given execution, where f < n/2.

2.1 Shared Memory

A distributed shared memory is a distributed implementation of shared memory.
We consider a shared memory consisting of read/write registers. Each register
holds an integer value, initially zero. The shared memory defines a set of primitive
operations, that provide the only means to manipulate the registers. In our case,
the operations provided are read and write. A process invokes an operation and
receives a response when the execution of the operation is complete. We will
refer to an operation execution as an operation, if the distinction is clear from
the context. Each process is allowed to have at most one outstanding operation,
meaning that a process may not invoke another operation before the process
has received the response for the previously invoked operation. Let o refer to
a particular operation execution, invoked by process pi. We denote by inv(o)
the invocation event that occurs when pi invokes o, and denote by res(o) the
response event that occurs when the execution of o completes.

We model an execution using a history, which is a sequence of invocation and
response events, ordered by the real times when the events occurred. History H
is sequential if the first event is an invocation event, and every invocation event
(except possibly the last) is immediately followed by the matching response
event. By H|pi we denote the subsequence of H where every event occurs in
process pi; we refer to H|pi as a process subhistory. Similarly, by H|x we denote
the subsequence of H containing only events related to operations that target
register x, and refer to H|x as a register subhistory. A history is well-formed
if each process subhistory is a sequential history, and in the following we only
consider well-formed histories. Two histories H and H ′ are equivalent, denoted
H � H ′, if and only if, for each process pi, H|pi = H ′|pi. For events e1 and e2
in history H we write e1 <H e2 to denote that e1 precedes e2 in H. We say that
“operation o is in history H” if inv(o) is in H. For operations o1 and o2 in H
we write o1 <H o2 to denote that res(o1) <H inv(o2).

Operation o is pending in history H if the invocation event for o is in H but
not the response event. History H is complete if H does not contain any pending
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operations. For presentational simplicity, we consider only complete histories in
the rest of this paper.

The shared memory has a sequential specification, which is a set containing
all sequential histories such that each read operation of some register returns
the value written by the last write to that register (the write closest preceding
the read in the sequential history), or the default value if no such write exists. A
sequential history is legal if it is in the shared memory’s sequential specification.

Sequential consistency is a consistency condition that was described by
Lamport [7]. We define what it means for a history to be sequentially consistent:

Definition 1. History H is sequentially consistent, denoted SC(H), if and only
if there exists a legal sequential history S such that S � H.

The correctness conditions that we require of an algorithm implementing
sequentially consistent distributed shared memory are:

– Termination: If a correct process invokes an operation, then the operation
eventually completes.

– Sequential Consistency: Each history corresponding to an execution of the
algorithm must be sequentially consistent.

2.2 Causality and Logical Clocks

Causality and logical clocks were described in a paper by Lamport [6]. Event
e1 is said to causally precede event e2, denoted e1 → e2, if at least one of the
following conditions hold: (1) e1 and e2 both occur in the same process and e1
occurs before e2, (2) e1 is the sending of message m and e2 is the receipt of m,
(3) there exists an event e′ such that e1 → e′ and e′ → e2.

A logical clock is a device that assigns integers to events in a manner consis-
tent with the causally precedes relation. More precisely, by letting lt(e) denote
the logical time assigned to event e, we require that: e1 → e2 ⇒ lt(e1) < lt(e2).

3 Algorithm

In this section we present the SC-ABD algorithm, whose pseudo-code is con-
tained in Algorithm 1. The algorithm is given as a set of reactive handlers. Each
handler has an associated condition that describes when that handler is eligible
for execution, e.g., when an operation is invoked, or a message is received.

For each process, the algorithm contains a variable lt that implements a
logical clock. Whenever a handler is executed in response to a local condition
(i.e., an operation is invoked) the logical clock is incremented by one. When
a message is sent from process pi to process pj , the current logical time of pi
is included in the message, and when the message is received by pj and the
corresponding handler is executed, pj ’s logical clock is updated to a logical time
that is one greater than the maximum of pj ’s previous logical time and the logical
time included in the message.
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Each process stores the values that have been written to the registers. In order
to determine which value is more recent, a timestamp is associated with each
value. A value and its associated timestamp are stored together as a timestamp-
value pair. The algorithm has a local variable, tvps, that maps register identifiers
to timestamp-value pairs.

Communication in the algorithm proceeds in phases. A phase consists of a
round of communication, where the process executing the phase, pi, sends a
request to all processes and waits for responses from a majority of the processes
before the phase ends.

A write operation has one phase: the update phase. The process executing the
write operation, pi, creates a timestamp as the pair with pi’s current logical time
and pi’s process identifier, i. It then pairs this timestamp together with the value
to be written into a timestamp-value pair. pi sends an update request containing
the register identifier and the timestamp-value pair to all processes (lines 16–
20 in Algorithm 1). When process pj receives the update request it updates its
tvps with the supplied timestamp-value pair if the timestamp is greater than
the timestamp of the timestamp-value pair that was previously stored, and then
sends an ack response (lines 21–23). After pi receives acks from a majority of
processes, pi returns OK (lines 24–30).

A read operation has two phases: the query phase and the update phase. The
process executing the read operation, pi, sends a query request to all processes
containing the register identifier for the register that is being read (lines 1–5).
When process pj receives the query request, pj retrieves the timestamp-value
pair stored in tvps for the register identifier, and sends this timestamp-value
pair in a response message to pi. This timestamp-value pair is the maximal
timestamp-value pair that pj has received so far in an update request, or the
initial timestamp-value pair, ((0, 0), 0), if no update request had been received
previously (lines 6–7). When pi has received response messages from a majority
of processes, pi chooses the timestamp-value pair, (ts, v), with the maximum
timestamp out of the timestamp-value pairs received. Before returning value v,
pi performs an update phase using the (ts, v) timestamp-value pair, in order to
guarantee that a majority of the processes have stored the timestamp-value pair
before the read completes (lines 8–15 and 21–30).

4 Correctness Proof

We first prove that SC-ABD satisfies the termination property.

Lemma 1. Algorithm SC-ABD satisfies the termination property.

Proof. As links are reliable and a majority of processes are correct according to
the assumptions in our model, each communication phase executed by a correct
process is guaranteed to eventually complete, and every operation executed by
a correct process is therefore guaranteed to complete. ��

In the rest of this section we prove that the algorithm satisfies sequential
consistency.
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4.1 Linearizability

Linearizability is a consistency condition described by Herlihy and Wing [5].

Algorithm 1. SC-ABD – code for pi.
Local variables:
lt – logical time; initially 0
rid – current request identifier; initially 0
tvps – map from register ids to timestamp-value pairs; initially maps to ((0, 0), 0)
responses – tracking responses/acks; initially {}
reading – indicating whether currently reading (true) or writing (false)
rreg , rval – temporary storage for register identifier and return value during reads

Note: bcast 〈m〉 is an abbreviation for: for j ∈ Π do send 〈m〉 to pj

When READ(r) is invoked:
1: lt ← lt + 1
2: reading ← true
3: rreg ← r
4: rid ← rid + 1
5: bcast 〈“query”, lt , rid , r〉

When 〈“query”, lt ′, rid ′, r〉 is
received from pj:

6: lt ← max(lt , lt ′) + 1
7: send 〈“response”, lt , rid ′, tvps[r]〉 to pj

When 〈“response”, lt ′, rid ′, tsv ′〉 is
received from pj with rid = rid ′:

8: lt ← max(lt , lt ′) + 1
9: responses ← responses ∪ {(tsv ′, j)}
10: if |responses| = �|Π|/2� + 1 then
11: (tsv , ) ← max(responses)
12: (ts, rval) ← tsv
13: responses ← {}
14: rid ← rid + 1
15: bcast 〈“update”, lt , rid , rreg , tsv〉

When WRITE(r , v) is invoked:
16: lt ← lt + 1
17: reading ← false
18: tsv ← ((lt, i), v)
19: rid ← rid + 1
20: bcast 〈“update”, lt , rid , r , tsv〉

When 〈“update”, lt ′, rid ′, r , tsv ′〉 is
received from pj:

21: lt ← max(lt , lt ′) + 1
22: tvps[r] ← max(tvps[r], tsv ′)
23: send 〈“ack”, lt , rid ′〉 to pj

When 〈“ack”, lt ′, rid ′〉 is
received from pj with rid = rid ′:

24: lt ← max(lt , lt ′) + 1
25: responses ← responses ∪ {j}
26: if |responses| = �|Π|/2� + 1 then
27: responses ← {}
28: rid ← rid + 1
29: if reading then RETURN rval
30: else RETURN OK

Definition 2. History H is linearizable, denoted LIN(H), iff there exists a legal
sequential history S such that S � H, and ∀o1, o2 ∈ H : o1 <H o2 ⇒ o1 <S o2.

Linearizability is compositional, in the sense that history H is linearizable if
and only if each register subhistory H|x is linearizable:

LIN(H) ⇔ ∀x : LIN(H|x) (1)
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From the definition of sequential consistency and the definition of lineariz-
ability, it follows that linearizability is stronger than sequential consistency:

LIN(H) ⇒ SC(H) (2)

4.2 Logical-Time History

We define the logical-time history corresponding to history H, denoted H lt, to
be the sequence containing the same events as H, but reordered according to
the logical times when the events occurred, using the process identifiers of the
processes where the events occurred to break ties.

For each process pi, the relative ordering of events in H|pi is preserved in
H lt|pi, as the logical times of events in H|pi are monotonically increasing. It
follows that the (real-time) history H and its corresponding logical-time his-
tory H lt are equivalent, H � H lt. Together with the definition of sequentially
consistent histories it follows that:

SC(H) ⇔ SC(H lt) (3)

4.3 Compositional Reasoning

Combining (1), (2), and (3), we have:
(∀x : LIN(H lt|x)

) ⇒ LIN(H lt) ⇒ SC(H lt) ⇒ SC(H) (4)

Equation (4) allows us to reason compositionally, i.e., to reason about, for each
register x, the register subhistory H lt|x in isolation.

4.4 Reasoning About the Algorithm

We state a couple of definitions regarding the algorithm:

– The logical time of a handler execution is the value assigned to the lt variable
on the handler’s first line in the algorithm text.

– The timestamp of operation o, denoted ts(o), is the timestamp used in the
operation’s update phase.

From the definition of logical-time history H lt, it follows that:

o1 <Hlt o2 ⇒ lt(res(o1)) ≤ lt(inv(o2)) (5)

We state and prove the following proposition:

Proposition 1. Let o1 and o2 be operations in H lt|x such that o1 contains an
update phase and o2 contains a query phase. If o1 <Hlt|x o2 then ts(o1) ≤ ts(o2).
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Proof. Let pi be the process that executes the update phase in o1, and pj be
the process that executes the query phase in o2. At the time when pi’s update
phase completes, pi will have received response messages from a majority of
processes. Let Mu refer to this majority set of processes. Similarly, let Mq refer
to the majority set of processes from which pj received responses before the
query phase in operation o2 completed. As any two majority sets intersect, there
must be one process, pk, that is both in Mu and in Mq.

Let e1 be the event when pk processes o1’s update request, and e2 the event
when pk processes o2’s query request. By causality we have lt(e1) < lt(res(o1))
and lt(inv(o2)) < lt(e2), and together with (5) we get lt(e1) < lt(e2). Since e1
and e2 are in the same process, this implies that e1 occurs before e2.

Since pk returns the timestamp-value pair with the maximal timestamp that
it has received in all previous update requests, the timestamp in the response to
o2’s query request is guaranteed to be greater than or equal to the timestamp
in o1’s update request. As pj picks the timestamp-value pair with the maximal
timestamp on line 11 of the algorithm, and uses it in its update phase, it follows
that ts(o1) ≤ ts(o2). ��
Lemma 2. Algorithm SC-ABD satisfies the sequential consistency property.

Proof. By using Eq. (4), we prove that the algorithm satisfies sequential consis-
tency, by showing, for each execution, and for each register x, that LIN(H lt|x)
holds. From the definition of linearizability, we see that in order to prove that
LIN(H lt|x) holds we are required to show that there exists a legal sequential
history S such that S � H lt|x, and, for all operations o1 and o2 in H lt|x, if o1
precedes o2 in H lt|x then o1 also precedes o2 in S. We proceed by creating a
total order on the operations in H lt|x as follows:

1. Order write operations according to their timestamps. Any two write opera-
tions have unique timestamps by construction, so this is a total order.

2. Then order each read operation immediately after the write operation that
wrote the value that the read operation returned. If there are more than one
read operations with the same timestamp then they are internally ordered
based on the logical times when they were invoked (breaking ties using process
identifiers).

Let S be the sequential history obtained from this total order. As each read
operation in S returns the value written by the closest preceding write operation,
it follows that S is legal.

We show that o1 <Hlt|x o2 ⇒ o1 <S o2 using the following case analysis:

– o1 is a write, o2 is a write: By causality we have lt(inv(o1)) < lt(res(o1)),
which together with (5) gives us lt(inv(o1)) < lt(inv(o2)). Because of how the
algorithm constructs timestamps (line 18), this implies that ts(o1) < ts(o2),
from which o1 <S o2 follows.
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– o1 is a read, o2 is a write: There exists a write w0 such that ts(w0) = ts(o1).
Since the invocation event of w0 causally precedes the response event of o1,
we have lt(inv(w0)) < lt(res(o1)), and, using (5), we have lt(inv(w0)) <
lt(inv(o2)). From the analysis of the previous case we have ts(o1) = ts(w0) <
ts(o2), from which o1 <S o2 follows.

– o1 is a write, o2 is a read: By the assumption and Proposition 1 it follows that
ts(o1) ≤ ts(o2), from which o1 <S o2 immediately follows.

– o1 is a read, o2 is a read: Again, by the assumption and Proposition 1 it
follows that ts(o1) ≤ ts(o2). If ts(o1) < ts(o2) we directly have o1 <S o2.
Otherwise, we have ts(o1) = ts(o2). By causality and (5) we have lt(inv(o1)) <
lt(inv(o2)), and o1 <S o2 follows from the definition of S.

Finally we must show that S � H lt|x. For any process pi, consider the history
(H lt|x)|pi, which is sequential. For any pair of operations o1 and o2 in (H lt|x)|pi,
either o1 <(Hlt|x)|pi

o2 or o2 <(Hlt|x)|pi
o1. The same ordering will be preserved

in S|pi, according to the case analysis above. As S and H lt|x contain the same
events, we have S � H lt|x. ��
Theorem 1. Algorithm SC-ABD is a correct implementation of sequentially
consistent distributed shared memory.

Proof. Follows directly from Lemmas 1 and 2. ��

5 Related Work

Research about shared memory has a long history in distributed computing.

5.1 Consistency Conditions

Lamport described sequential consistency [6]. In multiprocessor systems, sequen-
tial consistency is widely regarded as the “gold standard”, but most multiproces-
sor systems provide weaker consistency by default, and require that programs
use memory fences to achieve sequentially consistent behavior.

Proving that a shared memory implementation satisfies sequential consis-
tency is a well-researched problem. Alur, McMillan, and Peled proved that, in
general, the sequential consistency verification problem is undecidable [1].

Bingham, Condon, and Hu suggested that the original formulation of sequen-
tial consistency, which is not prefix-closed, may be a reason why the verification
problem is hard, and suggested two alternative variants to sequential consistency,
Decisive Sequential Consistency (DSC) and Past-Time Sequential Consistency
(PTSC) that are prefix-closed [4].

Plakal, Sorin, Condon, and Hill use logical (Lamport) clocks as a tool to
reason about correctness of their distributed shared memory protocol [9].

Linearizability was described by Herlihy and Wing [5]. Linearizability has
the pleasant property that it is a compositional consistency condition.

The cost of sequential consistency vs. linearizability was analyzed by Attiya
and Welch [3]. They proved that the cost of sequential consistency is lower than
the cost of linearizability under reasonable assumptions.
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5.2 Fault-Tolerant Shared Memory

The ABD algorithm was described by Attiya et al. [2]. ABD was the first algo-
rithm that showed it to be possible to implement fault-tolerant linearizable
shared memory in a message passing system, but allowed only a single process
to write to the memory. Write operations complete after a single round of com-
munication and read operations complete after two rounds.

The multi-writer ABD (MW-ABD) algorithm was described by Lynch and
Shvartsman [8]. MW-ABD extended the ABD algorithm by allowing multiple
processes to write to the memory, and in order to do so added a second round
of communication to write operations.

6 Conclusion

We presented the SC-ABD algorithm that implements fault-tolerant, sequen-
tially consistent, distributed shared memory, and proved it to be correct using
a compositional proof structure.

Table 1 contains a comparison between SC-ABD, ABD, and MW-ABD along
the criteria mentioned in the introduction: consistency condition (linearizabil-
ity (LIN) or sequential consistency (SC)); multiple writers allowed; number of
rounds of communication required to complete a write (W)/read (R) operation;
and how many faulty processes, f , that the algorithm tolerates.

Table 1. Comparison between three fault-tolerant DSM algorithms.

ABD MW-ABD SC-ABD

Consistency LIN LIN SC

Multiple writers No Yes Yes

Latency W:1, R:2 W:2, R:2 W:1, R:2

Resilience f < n/2 f < n/2 f < n/2

In a situation where an application, running on top of distributed shared
memory, would satisfy its correctness conditions if the distributed shared mem-
ory provides sequential consistency, and the application would benefit from hav-
ing a lower latency for write operations, we think that SC-ABD is a good choice.

Finally, we showed that, although sequential consistency is not a composi-
tional consistency condition, it was still possible to reason compositionally about
the correctness of the algorithm.
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