
2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 1

DD2460 Lecture 3. Introduction to formal
specification
Elena Troubitsyna

About me

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 2

• I am associated professor at Theoretical Computer Science division, EECS school
• My research interests focus on formal modelling and verification of dependable systems
• Dependable means trustworthy, i.e., safe, reliable, secure, fault tolerant etc.
• I work mostly on formal specification methods and try to augment them with the

capabilities to specify, reason and assess various dependability attributes.
• In this course, I am responsible for Event-B module.
• We will focus on specification and refinement-based development of safety-critical

systems and representing the impact of security attacks on safety
• We will work with Rodin platform – a tool for specification and verification in Event-B

Lecture outline

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 3

• Why formal specification?
• Safety-critical control systems: structure
• What is safety and how to express it?
• Failures and their impact on safety

4Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2021-03-29

• Please watch 9 minutes of video by one of the pioneers of formal methods Prof. Eric
Hehner (University of Toronto, Canada):

• https://www.youtube.com/watch?v=89fKiaMxHrA

Questions for the discussion:
• How a program is considered by formal methods?
• Theory is a combination of formalism and rules of proof, calculation, manipulation. What

does theory give to a software developer?
• What is a difference between testing and proof-based verification?
• What is the main idea behind correct-by-construction development?

Video

https://www.youtube.com/watch?v=89fKiaMxHrA

What is a formal specification?

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 5

• A formal specification is the expression, in some formal
language and at the some level of abstraction, of a
collection of properties some system should satisfy.

• The formal specification depends on
• what does “system” mean, i.e., where one draws the

boundaries,
• what kind of properties are of interest,
• what level of abstraction is considered, and
• what kind of formal language is used.

The “system” being specified may be:

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 6

• a descriptive model of the domain of interest;

• a prescriptive model of the software and its environment;

• a prescriptive model of the software alone;

• a model for the user interface;

• the software architecture;

• a model of some process to be followed;

• etc.

The “properties” under consideration may refer
to:

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 7

• high-level goals;

• functional requirements;

• non-functional requirements about timing, performance, accuracy, security, etc.;

• environmental assumptions;

• services provided by architectural components;

• protocols of interaction among such components;

• and so on.

Formal specification

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 8

• “Formal” is often confused with “precise” (the former entails the latter but
the reverse is not true).

• A specification is formal if it is expressed in a language made of
three components:

• rules for determining the grammatical well-formedness of sentences (the syntax);

• rules for interpreting sentences in a precise, meaningful way within the considered
domain (the semantics);

• and rules for inferring useful information from the specification (the proof theory).

• The latter component provides the basis for automated analysis
of the specification.

Why specify formally?

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 9

• Problem specifications are essential for designing, validating, documenting,
communicating, reengineering, and reusing solutions.

• Formality helps in obtaining higher-quality specifications within such processes;
• it also provides the basis for their automated support.

• The act of formalization in itself has been widely experienced to raise many
questions and detect serious problems in original informal formulations.

• Besides, the semantics of the formalism being used provides precise rules of interpretation
that allow many of the problems with natural language to be overcome. A language with
rich structuring facilities may also produce better structured specifications.

Specify... for whom?

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 10

• Formal specifications may be of interest to different
stakeholders having fairly different background, abstractions
and languages:

• clients
• domain experts
• users
• architects
• programmers
• and tools.

Specify... when?

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 11

• There are multiple stages in the software life-cycle
at which formal specifications may be useful:

• when modeling the domain;
• when elaborating the goals, requirements on the

software, and assumptions about the environment;
• when designing a functional model for the software;
• when designing the software architecture;
• or when modifying or reengineering the software.

Value of formal specification

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 12

• The cost of fixing a specification or design error is higher the later in the development that

error is identified.

• Boehm’s First Law: Errors are more frequent during requirements and design activities

and are more expensive the later they are removed.

Specification methods

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 13

• Facilitate discovering errors at early stages of system development when they are

less expensive to fix.

• Common errors introduced in the early stages of development are errors in understanding

the system requirements and errors in writing the system specification.

• Without a rigorous approach to understanding requirements and constructing

specifications, it can be very difficult to uncover such errors other than through testing of

the software product after a lot of development has already been undertaken.

Why is it difficult?

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 14

• Lack of precision in formulating specifications resulting in
ambiguities and inconsistencies that are difficult to detect.

• High complexity
 complexity of requirements;
 complexity of the operating environment of a system or
 complexity of the design of a system.

The use of formal modelling

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 15

• The main aim is to overcome the problem of lack of precision.

• Formal modelling languages are supported by verification methods that support the

discovery and elimination of inconsistencies in models.

• But precision does not address the problem of complex requirements and operating

environments.

• Complexity cannot be eliminated but we can try to master it via abstraction.

Problem abstraction

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 16

• Abstraction can be viewed as a process of simplifying the
problem at hand and facilitating our understanding of a
system.

• Abstraction should
 focus on the intended purpose of the system and
 ignore details of how that purpose is achieved.

Abstraction

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 17

• If the purpose of the system is to provide some service, then
 model what a system does from the perspective of the service user.
 ‘user’ might be computing agents as well as humans

• If the purpose of the system is to control, monitor or
protect some phenomena, then
 the abstraction should focus on those phenomenon, considering in

what way they should be monitoring, controlled or protected and
should ignore the way in which this is achieved.

System and its boundaries

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 18

• A system is an entity that interacts with other entities (systems, HW, SW, humans,
physical world with its natural phenomena)

• Other entities form the environment of the given system

• System boundary is a common frontier between the system and its
environment

– Question of boundaries is complex

System function and behavior

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 19

• Function is what the system is intended to do.
– Described by functional specification

• Behaviour is what the system does to implement
its functions
– Described by a sequence of states

• The total state of a system is defined by the conditions
of computation, communication, stored information,
interconnection, physical conditions etc

System structure
• Structure of a system is what enables it to generate the

behavior

• It is composed on components bound together
– Each component is another system etc.

• The recursion stops when the component is considered to
be atomic (cannot be decomposed further or no interest
in this)

Generic control system

Controller

Sensors

Actuators

Application

Safety-critical systems are typically control systems

Generic architecture of a control system

Control system structure

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 22

• Main components
• Application: A physical entity whose function and operation is being monitored and

controlled

• Controller. Hardware and software monitoring and controlling the application in real time

• Actuator (effector). A device that converts an electrical signal from the output of the
computer to a physical quantity, which affects the function of the application.

• Sensor. A device that converts an application’s physical quantity into an electric signal
for input into the computer.

• The behaviour of the system is cyclic. The cycle is called a control loop.

• The control loop is executed once per certain period of time

Control loop

Periodically:

Environment’s physical process evolves;
Updating sensors;
Reading sensors;
Computing required control actions;
Setting actuators

Environment
(Plant) evolves

Sensors "register"
the state of plant

Controller reads sensors and
calculates how to set actuators to
achieve the desired behaviour

Controller sets actuators

Example of a control system: cold vacine
storage

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 24

• The temperature in a specialized freezer
should not exceed minus 70o Celsius.

• What kind of components the freezer control
system should have?

Example of a control system:cold vacine
storage

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 25

• Application: storage chamber
• Sensor: Temperature sensor
• Actuator: Cooling engine
• Controller:

‒ checks measurements
‒ sets the cooling engine

Might also:
‒ output information on a display
‒ Write to log file and send it over network

A variant of networked control system
structure with a human operator

Data communication link

Operator
SensorComputer

Actuator
Application

Defining the control cycle for the cold storage
control system
• We want to express the following cycling behaviour:

‒ Controller receives reading from sensor
‒ It decides to increase cooler power if temperature is between -71 and -70

degrees and decrease cooler power if the temperature is between -71 and -72
degrees.

‒ If the cooler is in the increased power state then the temperature is decreasing
for 0.1 degree per cycle

‒ If the cooler is in the decreased power state then the temperature is increasing
for 0.1 degree per cycle

3/29/2021 27

Specifying system behaviour (informally)
• The system behaviour is defined in terms of states.
• A state is defined by the values of variables
Variables:

temp: temperature measured by the sensor
cooler: setting of cooler -- increasing or decreasing
phase: variable defining at which phase of the control loop we are: plant, cnt

INIT: phase:= plant; cooler := decr; temp :=70
do (infinitely)

IF phase= plant AND cooler= incr THEN temp := temp -0.1; phase := cnt
IF phase= plant AND cooler= decr THEN temp := temp +0.1; phase := cnt
IF phase = cnt AND -71 < temp ≤ -70 then cooler := incr; phase := plant
IF phase = cnt AND -72 < temp ≤ 71 then cooler := decr; phase := plant

enddo

3/29/2021 28

Safety

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 29

• How do you define safety for the vacine storage system?
• What kind of assumptions do you make?

Safety

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 30

• General definition of safety:
• Safety is a property of the system to not cause harm to its users and environment,

‒ i.e., it is the absence of catastrophic consequences

• Not always the harm is direct and immediate (e.g. explosion, flood etc.). In the vaccine
storage case, violation of temperature boundary would result:

• If detected, in waste of the vaccine
• If not detected, in administering perished vaccine

• The variable temp denotes temperature in the cold chamber. How do you formulate safety
property?

Safety

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 31

• General definition of safety:
• Safety is a property of the system to not cause harm to its users and environment,

‒ i.e., it is the absence of catastrophic consequences

• Not always the harm is direct and immediate. In the vaccine storage case, a violation of
temperature boundary would result:
‒ If detected, in waste of the vaccine
‒ If not detected, in administering perished vaccine

• The variable temp denotes temperature in the cold chamber. How do you formulate safety
property?

temp ≤ -70

On defining safety property

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 32

• Our definition of safety property is in terms of real physical temperature
• However, temperature is measured by a sensor.
• Healthy, i.e., correctly working sensor has a certain impresicion Δ
• Reformulating safety property temp + Δ ≤ -70

• Can we assume that the sensor is always healthy? Typically no.
• Can we assume that the controlling software always functions correctly, i.e., preserves

safety?
• How to deal with various aspects systematically?

33Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2021-03-29

• Fault tree is a deductive safety analysis technique
• Fault tree consists of events and logical gates (in the simplest case OR and AND gates)
• It defines the combination of the events that lead to a hazard – undesirable event violating

safety requirement
• Fault trees are constructed top-down: we start from the event that we want to avoid and

analyse the factors that can contribute to its occurrence

A brief overview of fault trees

34Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2021-03-29

Fault tree for our example

35Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2021-03-29

Fault tree for our example cnt.

On defining safety property

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 36

• Our definition of safety property is in terms of real physical temperature
• However, temperature is measured by a sensor.
• Healthy, i.e., correctly working sensor has a certain impresicion Δ
• Reformulating safety property temp + Δ ≤ -70

• We need to define how the health of the sensor is checked and what system should do to
react on failure.

• In a simple case, the sensor produces its health status together with the measurement.

• According to our fault tree, if sensor health is OK then the controller relies on the
measurement. If not then raises alarm (failsafe system)

Defining safety property in presence of failures

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 37

• We want to express the following:
• If sensor is OK then set the actuator according to the measurement
• If sensor is not OK then set the actuator to safe state and raise alarm
• We need to define the additional variables to represent the sensor status and alarm
• Additional variables:
• sensor: OK, NOT
• alarm: ON, OFF

Specifying system behaviour with sensor failure
(informally)

INIT: phase:= plant; cooler := decr; temp :=-70; sensor := OK; alarm := OFF
do infinitely

IF phase= plant AND cooler= incr THEN temp := temp -0.1; phase := cnt
IF phase= plant AND cooler= decr THEN temp := temp +0.1; phase := cnt
IF phase = cnt AND sensor =OK AND -71 < temp + Δ ≤ -70 then cooler := incr; phase := plant
IF phase = cnt AND sensor =OK AND -71 < temp - Δ ≤ -72 then cooler := decr; phase := plant
IF phase = cnt AND sensor =NOK then cooler := decr; alarm := ON

enddo

Observe: we made the decision, that predefined safe state of the cooler is decr. After
alarm goes ON the system deadlocks, (phase is not changed).

3/29/2021 38

39Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2021-03-29

How to verify safety?

How to express it, so it can be verified?

40Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2021-03-29

How to verify safety?

How to express it, so it can be verified?
Always after controller reacted
if sensor is not OK then alarm is raised and actuator is in decr

41Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2021-03-29

Fault tree for our example

Always after controller reacted
if sensor is OK and temp + Δ ≥ -70 then cooler is in decr

42Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2021-03-29

Fault tree for our example cnt.

Always after controller reacted
if sensor is OK and temp + Δ ≥ -70 then cooler is in decr

How to verify safety?

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 43

• ”Always” in our expression means that it is an invariant property

• Testing after each statement? For large programms it is unfeasible

• Formal modelling and verification offers a solution: defining an invariant property as a part
of the specification of the behaviour of the system.

• Invariant holds means that the predicate defining it evaluates to true after the initialisation
and after each possible state transition.

Formal specification of safety-critical systems

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 44

• The main idea is to establish a link between safety analysis and verification of system
model

• Safety requirements should be reflected in the model: behaviour, invariant
• Formal modelling framework should support verification of the invariant
• For large-scale systems: unfeasible without automatic support for the verification

• Next we will investigate one of the existing specification frameworks – Event-B.

Event-B

• It provides us with a rich modelling language, based on set theory
• language allows precise descriptions of intended system behaviour (models) to be written in

an abstract way

• Event-B uses the abstract machine notation as the basis.
• Event-B is successor of the B Method (also known as classical B).

From the B Method to Event-B

• Inventor: Jean-Raymond Abrial (his previous work is Z framework)
• Both classical B and Event-B are based on set theory
• Analyse models using proofs and additionally -- model checking, animation
• Refinement-based development

• Verify conformance between higher-level and lower-level models
• Chain of refinements

o Commercial tools for classical B: Atelier-B (ClearSy, France), B-Toolkit (B-Core, UK)

o Why Event-B: realisation that it is important to reason about system behaviour, not just software

o Event-B is intended for modelling and refining system behaviour

Industrial uses of Event-B

• Event-B in railway interlocking

• Alstrom, Systerel
• Event-B in smart grids

• Selex, Critical Software
• Event-B in a cruise control system and a start-stop system

• Bosch
• Event-B in train control and signaling systems

• Siemens Transportation

Rodin

• Rodin – the automated tool platform for Event-B.

• www.event-b.org

• Integrated development environment for Event-B

• Models can be created using built-in editor.

• The platform generates proof obligations that can be discharged either automatically or interactively.

• Rodin is a modular software and many extensions are available.
 These include alternative editors, document generators, team support, and extensions (called plugins) some of which

include support decomposition and records.

http://www.event-b.org/

Wrap-up

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 49

• We discussed what is the formal specification and what are the benefits of formal
modelling

• We studied a generic architecture of a safety-critical system and performed a high-level
safety analysis

• We have outlined (informally) the main principles of modelling a safety-control system and
defining safety invariant

• Next lecture is a detailed introduction into Event-B specification language
• First assignment: familarise yourself with Rodin platform by creating and verifying a

simple specification
• The rest of the module: more modelling examples, refinement, verification of safety and

modelling impact of security on safety

Questions?

2021-03-29 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 50

	DD2460 Lecture 3. Introduction to formal specification
	About me
	Lecture outline
	Video
	What is a formal specification?
	The “system” being specified may be:
	The “properties” under consideration may refer to:
	Formal specification
	Why specify formally?
	Specify... for whom?
	Specify... when?
	Value of formal specification
	Specification methods
	Why is it difficult?
	The use of formal modelling
	Problem abstraction
	Abstraction
	System and its boundaries
	System function and behavior�
	System structure
	Generic control system
	Control system structure
	Slide Number 23
	Example of a control system: cold vacine storage
	Example of a control system:cold vacine storage
	A variant of networked control system structure with a human operator
	Defining the control cycle for the cold storage control system
	Specifying system behaviour (informally)
	Safety
	Safety
	Safety
	On defining safety property
	A brief overview of fault trees
	Fault tree for our example
	Fault tree for our example cnt.
	On defining safety property
	Defining safety property in presence of failures
	Specifying system behaviour with sensor failure (informally)
	How to verify safety?
	How to verify safety?
	Fault tree for our example
	Fault tree for our example cnt.
	How to verify safety?
	Formal specification of safety-critical systems
	Event-B
	From the B Method to Event-B
	Industrial uses of Event-B
	Rodin
	Wrap-up
	Questions?

