Lecture 3

1. Functions

A function f on a ret D onto a set S is a rule that assigns a unique element $f(x)$ in S to each element x in D. For example, in the parabola $y=x^{2}$ y is a function of x, we write

$$
y=f(x)=x^{2} .
$$

Ways to represent a function $y=x^{2}, f(x)=x^{2}$ or $x \mapsto x^{2}$ (x goes to x^{2})

$D(f)$ domain of the function f : set of all possible input.
$R(f)$ range of the function f : set of all possible output.
Ex: $f(x)=x^{2}$

$$
\begin{aligned}
& D(f)=\mathbb{R} \\
& R(f)=[0,+\infty) \\
& f(x)=\sqrt{x} \\
& D(f)=[0,+\infty) \\
& R(f)=[0,+\infty) \\
& f(x)=\sqrt{1-x^{2}}
\end{aligned}
$$

We need $1-x^{2} \geqslant 0 \Leftrightarrow x^{2} \leqslant 1$

$$
\begin{array}{r}
|x| \leqslant 1 \\
-1 \leqslant x \leqslant 1
\end{array}
$$

$$
\begin{aligned}
D(f) & =\{x \in \mathbb{R}:-1 \leqslant x \leqslant 1\}=[-1,1] \\
R(f) & =[0,1] \\
f(x) & =\frac{1}{1-x} \\
D(f) & =\{x \in \mathbb{R}: x \neq 1\} \\
& =(-\infty, 1) \cup(1,+\infty) \\
& =\mathbb{R} \backslash\{1\}
\end{aligned}
$$

$R(f)=\mathbb{R} \backslash\{0\}$ This because $\frac{1}{1-x}=0$ has no solution.

Domain convention
When a function f is defined without specifying its domain, we assume that the domain consists of all $x \in \mathbb{R}$ for which the $f(x)$ is a real number. Remark: The square root function $f(x)=\sqrt{x}$ where \sqrt{x} denotes the non-negative number whose square is x.

$$
D(f)=[0,+\infty) \text { and } R(f)=[0,+\infty)
$$

2. Graph of a function: is the graph of equation $y=f(x)$.

Not every curve is the graph of a function.

The graph of a function satisfies that no vertical line can intersect the graph at more than one point.

Circle is not the graph' of a function.
3. Even and odd functions

Definition
The function f is even if $f(-x)=f(x)$ for all $x,-x \in D(f)$

The function f is odd if $f(-x)=-f(x)$ for all $x,-x \in D(f)$
Properties
Even function is symmetric about the y-axis.
Odd function is symmetric about the origin.
Examples
$f(x)=x^{2}+2$ is even

$$
f(-x)=(-x)^{2}+2=x^{2}+2=f(x)
$$

$f(x)=x^{3}$ is odd

$$
f(-x)=(-x)^{3}=(-1)^{3} x^{3}=-x^{3}=-f(x)
$$

$f(x)=(x+2)^{2}$ is neither even nor odd $f(-x)=(-x+2)^{2}$ not $f(x)$ nor $-f(x)$

