Lecture 3 1. Functions A function of on a set Donto a set S is a rule that assigns a unique element f(x) in S to each element x in D. For example, in the parabola $y = x^2$ y is a function of x, we write $y = f(x) = x^2$ Ways to represent a function $y = x^2$, $f(x) = x^2$ or $x \mapsto x^2$ (x goes to x2) $\begin{pmatrix} x \\ x' \end{pmatrix} \begin{pmatrix} x^{+}(x) \\ f(x') \end{pmatrix}$

D(f) domain of the function f: set of all possible input. R(f) range of the function f: set of all possible output. $\underline{E_X}$: $f(x) = x^2$ $f(x) = x^2$ P(f) = R $R(f) = [0, +\infty)$ $f(x) = \sqrt{x}$ $f(x) = \sqrt{x}$ $\mathcal{D}(\mathbf{f}) = \mathbf{L}\mathbf{0}, +\infty$ $R(f) = [0, +\infty)$ $f(x) = \sqrt{1-x^2}$ We need 1-x2 >0 $\chi^{\prime} \leq 1$ \Leftrightarrow $|z| \leq 1$ -1625 1

 $D(f) = \{x \in \mathbb{R} : -1 \le x \le 1\} = [-1, 1]$ R(f) = L0,1] $f(x) = \frac{1}{1-x}$

Domain convention
When a function
$$f$$
 is defined without
specifying its domain, we assume that
the domain consists of all $x \in \mathbb{R}$
for which the $f(x)$ is a real number.
Remark: The square root function
 $f(x) = \sqrt{x}$ where \sqrt{x} denotes the
non-negative number whose square is x .
 $D(f) = LO, +\infty)$ and $R(f) = LO, +\infty$

2. Graph of a function : is the graph of equation y = f(x)

Not every curve is the graph of a function.

The graph of a function satisfies that no vertical line can intersect the graph at more than one point. Circle is not the graph of a function. 3. Even and odd functions <u>Pefinition</u> The function f is even if f(-x) = f(x) for all $x, -x \in D(f)$

The function f is odd if f(-x) = -f(x) for all $x, -x \in D(f)$ <u>Properties</u> Even function is symmetric about the y-axis. Odd function is symmetric about the origin. Examples $f(x) = x^2 + 2$ is even $f(-x) = (-x)^2 + 2 = x^2 + 2 = f(x)$ $f(x) = x^3$ is odd $f(-x) = (-x)^3 = (-1)^3 x^3 = -x^3 = -f(x)$ $f(x) = (x+2)^2$ is neither even nor odd $f(-x) = (-x+2)^2$ not f(x) nor -f(x)