6. Graph: The graph of equation is the set of points where it coordinates satisfy the equation.

Graph of the equation $y=x^{2}$
Straight lines: 2 points determine one straight line.
The slope of a line passing through tho points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

$$
\left.m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { or } \frac{\Delta y}{\Delta x}\right)
$$

If the line raises from left to right then $m>0$.
If the line falls from left to right then $m<0$.
The slope of the horizontal line (when $y_{2}=y_{2}$) is $m=0$.
The slope of the vertical line (when $x_{2}=x_{1}$) is undefined.

slope is undefined
7. Equations of lines

The equation of the line passes through the point $\left(x_{1}, y_{1}\right)$ and has slope m is given by

$$
y=m \cdot\left(x-x_{1}\right)+y_{1}
$$

(point-slope equation)

General linear equation in x and y

$$
A x+B y=C
$$

where A and B are not both zero. See example 12 / page 16 textbook.

Lecture 2
Quadratic equations:

$$
A x^{2}+B y^{2}+C x y+D x+E y=F
$$

1. Circles

The circle having center $\left(x_{0}, y_{.}\right)$and radius r has equation

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
$$

The set of all points (x, y) that are at distance r from the point $\left(x_{0}, y_{0}\right)$

Remark: A quadratic form

$$
x^{2}+y^{2}+2 a x+2 b y=c
$$

must represent a circle.
We write

$$
(x+a)^{2}+(y+b)^{2}=c+a^{2}+b^{2}
$$

If $c+a^{2}+b^{2}>0$ then the circle has center $(-a,-b)$ and radius

$$
r=\sqrt{c+a^{2}+b^{2}}
$$

If $c+a^{2}+b^{2}<0$ then there is no graph.
If $c+a^{2}+b^{2}=0$ then there is only one point $(x, y)=(-a,-b)$.
2. Parabolas

A parabola is the set of all points in the plane equidistant from a given line L and a given point F not on the line.

Parabola with focus $F(0, p)$ and directrix line $y=-p \quad(p \neq 0)$

$$
y=\frac{x^{2}}{4 p}
$$

$p>0$ opens upward $p<0$ opens downward

3. Ellipses

EMipse with center $(0,0)$ and passes through 4 points $(a, 0) ;(0, b)$ $(0,-b)$ and $(-a, 0)$ has equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Note that a circle is an ellipse

$$
x^{2}+y^{2}=r^{2} \quad \Leftrightarrow \frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}=1
$$

4. Hyperbolas

The equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
represent the hyperbola with center $(0,0)$ and passes through two points $(-a, 0)$ and $(0, a)$

5. Transformation of graphs
a. Shifts (translations)

For $c>0$, if the graph of $y=f(x)$ is translated upward c units dommard c units left c units right c units new equation

$$
\begin{aligned}
& y=f(x)+c \\
& y=f(x)-c \\
& y=f(x+c) \\
& y=f(x-c)
\end{aligned}
$$

b. Stretches and compressions For $c>1$, if the graph of $y=f(x)$ is expanded vertically by a factor of c compressed vertically by a factor of c
expanded horizontally by a factor of c
compressed horizontally by a factor of c
c. Reflection

If the graph of $y=f(x)$ is reflected about the x-axis reflected about the y-axis reflected through the origin 0

$$
y=f(c x)
$$

$$
y=f\left(\frac{x}{c}\right)
$$

Examples

4 units to the right

reflected about the x-axis

