Lecture 1

1. Real numbers and the real line Set of natural numbers:

$$
\mathbb{N}=\{1,2,3, \ldots\}
$$

If $a, b \in \mathbb{N}$ then $a+b \in \mathbb{N}$ and $a \cdot b \in \mathbb{N}$
This is not true for subtraction and division
Set of integers:

$$
\mathbb{Z}=\{\ldots-3,-2,-1,0,1,2,3, \ldots\}
$$

Note that $a-b \in \mathbb{R}$ for all $a, b \in \mathbb{R}$
The rational numbers:

$$
\mathbb{Q}=\left\{\frac{m}{n}: m, n \in \mathbb{Z} \text { and } n \neq 0\right\}
$$

\leftrightarrows ratio between two integers
Example: $\frac{1}{2},-\frac{2}{3},-\frac{9}{1}$

Remark: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$
All the integers are included in the rational numbers since any number a can be written as the ratio $\frac{a}{1}$.
The irrational numbers: the number that can not be written as a ratio
Example $x^{2}=2$
what number timer itself equals 2?
The solution is $x= \pm \sqrt{2}$
$\sqrt{2}=1,4142 \ldots$ no repeating pattern
$\sqrt{2} \neq \frac{m}{n}$ for all m, n integers.
Other famous irrational numbers:

- The golden ratio: $\frac{1+\sqrt{5}}{2}=1,618 \ldots$
- The ratio of the circumference of a circle to its diameter: $\pi=3,14159 \ldots$
- The most important number in calculus $e=2,7182 \ldots$
Irrational numbers can be further subdivided into
algebraic numbers $\left(\sqrt{2}, \frac{1+\sqrt{5}}{2}, \ldots\right)$ transcendental numbers (π, e, \ldots)

Real numbers $\mathbb{R}=$ all rational numbers and all irrational numbers.
The real numbers are "all the numbers" on the real line (uncountable infinity)

Complex numbers $\mathbb{C}=\{a+b i, a, b \in \mathbb{R}\}$ i is the imaginary unit $\sqrt{-1}$
If $a \in \mathbb{R}$ then $a=a+0 . i$ thus $\mathbb{R} \subset \mathbb{C}$.

2. Properties of the real numbers:

Algebraic properties
a. Closure: $a+b, a . b$ are real.
b. Associative

$$
\begin{aligned}
(a+b)+c & =a+(b+c) \\
(a \cdot b) \cdot c & =a \cdot(b \cdot c)
\end{aligned}
$$

c. Commutative

$$
\begin{aligned}
a+b & =b+a \\
a \cdot b & =b \cdot a
\end{aligned}
$$

d. Distributive

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$

e. Identity

$$
\begin{aligned}
a+0 & =0+a \\
1 . a & =a \\
1.1 & =a
\end{aligned}
$$

f. Inverse

$$
\begin{aligned}
& a+(-a)=0 \\
& a \cdot \frac{1}{a}=1 \text { if } a \neq 0
\end{aligned}
$$

g. Multiplicative property of zero

$$
a \cdot 0=0 \cdot a=0
$$

h. Negation

$$
\begin{aligned}
& n-(-a)=a \\
& (-a)(-b)=a \cdot b
\end{aligned}
$$

The order properties: for any a, b either $a>b, a<b$ or $a=b$.

Rules for inequalities
. If $a>b$ and $b>c$ then $a>c$.
. If $a>b$ then $a+c>b+c$ for all c.
. If $a>b$ and $c>0$ then $a \cdot c>b . c$
. If $a>b$ and $c<0$ then $a . c<b . c$
Ex. Find all x such that

$$
\frac{2 x}{1-x}>1
$$

Note that $1-x \neq 0$
If $1-x>0$ then $2 x>1-x$
$\Rightarrow 1>x$ and $x>\frac{1}{3} \Rightarrow x \in\left(\frac{1}{3}, 1\right)$
If $1-x<0$ then $2 x<1-x$
$\Rightarrow 1<x$ and $x<\frac{1}{3} \rightarrow$ no solution
. If $a>b>0$ then $\frac{1}{a}<\frac{1}{b}$
3. Intervals $=$ is a subset of the real line

infinite interval open interval $(-\infty, a)$ (a, b)

- Open interval from a to b

$$
(a, b)=\{x \in \mathbb{R}: a<x<b\}
$$

- Closed interval

$$
[a, b]=\{x \in \mathbb{R}: \quad a \leqslant x \leqslant b\}
$$

- Half-open interval $[a, b)$ or $(a, b]$
- Infinite interval

$$
\begin{aligned}
& (a,+\infty)=\{x \in \mathbb{R}: x>a\} \\
& (-\infty, a)=\{x \in \mathbb{R}: x<a\} \\
& (-\infty,+\infty)=\mathbb{R}
\end{aligned}
$$

4. Absolute value (magnitud) is defined by the formula

$$
|x|=\left\{\begin{array}{cl}
x & \text { if } x \geqslant 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

 from x to 0 in the real line.
Ex: $|-2|=2,|1|=1$

$$
|0|=0, \quad|-\pi|=\pi
$$

$|x-y|$ distance between two points x and y.
Properties of absolute value:

$$
\text { . }|-a|=|a|
$$

- $|a b|=|a| .|b|$ and $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}, b \neq 0$

$$
\text { . }|a \pm b| \leqslant|a|+|b|
$$

(the triangle inequality)
See the textbook for proofs.
Example Find all x such that

$$
|x+2|>5-2 x
$$

We have two cases:
Case 1: $x+2>5-2 x$ if $x+2 \geqslant 0$
$\Rightarrow \quad x>1$ and $x \geqslant-2$
$x \in(1,+\infty)$ is the solution
Case 2: $-(x+2)>5-2 x$ if $x+2<0$

$$
\Rightarrow \quad x>7 \text { and } x<-2
$$

no solution!
5. Cartesian Coordinates in the plane

Increments and distances: consider a particle that mover from $A\left(x_{1}, y_{1}\right)$ to $B\left(x_{2}, y_{2}\right)$.
The increments are

$$
\begin{aligned}
& \Delta x=x_{2}-x_{1} \quad \text { and } \\
& \Delta y=y_{2}-y_{1}
\end{aligned}
$$

The distance between A and B is

$$
d_{A B}=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}
$$

(Pythagorean Theorem)

Example: $A(-1,1)$ and $B(-2,3)$
The increments from A to B are

$$
\begin{aligned}
& \Delta x=-2-(-1)=-1 \\
& \Delta y=3-1=2
\end{aligned}
$$

The distance $d_{A B}=\sqrt{(-1)^{2}+2^{2}}=\sqrt{5}$.

