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Topics for Today

© Abstract Vector Space
@ Linear Transformations of Abstract Vector Spaces

© Isomorphisms of Abstract Vector Spaces
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Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that
satisfies these axioms

© (Addition) 7,V € V then i+ vV eV
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Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that
satisfies these axioms

@ (Addition) u, vV € V then
@ (Commutativity) '+ v =V
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Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that
satisfies these axioms
© (Addition) i,V € V then i
@ (Commutativity) '+ v =V
@ (Associativity) (0'+ V) +w = o+ (V+ w)
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Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that
satisfies these axioms

© (Addition) 7,V € V then i+ vV eV

@ (Commutativity) d+ vV =vV+d

@ (Associativity) (0'+ V) +w = o+ (V+ w)
@ (ldentity) There exists 0 such that 740 = &
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Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that

satisfies these axioms
© (Addition) 7,V € V then i+ vV eV
@ (Commutativity) d+ vV =vV+d
@ (Associativity) (0'+ V) +w = o+ (V+ w)
@ (ldentity) There exists 0 such that 740 = &
O (Inverse) For every if € V, there exists a vV € V such that i+ v = 0.
We denote such a v = —uf
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Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that
satisfies these axioms

© (Addition) 7,V € V then i+ vV eV

@ (Commutativity) d+ vV =vV+d

@ (Associativity) (0'+ V) +w = o+ (V+ w)
@ (ldentity) There exists 0 such that 740 = &

O (Inverse) For every if € V, there exists a vV € V such that i+ v = 0.
We denote such a v = —if

@ (Scalar Multiplication) For every c € F, and every 1€ V, c- g€ V
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Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that
satisfies these axioms

© (Addition) 7,V € V then i+ vV eV

@ (Commutativity) d+ vV =vV+d

@ (Associativity) (0'+ V) +w = o+ (V+ w)
@ (ldentity) There exists 0 such that 740 = &

O (Inverse) For every if € V, there exists a vV € V such that i+ v = 0.
We denote such a v = —if

@ (Scalar Multiplication) For every c € F, and every 1€ V, c- g€ V
@ (ldentity) Forevery te V, 1-d=1
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Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that
satisfies these axioms

© (Addition) 7,V € V then i+ vV eV

@ (Commutativity) d+ vV =vV+d

@ (Associativity) (0'+ V) +w = o+ (V+ w)
@ (ldentity) There exists 0 such that 740 = &

O (Inverse) For every if € V, there exists a vV € V such that i+ v = 0.
We denote such a v = —if

@ (Scalar Multiplication) For every c € F, and every 1€ V, c- g€ V
@ (ldentity) Forevery te V, 1-d=1
@ (Associativity) For ever c,d € F and every € V, c-(d-d) = (cd) -
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Axioms of a Vector Space

Recall from Lecture 1, that we defined a vector space as something that
satisfies these axioms

© (Addition) 7,V € V then i+ vV eV

@ (Commutativity) d+ vV =vV+d

@ (Associativity) (0'+ V) +w = o+ (V+ w)
@ (ldentity) There exists 0 such that 740 = &
o

(Inverse) For every if € V, there exists a v € V such that 7+ v = 0.

We denote such a v = —uf
@ (Scalar Multiplication) For every c € F, and every 1€ V, c- g€ V
@ (ldentity) Forevery te V, 1-d=1
@ (Associativity) For ever c,d € F and every € V, c-(d-d) = (cd) -
O (Distributivity) For every ¢, d € F and every 4,V € V,
(c+d)-bd=c-d+d-Vandc-(G+V)=c-d+c-V
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Up until now we have discussed only the vector spaces R"” and their
subspaces.
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Up until now we have discussed only the vector spaces R"” and their
subspaces. However, using just these axioms we were able to prove
universal facts about any vector spaces
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Up until now we have discussed only the vector spaces R"” and their
subspaces. However, using just these axioms we were able to prove
universal facts about any vector spaces

If V is a vectors in a vector space V, and if k is a scalar, then
Q0V=0
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Vector Space of Functions

We could consider the set of all functions from the reals to the reals:
V={f:R— R}
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Vector Space of Functions

We could consider the set of all functions from the reals to the reals:
V = {f : R — R}. To see this is a vector space, we would first need to

define what it means to add two functions and what it means to multiply
by a scalar.
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Vector Space of Functions

We could consider the set of all functions from the reals to the reals:
V = {f : R — R}. To see this is a vector space, we would first need to
define what it means to add two functions and what it means to multiply

by a scalar. We do this in the natural way: if f, g € V, then we can write
define f + g as the function such that

(f+8)(x) = f(x) + &(x)
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Vector Space of Functions

We could consider the set of all functions from the reals to the reals:
V = {f : R — R}. To see this is a vector space, we would first need to
define what it means to add two functions and what it means to multiply

by a scalar. We do this in the natural way: if f, g € V, then we can write
define f + g as the function such that

(f+8)(x) = f(x) + &(x)

whereas if ¢ € R, we define the function ¢f such that

(cf)(x) =c- f(x)
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Vector Space of Functions

We could consider the set of all functions from the reals to the reals:

V = {f : R — R}. To see this is a vector space, we would first need to
define what it means to add two functions and what it means to multiply
by a scalar. We do this in the natural way: if f, g € V, then we can write
define f + g as the function such that

(f +8)(x) = f(x) + g(x)
whereas if ¢ € R, we define the function ¢f such that

(cf)(x) =c- f(x)

Now, we can begin to talk about the properties of vectors spaces we have
dealt with.
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Vector Space of Functions

We could consider the set of all functions from the reals to the reals:

V = {f : R — R}. To see this is a vector space, we would first need to
define what it means to add two functions and what it means to multiply
by a scalar. We do this in the natural way: if f, g € V, then we can write
define f + g as the function such that

(f+8)(x) = f(x) + &(x)

whereas if ¢ € R, we define the function ¢f such that

(cf)(x) =c- f(x)

Now, we can begin to talk about the properties of vectors spaces we have
dealt with. That is: linear dependence, subspaces, basis, linear
transformations, etc...
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Linear Dependence

Let 1 denote the constant function that sends everything to 1. Show that
the set {1, cos?(x),sin?(x)} is a linear dependent set of vectors in the

vectors space 6f functions.
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Linear Dependence

Let 1 denote the constant function that sends everything to 1. Show that
the set {1, cos?(x),sin?(x)} is a linear dependent set of vectors in the
vectors space of functions.
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If we have a set of functions from R — R given by

{A(x), fa(x), - - Fa(X)}
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If we have a set of functions from R — R given by

{A(x), fa(x), ..., fa(x)}
then we define the Wronskian of the functions to be

A(x) fh(x) ... fu(x) _ Q‘”“W

fll(x) le(X) v f,;(X) - 0&/:‘(/&(‘\‘»-(
UOECE I IR
v B :—1) ( :—1) ) (n-1)
Ow;/_)rw‘— fl (k) f2 (k) - fn (x) - @—13' 3 y@‘/«_lw

/U\ {‘\W‘{ b
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If we have a set of functions from R — R given by

{A(x), fa(x), - - Fa(X)}

then we define the Wronskian of the functions to be

A(x) fh(x) ... fu(x)

f(x) Hx) ... Ffi(x)
W(x) := det " 2 , "
B ——— . . . :

f-l(n—l) f2(n—1) . fn(n_l)

Theorem (Wronski's Test)

A set of n functions from R — R are linearly independent if and only if the
Whronskian of the functions is not identically zero.
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Example of Wronski's Test

Exercise

Using that fact that if fi(x) = 1, f(x) = cos?(x) and f3(x) = sin?(x), then
(ﬁ,‘ — Y——

—_—

fl=0,f'=0,f = —2sin(x) cos(x), fy’ = 2sin?(x) — 2 cos?(x)
—_——e— T

fy = 2sin(x) cos(x), fy = 2 cos?(x) — 2sin’(x)
-

show that {fi, f, f3} is linearly dependent by showing that the Wronskian
is identically zero.

v

Patrick Meisner (KTH) Lecture 20 8/27



Example of Wronski's Test

Exercise

Using that fact that if fi(x) = 1, f(x) = cos?(x) and f3(x) = sin?(x), then

fil :gf{;io, = —2sin(x) cos(x), fy' = 2sin?(x) — 2 cos?(x)

£l = 2sin(x) cos(x), £/ = 2 cos?(x) — 2sin?(x
3 = 2sinix) cosx), f3" 7 2Cos”{x) — 2sin” (X

show that {fi, f, f3} is linearly dependent by showing that the Wronskian
is identically zero.

v

Setting up the Wronskian, we see that

cos(x) sin(x) ety
—2sin(x) cos(x) 2sin(x) cos(x) vy
| 2sin?(x) — 2cos?(x) 2 @) ™ s
= —
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Example of Wronski's Test 2

Expanding the determinant along the first column, we find that

oo )
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Example of Wronski's Test 2

Expanding the determinant along the first column, we find that

2S|n X) coS 2S|n cos
W) = det 2sm m%

= (~2sin(x) cos(x)) (2 cos’(x) — 2sin’(x))
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Example of Wronski's Test 2

Expanding the determinant along the first column, we find that

_ : 7
—2sin(x) cos(x) cos(x)
Wix) = det (<2 sin?(x) —MU»
= (—25sin(x) cos(x))(2 cos?(x) — 2sin?(x))

—(2sin(x) cos(x))(2sin?(x) — 2 cos*(x))
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Example of Wronski's Test 2

Expanding the determinant along the first column, we find that

W(x) = det(( —2sin(x) cos(x) 2 sin(x) cos(x) >>

25sin?(x) — 2cos?(x) 2cos?(x) — 25sin?(x)
= (—2sin xm2 X
= (-2 w (x) = 2sin”(x))

—(2EM2 sin?(x) — 2 cos?(x))

—

= —4M(x) + lLsi_nM — 4sin®(x) cos(x) + 4sin(x) cos®(x)

—m
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Example of Wronski's Test 2

Expanding the determinant along the first column, we find that

W(x) = det(( —2sin(x) cos(x) 2 sin(x) cos(x) >>

25sin?(x) — 2cos?(x) 2cos?(x) — 2sin?(x)
= (—25sin(x) cos(x))(2 cos?(x) — 2sin?(x))
—(25in(x) cos(x))(2sin?(x) — 2 cos?(x))
= —4sin(x) cos>(x) + 4sin3(x) cos(x) — 4sin(x) cos(x) + 4sin(x) cos®(x)

— —
—_—— _—

=0
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Subspaces of Abstract Vector Spaces

Definition
If W is a non empty subset of vectors in a vector space V that is itself a
vector space under the same scalar multiplication and addition of V, then

we call W a subspace of V.
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Subspaces of Abstract Vector Spaces

Definition

If W is a non empty subset of vectors in a vector space V that is itself a
vector space under the same scalar multiplication and addition of V/, then
we call W a subspace of V.

Example: If we let W,_; be the set of all polynomials of degree at most
n—1:

Wp—1 ={ap + a1x + éJzX2 +---+ an—lxni1 ra; € R}
_— = - ‘j
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Subspaces of Abstract Vector Spaces

Definition

If W is a non empty subset of vectors in a vector space V that is itself a
vector space under the same scalar multiplication and addition of V/, then
we call W a subspace of V.

Example: If we let W,_; be the set of all polynomials of degree at most
n—1:

Wp—1 ={ap + a1x + éJzX2 +---+ an—lxni1 ra; € R}
then we W is a vector space using the same vector addition and scalar
e

multiplication as the vector space of functions.
e
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Subspaces of Abstract Vector Spaces

Definition

If W is a non empty subset of vectors in a vector space V that is itself a
vector space under the same scalar multiplication and addition of V/, then
we call W a subspace of V.

Example: If we let W,_; be the set of all polynomials of degree at most
n—1:

Wh-1 = {ao + arx + x4 tapmix" g € R}

then we W is a vector space using the same vector addition and scalar
multiplication as the vector space of functions. Hence we say the
—— .

polynomials are a subspace of the vector space of functions.
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Linear Independent Polynomials

Using the fact that if f;(x) = x/ then ﬂg);m/'ﬁand f(m) =0if

@ show that the’ﬁ?l, ...y fn_1} is linear mdepenaent for any n.

Mz .
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Linear Independent Polynomials

Using the fact that if f;(x) = x/ then f,gm)(x) = m! and £" ) =0if
J>m, show that the set {fy, f1,..., f,_1} is linear indepéﬁ%r any n.
2)

Using the fact, we see that the Wronskian of the vectors will be

Q]‘t 5]’;:\1 -— p-/rxyh‘o.\_}
o < * = dyrnk
*
W(X) = det 0 *
(n—1)!
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Linear Independent Polynomials

Using the fact that if f;(x) = x/ then f,gm)(x) = m! and f.(m)!x) =0if
J > m, show that the set {fo, f1,..., f,_1} is linear independent for any n.

Using the fact, we see that the Wronskian of the vectors will be
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Linear Independent Polynomials

Using the fact that if f;(x) = x/ then f,gm)(x) = m! and G(m)(x) =0if
J > m, show that the set {fo, f1,...,f,_1} is linear independent for any n.

Using the fact, we see that the Wronskian of the vectors will be

1 x x2 x3 ... xn—1
01 x x *
00 2 =« *
Wx)=det| 10 0 0 6 .
00 0 O (n—1)!

=1x1x2x6x---x(n—=1)1#0
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Dimension of Space of Polynomials

2

So we see that {1, x,x°,... ,x”*l} is a linearly independent set of vectors.
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Dimension of Space of Polynomials

So we see that {1,x,x2, . ,x”*l} is a linearly independent set of vectors.
Moreover, clearly any polynomials of degree at most n — 1 can be written
as a linear combination of vectors in {1,x,x2,...,x""1} and so it is a

spanning set.

0 -
W * 5 %t Gx b ox bk G Q,C,I,Z‘%
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Dimension of Space of Polynomials

So we see that {1,x,x2, . ,x”*l} is a linearly independent set of vectors.

Moreover, clearly any polynomials of degree at most n — 1 can be written
as a linear combination of vectors in {1,x,x2,...,x""1} and so it is a
spanning set.

Thus, we may conclude that {1, x, x?
polynomials of degree at most n — L.

,...,x" 1} is a basis for the

Patrick Meisner (KTH) Lecture 20 12/27



Dimension of Space of Polynomials

So we see that {1,x,x2, . ,x”*l} is a linearly independent set of vectors.
Moreover, clearly any polynomials of degree at most n — 1 can be written
as a linear combination of vectors in {1,x,x2,...,x""1} and so it is a

spanning set.

Thus, we may conclude that {1, x,x2,...,x" "1} is a basis for the
polynomials of degree at most n — 1.

Hence, if W,_1 = {a0 + a1x + ax2 4 4a,_1x" g€ R}, then

dim(Wn_l)
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Dimension of Space of Polynomials

So we see that {1,x,x2, . ,x”*l} is a linearly independent set of vectors.
Moreover, clearly any polynomials of degree at most n — 1 can be written
as a linear combination of vectors in {1,x,x2,...,x""1} and so it is a

spanning set.

Thus, we may conclude that {1, x,x2,...,x" "1} is a basis for the
polynomials of degree at most n — 1.

Hence, if W,_1 = {a0 + a1x + ax2 4 4a,_1x" g€ R}, then

dim(W,—1) = number of elements in a basis
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Dimension of Space of Polynomials

So we see that {1,x,x2, . ,x”*l} is a linearly independent set of vectors.

Moreover, clearly any polynomials of degree at most n — 1 can be written
as a linear combination of vectors in {1,x,x2,...,x""1} and so it is a
spanning set.

Thus, we may conclude that {1,x,x2,...,x" "1} is a basis for the
polynomials of degree at most n — 1.

Hence, if W,_1 = {a0 + a1x + ax2 4 4a,_1x" g€ R}, then

dim(W,—1) = number of elements in a basis = n

Patrick Meisner (KTH) Lecture 20 12/27



Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree
W = {ap + aix + axx?> + - + a,x" : a; € R, n > 0}.

——————
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Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree
W = {ap + aix + axx?> + - + a,x" : a; € R, n > 0}.

Then we see that a basis for this would necessarily be all the powers x:
{1,x,x%,x3,... }.

{1 & ") s linew oty T el oy
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Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree
W = {ap + aix + axx?> + - + a,x" : a; € R, n > 0}.

Then we see that a basis for this would necessarily be all the powers x:
{1,x,x%,x3,... }.

Hence,
dim(W) = number of elements in a basis
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Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree
W = {ap + aix + axx?> + - + a,x" : a; € R, n > 0}.

Then we see that a basis for this would necessarily be all the powers x:
{1,x,x%,x3,... }.

Hence,
dim(W) = number of elements in a basis = co
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Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree
W = {ap + aix + axx?> + - + a,x" : a; € R, n > 0}.

Then we see that a basis for this would necessarily be all the powers x:
{1,x,x%,x3,... }.

Hence,
dim(W) = number of elements in a basis = co

and W is what we call an infinite dimensional subspace.

\/&J‘W Speree.
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Infinite Dimensional Vector Space

However, what if we want to consider the set of polynomials of any degree
W = {ap + aix + axx?> + - + a,x" : a; € R, n > 0}.

Then we see that a basis for this would necessarily be all the powers x:
{1,x,x%,x3,... }.

Hence,
dim(W) = number of elements in a basis = co
and W is what we call an infinite dimensional subspace.

Moreover, since all polynomials are also functions, we see that the vector
space of all functions from the reals to the reals is also infinite dimensional.

Qw) Cogn \MA,J} 3 ’k(( Ve o# al %ﬂ*o‘ral\s )
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Unusual Vector Space

The vector space axioms do not suppose that the vector addition and

scalar multiplication behave in a way that we are used to, only that they
satisfy the properties of the axioms.
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Unusual Vector Space

The vector space axioms do not suppose that the vector addition and
scalar multiplication behave in a way that we are used to, only that they

satisfy the properties of the axioms. Hence, it is possible to define very
strange vector spaces.
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Unusual Vector Space

The vector space axioms do not suppose that the vector addition and
scalar multiplication behave in a way that we are used to, only that they

satisfy the properties of the axioms. Hence, it is possible to define very
strange vector spaces.

Let V be the set of 99% i E_gg! numbers but define vector addition and
scalar multiplication by R as follows:
p y ) wipedis- @l b U V' an ooy
l .
u® v =u-v (vector addition) Voo
KQL B ULU ) ,'7\ (QOV\*’.@(
i(@ u= % (scalar multiplication by R) AR it
/ e
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Unusual Vector Space

The vector space axioms do not suppose that the vector addition and
scalar multiplication behave in a way that we are used to, only that they
satisfy the properties of the axioms. Hence, it is possible to define very
strange vector spaces.

Exercise

Let V be the set of positive real numbers but define vector addition and
)

scalar multiplication by R as follows: Wi ¢ O
Wwird o Q—u>7

u@ v =u-v (vector addition)
——

k ® u = u* (scalar multiplication by R)

Show that these operations safisfy the axioms and hence makes V a vector
space. T

Set ol Al
FB\' tin real wnbys
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Unusual Vector Space

The vector space axioms do not suppose that the vector addition and
scalar multiplication behave in a way that we are used to, only that they
satisfy the properties of the axioms. Hence, it is possible to define very
strange vector spaces.

Exercise

Let V be the set of positive real numbers but define vector addition and
scalar multiplication by R as follows:

u@ v =u-v (vector addition)

k ® u = u* (scalar multiplication by R)

Show that these operations satisfy the axioms and hence makes V' a vector
space.
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Axiom 4 - There exists a 0 such that u &) 0=u.
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Axiom 4 - There exists a 0 such that uod 0 = u. We know that 0 € V so it
must be a real number, "}T‘

V K ¢ st
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
— _——
must be a real number, say 0 = c.
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u:u@6
e
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u= u@ﬁz u-c
/1 T
J ‘MUH‘?(V ;”‘} s =l ponlors

(‘/Jd’v'ﬁj a5 vedor \/
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u:u@6:u~c — c=1
= =3 —
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u:u@6:u~c — c=1

<m—x

So, in this vector space 0 = 1.
del - 1.2
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u=udl=u-c = c=1
So, in this vector space 0 = 1.

Axiom 5 - There is a negative of u such that u@ (—u) = 0.
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,
u:u@6:u~c — c=1

So, in this vector space 0 = 1.

Axiom 5 - There is a negative of u such that u @ (—u) = 0. Again we

know that (—u) € V, so it must be a real number, say (—u) = d.
o
l

QS&SM'ES ’HSZV:JWMW/;.

Patrick Meisner (KTH) Lecture 20 15 /27



Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u:u@6:u~c — c=1

So, in this vector space 0 = 1.
T

Axiom 5 - There is a negative of u such that u @ (—u) = 0. Again we
know that (—u) € V, so it must be a real number, say (—u) = d. Hence,

1=0=uad(—uv)
%.7_/13—‘
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u:u@6:u~c — c=1

So, in this vector space 0 = 1.

Axiom 5 - There is a negative of u such that u @ (—u) = 0. Again we
know that (—u) € V, so it must be a real number, say (—u) = d. Hence,

1:6:U®(—U):U'd

=—,
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u:u@6:u~c — c=1

So, in this vector space 0 = 1.

Axiom 5 - There is a negative of u such that u @ (—u) = 0. Again we
know that (—u) € V, so it must be a real number, say (—u) = d. Hence,
R 1
0 (—u)=u-d = d=~-
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u:u@6:u~c — c=1

So, in this vector space 0 = 1.

Axiom 5 - There is a negative of u such that u @ (—u) = 0. Again we
know that (—u) € V, so it must be a real number, say (—u) = d. Hence,

1=0=u®(-v)=u-d = d=

<=

So, in this vector space (—u) = 1/u.
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u=u®d0=u-c = c=1

So, in this vector space 0 = 1.

Axiom 5 - There is a negative of u such that u & (—u
know that (—u) € V, so it must be a real number, say

~—

=0=u®(—u)=u-d = d=

So, in this vector space (—u) = 1/u.

Note that even with all the weirdness here we still have that
(-)®u
T 3 X
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u=u®d0=u-c = c=1

So, in this vector space 0 = 1.

Axiom 5 - There is a negative of u such that u @ (—u) = 0. Again we
know that (—u) € V, so it must be a real number, say (—u) = d. Hence,

1=0=u®(-v)=u-d = d=

<=

So, in this vector space (—u) = 1/u.

Note that even with all the weirdness here we still have that

(-1)®u = ut _ A
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u=u®d0=u-c = c=1

So, in this vector space 0 = 1.

Axiom 5 - There is a negative of u such that u & (—u
know that (—u) € V, so it must be a real number, say

~—

=0=u®(—u)=u-d = d=

So, in this vector space (—u) = 1/u.

Note that even with all the weirdness here we still have that
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Axiom 4 - There exists a 0 such that u® 0 = u. We know that 0 € V so it
must be a real number, say 0 = ¢. Hence,

u=u®d0=u-c = c=1

So, in this vector space 0 = 1.

Axiom 5 - There is a negative of u such that u @ (—u) = 0. Again we
know that (—u) € V, so it must be a real number, say (—u) = d. Hence,

1=0=u®(-v)=u-d = d=

<=

So, in this vector space (—u) = 1/u.
Note that even with all the weirdness here we still have that

(-Deu=u"'="=(-u
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Axiom 7 - If k is a scalar, then k@ (u® v) = (k®@ u) & (k ®@ v).
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Axiom 7 - If k is a scalar, then k @ (u® v) = (k® u) @ (k ® v). Indeed,
we have that

k& (udv)
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Axiom 7 - If k is a scalar, then k @ (u® v) = (k® u) @ (k ® v). Indeed,
we have that

k@(udv) = ko (u-v)
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Axiom 7 - If k is a scalar, then k @ (u® v) = (k® u) @ (k ® v). Indeed,
we have that

ka(uev) = ka(u-v) = (u-v)*
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Axiom 7 - If k is a scalar, then k @ (u® v) = (k® u) @ (k ® v). Indeed,
we have that

k@(udv) = k@ (u-v) = (u-v)k (uk)‘(vk)
/
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Axiom 7 - If k is a scalar, then k @ (u® v) = (k® u) @ (k ® v). Indeed,
we have that

k@ (udv) = ke (u-v) = (u-v)* = (u¥)-(vF) = (uk)ga(vk)
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Axiom 7 - If k is a scalar, then k @ (u® v) = (k® u) @ (k ® v). Indeed,
we have that e

k®g udv) = k@(u-v) = (u-v)k = (u9)-(vF) = (/,L\Ik)GB(vk) = (k??ﬂ)@(kigv)
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Axiom 7 - If k is a scalar, then k @ (u® v) = (k® u) @ (k ® v). Indeed,
we have that

k@ (udv) = ke (u-v) = (u-v)* = (u¥)-(vF) = (b¥)®(vF) = (kou)d(kov)

PRSI

Even though the set of element in V are the Yeal numbers, V is NOT a
subspace of R
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Axiom 7 - If k is a scalar, then k @ (u® v) = (k® u) @ (k ® v). Indeed,
we have that

k@ (udv) = ke (u-v) = (u-v)* = (u¥)-(vF) = (b¥)®(vF) = (kou)d(kov)

Even though the set of element in V are the real numbers, V is NOT a
subspace of R or any other R"!
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Axiom 7 - If k is a scalar, then k @ (u® v) = (k® u) @ (k ® v). Indeed,
we have that

k@ (udv) = ke (u-v) = (u-v)* = (u¥)-(vF) = (b¥)®(vF) = (kou)d(kov)

Even though the set of element in V are the real numbers, V is NOT a
subspace of R or any other R"! This is because in order to be a subspace,

the vector addition and scalar multiplication must be the same in both
— —

spaces!!

Patrick Meisner (KTH) Lecture 20 16 /27



Axiom 7 - If k is a scalar, then k @ (u® v) = (k® u) @ (k ® v). Indeed,
we have that

k@ (udv) = ke (u-v) = (u-v)* = (u¥)-(vF) = (b¥)®(vF) = (kou)d(kov)

Even though the set of element in V are the real numbers, V is NOT a
subspace of R or any other R"! This is because in order to be a subspace,
the vector addition and scalar multiplication must be the same in both
spaces!! Clearly the vector addition and scalar multiplication in V and R
are different.
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Linear Transformations Between Abstract Vector Spaces

Definition

If T:V — W is a function from a vector space V to a vector space W
then T is called a linear transformation from V to W if the following
properties hold for all vectors i, v and for all scalars ¢

Q T(cu)=cT(0)

@ T(@+7)=T(d)+ T(v)
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Linear Transformations Between Abstract Vector Spaces

Definition

If T:V — W is a function from a vector space V to a vector space W
then T is called a linear transformation from V to W if the following
properties hold for all vectors i, v and for all scalars ¢

Q T(cu)=cT(0)

Q@ T(u+V)=T(a)+ T(V)

Again, we have seen that we have some properties directly from the
definition.

Patrick Meisner (KTH) Lecture 20 17 /27



Linear Transformations Between Abstract Vector Spaces

If T:V — W is a function from a vector space V to a vector space W

then T is called a linear transformation from V to W if the following
properties hold for all vectors i, v and for all scalars ¢

Q T(cd)=cT(0)
Q@ T(d+V)=T(d)+ T(V) /’

Again, we have seen that we have some properties directly from the
definition.

If T :V — W is a linear transformation, then:
Q@ T7(0)=0
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Kernel and Range

If T:V — W is a linear transformation then the set of vectors in V that
T maps into 0 is called the kernel of T and is denoted ker(T).
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Kernel and Range

Definition

If T:V — W is a linear transformation then the set of vectors in V that
T maps into 0 is called the kernel of T and is denoted ker(T).

If T:V — W is a linear transformation then the range of T, denoted by
ran(T), is the set of all vectors in W that are images of at least one vector
in V; that is ran(T) is the image of the domain V' under the
transformation T
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Kernel and Range

Definition

If T:V — W is a linear transformation then the set of vectors in V that
T maps into 0 is called the kernel of T and is denoted ker(T).

If T:V — W is a linear transformation then the range of T, denoted by
ran(T), is the set of all vectors in W that are images of at least one vector
in V; that is ran(T) is the image of the domain V' under the
transformation T

IfT:V— W is a linear transformation then keré T) is subspace of V and
ran(T) is a subspace of W.
_—
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One-to-one and Onto

Definition

A linear transformation T : V — W is one-to-one if it maps distinct
vectors in V into distinct vectors in W.
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One-to-one and Onto

Definition
A linear transformation T : V — W is one-to-one if it maps distinct
vectors in V into distinct vectors in W.

A linear transformation T : V — W is onto if every vector in W has a
vector in V such that T(V) = w.
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One-to-one and Onto

Definition
A linear transformation T : V — W is one-to-one if it maps distinct
vectors in V into distinct vectors in W.

A linear transformation T : V — W is onto if every vector in W has a
vector in V such that T(V) = w.

A linear transformation is T : V — W is one-to-one if and only if
ker(T) = {0}.
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One-to-one and Onto

Definition
A linear transformation T : V — W is one-to-one if it maps distinct
vectors in V into distinct vectors in W.

A linear transformation T : V — W is onto if every vector in W has a
vector in V such that T(V) = w.

A linear transformation is T : V — W is one-to-one if and only if
ker(T) = {0}.

A linear transformation is T : V. — W is onto if and only if ran(T) = W.
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Isomorphisms

Definition

A linear transformation T : V — W is called an isomorphism if it is
one-to-one and onto

Patrick Meisner (KTH) Lecture 20 20/27



Isomorphisms

Definition

A linear transformation T : V — W is called an isomorphism if it is
one-to-one and onto, and we say that a vector V is isomorphic to W if
there exists an isomorphism from V to W.
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Isomorphisms

Definition
A linear transformation T : V — W is called an isomorphism if it is

one-to-one and onto, and we say that a vector V is isomorphic to W if
there exists an isomorphism from V to W.

_

Any n-dimensional vector space defined over the reals is isomorphic to R".
—_— pal
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Isomorphisms

Definition

A linear transformation T : V — W is called an isomorphism if it is
one-to-one and onto, and we say that a vector V is isomorphic to W if
there exists an isomorphism from V to W.

Any n-dimensional vector space defined over the reals is isomorphic to R".

Proof.

Let V be an n-dimensional vectors space.
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Isomorphisms

Definition

A linear transformation T : V — W is called an isomorphism if it is
one-to-one and onto, and we say that a vector V is isomorphic to W if
there exists an isomorphism from V to W.

Any n-dimensional vector space defined over the reals is isomorphic to R".

Proof.
Let V be an n-dimensional vectors space. Then there is a basis for V:
B={,...,Vn}.
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Isomorphisms

Definition

A linear transformation T : V — W is called an isomorphism if it is
one-to-one and onto, and we say that a vector V is isomorphic to W if
there exists an isomorphism from V to W.

Any n-dimensional vector space defined over the reals is isomorphic to R".

Proof.
Let V be an n-dimensional vectors space. Then there is a basis for V:
B ={W,...,V,}.Then the linear transformation defined by

— — — — — — N
T(aavhi+avo+ -+ apvp) = a16l + @&+ -+ anér e @

dak’r '\‘{/\nf\— HI‘S CA I;"?Mﬂ Sw‘a,\f gdf/’/\c/"O" []

0 .
ORI e GG

is an isomorphism.

Patrick Meisner (KTH) Lecture 20 20/27



Let V ={f:R — R} and let x1,x2...,x, be any set of real numbers.

Patrick Meisner (KTH) Lecture 20 21/27



Let V ={f:R — R} and let x1,x2...,x, be any set of real numbers.
- f—/
Then the function ot ot g oles
T:V R
f— (f(x1), f(x2),...,f(xn))
- ) S e
is a linear transformation.
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Let V ={f:R — R} and let x1,x2...,x, be any set of real numbers.
Then the function

T:V—->R"
f— (f(a), f(x),...,f(xn))

is a linear transformation. This is called the evaluation at x;, x>, ..., X,

transformation. EK it~ prow Hos hap g,
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Let V ={f:R — R} and let x1,x2...,x, be any set of real numbers.
Then the function
Rz emgry.
T:V—>Rn -C(—&}
f = (fa) flx),...., f(xn)) M 5

is a linear transformation. This is called the evaluation at x;, x>, ..., X,
transformation.
The kernel would be any function that is 0 at all of xy,...,x,. So it is not
one-to-one.

-
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Let V ={f:R — R} and let x1,x2...,x, be any set of real numbers.
Then the function

T:V—->R"
f— (f(a), f(x),...,f(xn))

is a linear transformation. This is called the evaluation at x;, x>, ..., X,
transformation.

The kernel would be any function that is 0 at all of xy,...,x,. So it is not
one-to-one.

If all the x; were distinct then the range would be all of R". So it would be
—_—
onto.
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Let Wi,_1 = {ap + a1x + aox® + - 4+ am_1x™ "1} be the space of
polynomials of degree at most m -~
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Let Wp—1 = {ap + a1x + ax®+ -+ am_lx’"_l} be the space of
polynomials of degree at most m, then we know that deg(Wp,_1) = m and
so isomorphic to R™.
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Let Wi,_1 = {ap + a1x + aox® + - 4+ am_1x™ "1} be the space of
polynomials of degree at most m, then we know that deg(Wp,_1) = m and

so isomorphic to R™. Hence the evaluation at x1, x> ..., x, transformation
would behave like a transformation from R™ — R":
e

T Wp1 ZER" 5 R"
f— (f(x1), f(x2),...,f(xn))

22/27
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Let Wi,_1 = {ap + a1x + aox® + - 4+ am_1x™ "1} be the space of
polynomials of degree at most m, then we know that deg(Wp,_1) = m and
so isomorphic to R™. Hence the evaluation at x1, x> ..., x, transformation
would behave like a transformation from R™ — R":

T Wp1 ZER" 5 R"
f— (f(x1), f(x2),...,f(xn))

So, let us find the matrix.
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Let Wi,_1 = {ap + a1x + aox® + - 4+ am_1x™ "1} be the space of
polynomials of degree at most m, then we know that deg(Wp,_1) = m and
so isomorphic to R™. Hence the evaluation at x1, x> ..., x, transformation
would behave like a transformation from R™ — R":

T Wp1 ZER" 5 R"
f— (f(x1), f(x2),...,f(xn))

So, let us find the matrix. We know that 1, x,x?,...,x™ ! is a basis for
Wmn—1. So we need to calculate T(x') for i =0,...,m—1:
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Let Wi,_1 = {ap + a1x + aox® + - 4+ am_1x™ "1} be the space of
polynomials of degree at most m, then we know that deg(Wp,_1) = m and
so isomorphic to R™. Hence the evaluation at x1, x> ..., x, transformation
would behave like a transformation from R™ — R":

T Wp1 ZER" 5 R"
f— (f(x1), f(x2),...,f(xn))

So, let us find the matrix. We know that 1, x,x?,...,x™ ! is a basis for
Wmn—1. So we need to calculate T(x') for i =0,...,m—1:

T =T@1)=(1,1,...,1)

Patrick Meisner (KTH) Lecture 20 22/27



Let Wi,_1 = {ap + a1x + aox® + - 4+ am_1x™ "1} be the space of
polynomials of degree at most m, then we know that deg(Wp,_1) = m and
so isomorphic to R™. Hence the evaluation at x1, x> ..., x, transformation
would behave like a transformation from R™ — R":

T Wp1 ZER" 5 R"
f— (f(x1), f(x2),...,f(xn))

So, let us find the matrix. We know that 1, x, x? ,x’"*1 is a basis for
W,,—1. So we need to calculate T(x) for i = O ’L My 4
%‘“ Ry = 4~

T =T@1)=(1,1,...,1)

. o ) (e
T(x'")=(x{, %3, .-, %) S;UA
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Let Wi,_1 = {ap + a1x + aox® + - 4+ am_1x™ "1} be the space of
polynomials of degree at most m, then we know that deg(Wp,_1) = m and
so isomorphic to R™. Hence the evaluation at x1, x> ..., x, transformation
would behave like a transformation from R™ — R":

T Wp1 ZER" 5 R"
f— (f(x1), f(x2),...,f(xn))

So, let us find the matrix. We know that 1, x,x?,...,x™ ! is a basis for
Wmn—1. So we need to calculate T(x') for i =0,...,m—1:

T =T@1)=(1,1,...,1)

T(x') = (4, %, -, xp)

r*n
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Matrix of Evaluation Function

Thus we see that T can be given by the matrix
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Matrix of Evaluation Function

Thus we see that T can be given by the matrix

A little more analysis would tell us that

Patrick Meisner (KTH) Lecture 20 23 /27



Matrix of Evaluation Function

Thus we see that T can be given by the matrix

A little more analysis would tell us that
Q If m> nthen T is onto
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Matrix of Evaluation Function

Thus we see that T can be given by the matrix

A little more analysis would tell us that
Q If m> nthen T is onto
@ If m < n then there is a nontrivial solution to T(f) = 0.
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Matrix of Evaluation Function

Thus we see that T can be given by the matrix

A little more analysis would tell us that
Q If m> nthen T is onto
@ If m < n then there is a nontrivial solution to T(f) = 0.
@ If m = n, then this is an isomorphism.
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Matrix of Evaluation Function

Thus we see that T can be given by the matrix

A little more analysis would tell us that
Q If m> nthen T is onto
@ If m < n then there is a nontrivial solution to T(f) = 0.
@ If m = n, then this is an isomorphism.
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Conclusion About Polynomials

Hence we may conclude the following theorem about polynomials
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Conclusion About Polynomials

Hence we may conclude the following theorem about polynomials

For any real number c1, ¢ ..., Cn, X1, X2, -..,X, You can find a polynomial
of degree n such that
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Conclusion About Polynomials
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Hence we may conclude the following theorem about polynomials

or any real number c1,¢> ..., Cp, X1, X2, . .., Xy you can find a polynomial
of degree n such that

f(x1)=a,f(x)= c&,...,f(x,,) =g,

@/ C()/ é/ - (Ke, Ca) IS T S plon

Con ¥,\,Z} Pa(7 pecl

fud 70t fl'W”(}/gL ol
oo poies

Patrick Meisner (KTH) Lecture 20 24 /27

&




More Examples

The map from the space of functions to itself that takes the derivative is
also a linear transformation:

T:V >V
f—f
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More Examples

The map from the space of functions to itself that takes the derivative is
also a linear transformation:

T:V >V
f—f

We get the kernel of this map will be the constant functions

Patrick Meisner (KTH) Lecture 20

25 /27



More Examples

The map from the space of functions to itself that takes the derivative is
also a linear transformation:

T:V >V
f—f

We get the kernel of this map will be the constant functions and that the
map is onto (this is the Fundamental Theorem of Calculus).
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More Examples

The map from the space of functions to itself that takes the derivative is
also a linear transformation:

T:V >V
f—f

We get the kernel of this map will be the constant functions and that the
map is onto (this is the Fundamental Theorem of Calculus).

Further, if we denote W, as the subspace of V of polynomials of degree at
most n,
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The map from the space of functions to itself that takes the derivative is
also a linear transformation:

T:V >V
f—f

We get the kernel of this map will be the constant functions and that the
map is onto (this is the Fundamental Theorem of Calculus).

Further, if we denote W, as the subspace of V of polynomials of degree at
most n, then the derivative would be a linear transformation from W, to

Wh_1
sex ds 7 2 Pl o o
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More Examples

The map from the space of functions to itself that takes the derivative is
also a linear transformation:

T:V >V
f—f

We get the kernel of this map will be the constant functions and that the
map is onto (this is the Fundamental Theorem of Calculus).

Further, if we denote W, as the subspace of V of polynomials of degree at
most n, then the derivative would be a linear transformation from W, to
W,_1 and it's matrix would be

01 0 0
00 2 0

. C(\rowdc 2=cs
00 0 n—1 Qj
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Final Example

The trace function from the n x n square matrices to R is also a linear
transformation: Vol Shece

U
T:M,,—R
A — Tr(A)
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This map will be onto but not one-to-one. Interesting question: What is
the matrix of the this linear transformation?

Patrick Meisner (KTH) Lecture 20 26 /27



Final Example
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the matrix of the this linear transformation?

The determinant function from the n x n square matrices to R is not a
linear transformation:
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A > det(A)
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Final Example

The trace function from the n x n square matrices to R is also a linear
transformation:

TM,,—R
A — Tr(A)

This map will be onto but not one-to-one. Interesting question: What is
the matrix of the this linear transformation?

The determinant function from the n x n square matrices to R is not a
linear transformation:

T My, —R
A > det(A)

since det(cA) = c" det(A) # cdet(A).
- (
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The End

Patrick Meisner (KTH) Lecture 20 27 /27



