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Topics for Today

1 Quadratic Forms

2 Geometry of Quadratic Forms
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Linear Forms

Recall that we up until now we have only been interested in equations of
the form

a1x1 + a2x2 + · · ·+ anxn

These are called linear forms on Rn.

We have asked questions about when a system of these have solutions and
if so, what are they? This lead us to matrices, which then lead us to
questions about matrices themselves. For example, the subspaces we can
define out of them (i.e. row and null spaces).

We have then discussed linear transformations and their geometry and how
eigenvalues and eigenvectors play into the understanding of their geometry
and their change of variables.
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Quadratic Forms

But what about more complicated equations?

One’s that aren’t linear. For
example:

x2 + 4xy x3 + 3xz + 2y4 . . .

Can the work we have done help us understand these? Let’s look at the
simplest class of these: quadratic forms

Definition

A quadratic form on Rn is a polynomial in n variables where the total
degree of each term is 2.For example:

Q(~x) = a1x
2
1 +a2x

2
2 + · · ·+anx

n +an+1x1x2 +an+2x1x3 + · · ·+a∗x5x7 + . . .
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Example of Quadratic Form

Consider the quadratic form

Q(~x) = x21 + 4x1x2 + 3x22

Can we use vectors and matrices to understand this? If we let ~x = (x1, x2),
then

x21 + 4x1x2 + 3x22 = x21 + 2x1x2 + 2x2x1 + 3x22

= x1(x1 + 2x2) + x2(2x1 + 2x3)

[
x1
x2

]
·
[
x1 + 2x2

2x1 + 2x3

]

= ~x ·
((

1 2
2 2

)
~x

)
= ~xTA~x
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Quadratic Forms and Matrices

Theorem

For any quadratic form on Rn, Q, you can find a square n × n matrix such
that Q(~x) = ~xTA~x

Proof.

Suppose

Q(~x) = a1,1x1x1 + a1,2x1x2 + · · ·+ a1,nx1xn + a2,1x2x1 + a2,2x2x2 + . . .

Then setting

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n


We get Q(~x) = ~xTA~x .
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Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote

Q(~x) = a1,1x1x1 + a1,2x1x2 + · · ·+ a1,nx1xn + a2,1x2x1 + a2,2x2x2 + . . .

However, we see that x1x2 = x2x1, so we could simplify this and get

Q(~x) = a1,1x
2
1 + a2,2x

2
2 + · · ·+ an,nx

2
n + (a1,2 + a2,1)x1x2 + . . .

= a1,1x
2
1 + a2,2x

2
2 + · · ·+ an,nx

2
n + 2a′1,2x1x2 + . . .

where we have just set a′1,2 = 1
2(a1,2 + a2,1) and so on.Hence, if we define

A′ =


a1,1 a′1,2 a′1,3 . . . a′1,n
a′1,2 a2,2 a′2,3 . . . a′2,n

...
...

. . .
...

a′1,n a′2,n a′3,n . . . an,n


we see that A′ is symmetric and Q(~x) = ~xTA~x .
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Concrete Example

Exercise

Explicitly write down the quadratic form for the matrix A =

1 2 3
4 5 6
7 8 9


and find a symmetric matrix A′ that gives the same quadratic form.

Q(~x) = ~xTA~x =

x1x2
x3

 ·
1 2 3

4 5 6
7 8 9

x1x2
x3


= x1x1 + 2x1x2 + 3x1x3 + 4x1x2 + 5x2x2 + 6x2x3 + 7x3x1 + 8x3x2 + 9x3x3

= x21 + 5x22 + 9x23 + 6x1x2 + 10x1x3 + 14x2x3

= x21 + 5x22 + 9x23 + 2(3x1x2) + 2(5x1x3) + 2(7x2x3)
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Concrete Example Continued

Hence we see that if A =

1 2 3
4 5 6
7 8 9

, then

Q(~x) = ~xT~x = x21 + 5x22 + 9x23 + 2(3x1x2) + 2(5x1x3) + 2(7x2x3)

= ~xT

1 3 2
3 5 7
2 7 9

 ~x = ~xTA′~x

Patrick Meisner (KTH) Lecture 19 9 / 27



Concrete Example Continued

Hence we see that if A =

1 2 3
4 5 6
7 8 9

, then

Q(~x) = ~xT~x = x21 + 5x22 + 9x23 + 2(3x1x2) + 2(5x1x3) + 2(7x2x3)

= ~xT

1 3 2
3 5 7
2 7 9

 ~x = ~xTA′~x

Patrick Meisner (KTH) Lecture 19 9 / 27



The Quadratic Form of a Symmetric Matrix

Therefore, when we are talking about the matrix of a quadratic form we
may always assume it is symmetric.

Definition

Given an n × n symmetric matrix A, we define the quadratic form
associated with A to be

QA(~x) = ~xTA~x
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Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the
simplest matrices, which are diagonal matrices.

Now, if

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn


then

QD(~x) = ~xTD~x =


x1
x2
...
xn

 ·


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn



x1
x2
...
xn


 =


x1
x2
...
xn

 ·

d1x1
d2x2

...
dnxn


= d1x

2
1 + d2x

2
2 + · · ·+ dnx

2
n
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices.

That is,
we can always find an orthogonal matrix P such that

A = PTDP

Hence

QA(~x) = ~xTA~x = ~xTPTDP~x = (P~x)TD(P~x) = QD(P~x)

Now, we can view P as a change of basis operation. Hence, if we denote
~y = P~x , this is essentially just looking at ~x is a different basis. Moreover,
we get

QA(~x) = QD(P~x) = QD(~y) = λ1y
2
1 + · · ·+ λny

2
n

where the λi are the diagonal entries of D, which are the eigenvalues of A.
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~y = P~x , this is essentially just looking at ~x is a different basis. Moreover,
we get

QA(~x) = QD(P~x) = QD(~y) = λ1y
2
1 + · · ·+ λny

2
n

where the λi are the diagonal entries of D, which are the eigenvalues of A.
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Example

Exercise

Let Q(~x) = x21 − x23 − 4x1x2 + 4x2x3. Find a change of basis such that
Q(~y) = λ1y

2
1 + λ2y

2
2 + λ3y

2
3 .

First, need to find the matrix associated to Q. We know that
a1,1 = 1,a2,2 = 0, a3,3 = −1. Further, 2a1,2 = −4, 2a1,3 = 0, 2a2,3 = 4
and A will have to be symmetric. Hence

A =

 1 −2 0
−2 0 2
0 2 −1


Now, we must orthogonally diagonalize A. Without showing the work, we
get that the eigenvalues are λ1 = 0, λ2 = −3 and λ2 = 3 and that we can
find an orthonormal basis of eigenvectors:

~v1 =

2/3
1/3
2/3

 , ~v2 =

−1/3
−2/3
2/3

 , ~v3 =

−2/3
2/3
2/3


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Example 2

Hence,

A = PTDP

=

 2/3 1/3 2/3
−1/3 −2/3 2/3
−2/3 2/3 2/3

0 0 0
0 −3 0
0 0 3

2/3 −1/3 −2/3
1/3 −2/3 2/3
2/3 2/3 2/3


and so

QA(~x) = ~xTA~x = ~xTPTDP~x = (P~x)TD(P~x) = ~yTD~y = −3y22 + 3y23

where

~y = P~x =

2/3 −1/3 −2/3
1/3 −2/3 2/3
2/3 2/3 2/3

x1x2
x3

 =

2
3x1 −

1
3x2 −

2
3x3

1
3x1 −

2
3x2 + 2

3x3
2
3x1 + 2

3x2 + 2
3x3


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Example 3

Confirm the fact that
QA(~x) = QD(~y)

by showing, by hand, that

QD(~y) = −3y22 + 3y23

= −3

(
1

3
x1 −

2

3
x2 +

2

3
x3

)2

+ 3

(
2

3
x1 +

2

3
x2 +

2

3
x3

)2

= x21 − x23 − 4x1x2 + 4x2x3

= QA(~x)

Patrick Meisner (KTH) Lecture 19 15 / 27



Example 3

Confirm the fact that
QA(~x) = QD(~y)

by showing, by hand, that

QD(~y) = −3y22 + 3y23

= −3

(
1

3
x1 −

2

3
x2 +

2

3
x3

)2

+ 3

(
2

3
x1 +

2

3
x2 +

2

3
x3

)2

= x21 − x23 − 4x1x2 + 4x2x3

= QA(~x)

Patrick Meisner (KTH) Lecture 19 15 / 27



Example 3

Confirm the fact that
QA(~x) = QD(~y)

by showing, by hand, that

QD(~y) = −3y22 + 3y23

= −3

(
1

3
x1 −

2

3
x2 +

2

3
x3

)2

+ 3

(
2

3
x1 +

2

3
x2 +

2

3
x3

)2

= x21 − x23 − 4x1x2 + 4x2x3

= QA(~x)

Patrick Meisner (KTH) Lecture 19 15 / 27



Example 3

Confirm the fact that
QA(~x) = QD(~y)

by showing, by hand, that

QD(~y) = −3y22 + 3y23

= −3

(
1

3
x1 −

2

3
x2 +

2

3
x3

)2

+ 3

(
2

3
x1 +

2

3
x2 +

2

3
x3

)2

= x21 − x23 − 4x1x2 + 4x2x3

= QA(~x)

Patrick Meisner (KTH) Lecture 19 15 / 27



Example 3

Confirm the fact that
QA(~x) = QD(~y)

by showing, by hand, that

QD(~y) = −3y22 + 3y23

= −3

(
1

3
x1 −

2

3
x2 +

2

3
x3

)2

+ 3

(
2

3
x1 +

2

3
x2 +

2

3
x3

)2

= x21 − x23 − 4x1x2 + 4x2x3

= QA(~x)

Patrick Meisner (KTH) Lecture 19 15 / 27



Geometry of Quadratic Forms

Much like how we wish to understand the solutions of A~x = ~b using
geometry, we also would like to understand the solutions of QA(~x) = k
using geometry.

Let us first start with the simplest example:

Exercise

Geometrically explain the solutions to QI2(~x) = k.
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Geometry of a 2× 2 Diagonal

Exercise

If D =

(
d1 0
0 d2

)
with d1, d2 > 0, geometrically explain the solutions to

the quadratic form QD(~x) = k with k > 0.

We note that

D =

(
d1 0
0 d2

)
=

(√
d1 0
0

√
d2

)(√
d1 0
0

√
d2

)

=

(√
d1 0
0

√
d2

)T (√
d1 0
0

√
d2

)
= BTB

Hence,

QD(~x) = ~xTD~x = ~xTBTB~x = (B~x)TB~x = QI2(B~x)
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Geometry of a 2× 2 Diagonal 2

Hence, we can view the solutions to QD(~x) = QI2(B~x) = k

as the set of ~x
who, after the action of B, lie on the circle of radius k . So, what does the
action of B do? Stretches the x-axis by

√
d1 and the y -axis by

√
d2.

Hence, the set of solutions to QD(~x) = k is the ellipse whose x-radius is of
length k√

d1
and whose y -radius is of length k√

d2
.
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Geometry of a 2× 2 Diagonal 3

Exercise

Let D =

(
−1 0
0 1

)
, geometrically explain the solutions to the quadratic

form QD(~x) = k and k > 0

We see that

QD(~x) =

[
x
y

]T (−1 0
0 1

)[
x
y

]
= −x2 + y2

So then QD(~x) = k =⇒ y2 = x2 + k

Patrick Meisner (KTH) Lecture 19 19 / 27



Geometry of a 2× 2 Diagonal 3

Exercise

Let D =

(
−1 0
0 1

)
, geometrically explain the solutions to the quadratic

form QD(~x) = k and k > 0

We see that

QD(~x) =

[
x
y

]T (−1 0
0 1

)[
x
y

]

= −x2 + y2

So then QD(~x) = k =⇒ y2 = x2 + k

Patrick Meisner (KTH) Lecture 19 19 / 27



Geometry of a 2× 2 Diagonal 3

Exercise

Let D =

(
−1 0
0 1

)
, geometrically explain the solutions to the quadratic

form QD(~x) = k and k > 0

We see that

QD(~x) =

[
x
y

]T (−1 0
0 1

)[
x
y

]
= −x2 + y2

So then QD(~x) = k =⇒ y2 = x2 + k

Patrick Meisner (KTH) Lecture 19 19 / 27



Geometry of a 2× 2 Diagonal 3

Exercise

Let D =

(
−1 0
0 1

)
, geometrically explain the solutions to the quadratic

form QD(~x) = k and k > 0

We see that

QD(~x) =

[
x
y

]T (−1 0
0 1

)[
x
y

]
= −x2 + y2

So then QD(~x) = k =⇒ y2 = x2 + k

Patrick Meisner (KTH) Lecture 19 19 / 27



Geometry of a 2× 2 Diagonal 4

Similarly if D =

[
1 0
0 −1

]
, then QD(~x) = k =⇒ x2 = y2 + k and we get

a hyperbola.

Further, if D =

[
−d1 0

0 d2

]
or

[
d1 0
0 −d2

]
with d1, d2 > 0, then we get

that QD(~x) = k will be either a parabola or a hyperbola whose x-axis was
stretched by a factor of 1√

d1
and y -axis was stretched by a factor of 1√

d2
.
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Geometry of a 2× 2 Diagonal 5

Finally, if D =

(
−d1 0

0 −d2

)
with d1, d2 > 0 then

QD(~x) = −d1x2 − d2y
2 = k

has no solutions if k < 0 but is just the ellipse if k < 0.

Moreover, if D =

(
−d1 0

0 d2

)
with d1, d2 > 0 then

QD(~x) = −d1x2 + d2y
2 = −k

is the same as Q−D(~x) = k , and so would be a hyperbola.

Hence, we may always assume k > 0
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Geometry of an Arbitrary 2× 2

Exercise

If A is any symmetric 2× 2 matrix, geometrically describe the solution
Q(~x) = k , k > 0.

Well, we known that we can write A = PTDP, where the columns of P
are the eigenvectors of A. Moreover, we know that his means that

QA(~x) = QD(P~x) = QD(~y)

Moreover, ~y = P~x can viewed as just an orthonormal change of basis.
Thus, in the basis of eigenvectors of A, we know that QA will be an ellipse,
parabola, or hyperbola depending on the properties of D.

That is, QA(~x) will be an ellipse, parabola or hyperbola stretched in the
direction the eigenvectors of A.
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Example

Exercise

Sketch the solutions to QA(~x) = 36 where A =

(
5 −2
−2 8

)
.

First, we calculate the eigenvalues and eigenvectors:

λ1 = 4, λ2 = 9, ~v1 =

[
2√
5
1√
5

]
~v2 =

[
− 1√

5
2√
5

]
Hence, it looks like a circle of radius 6 that has been “stretched” by 1

2 in
the ~v1 direction and a factor of 1

3 in the ~v2 direction.
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First, we calculate the eigenvalues and eigenvectors:

λ1 = 4, λ2 = 9, ~v1 =

[
2√
5
1√
5

]
~v2 =

[
− 1√

5
2√
5

]
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Definiteness

Definition

A quadratic form QA(~x) = ~xTA~x is said to be

1 positive definite if QA(~x) > 0 for all ~x 6= 0

2 negative definite if QA(~x) < 0 for all ~x 6= 0

3 indefinite if QA(~x) has both positive and negative values
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Definiteness and Eigenvalues

We see to understand the geometry of QA(~x) it is necessary to understand
the geometry of QD(~x) which only depends on the eigenvalues of A.

Theorem

If A is a symmetric matrix then

1 QA(~x) is positive definite if and only if all the eigenvalues of A are
positive

2 QA(~x) is negative definite if and only if all the eigenvalues of A are
negative

3 QA(~x) is indefinite if and only if at least one eigenvalue is positive
and at least one is negative

Note, if QA(~x) is negative definite, then Q−A(~x) is positive definite so we
may only consider positive definite and indefinite.
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Positive Definiteness and Squares

Theorem

If A is a symmetric matrix, then the following statements are equivalent

1 A is positive definite

2 There is a B such that A = B2

3 There is an invertible matrix C such that A = CTC

Hence, by the same proof as before if A is positive definite, then
QA(~x) = QIn(C~x) and hence will be an n-dimensional circle in the “C”
coordinate , or an n-dimensional ellipse that is stretched by a factor of 1√

λi
in the ~vi direction, where the λi are the eigenvalues of A and the ~vi the
corresponding eigenvectors.
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Definiteness and 2× 2 Matrices.

Theorem

If A is a symmetric 2× 2 matrix, then

1 ~xTA~x = 1 defines an ellipse if A is positive definite

2 ~xTA~x = 1 has no geometry (no graph) is A is negative definite

3 ~xTA~x = 1 defines a hyperbola if A is indefinite
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