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Topics for Today

@ Quadratic Forms
@ Geometry of Quadratic Forms
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Linear Forms

Recall that we up until now we have only been interested in equations of
the form
aix1 + axxg + -+ anpXy
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Linear Forms

Recall that we up until now we have only been interested in equations of
the form

aixy + asxo + - -+ + anXp

These are called linear forms on R".
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Linear Forms

Recall that we up until now we have only been interested in equations of
the form

aixy + asxo + - -+ + anXp

These are called linear forms on R".

We have asked questions about when a system of these have solutions and
if so, what are they?
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Linear Forms

Recall that we up until now we have only been interested in equations of
the form

aixy +axxa + -+ anXp
These are called linear forms on R".
We have asked questions about when a system of these have solutions and

if so, what are they? This lead us to matrices, which then lead us to
questions about matrices themselves.
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Linear Forms

Recall that we up until now we have only been interested in equations of
the form

aixy +axxo + -+ apXy
These are called linear forms on R".
We have asked questions about when a system of these have solutions and
if so, what are they? This lead us to matrices, which then lead us to

questions about matrices themselves. For example, the subspaces we can
define out of them (i.e. row and null spaces).
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Linear Forms

Recall that we up until now we have only been interested in equations of
the form

aix1 + axxg + -+ anpXy
These are called linear forms on R".
We have asked questions about when a system of these have solutions and
if so, what are they? This lead us to matrices, which then lead us to
questions about matrices themselves. For example, the subspaces we can

define out of them (i.e. row and null spaces).

We have then discussed linear transformations and their geometry
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Linear Forms

Recall that we up until now we have only been interested in equations of
the form
aix1 + axxg + -+ anpXy

These are called linear forms on R".

We have asked questions about when a system of these have solutions and
if so, what are they? This lead us to matrices, which then lead us to
questions about matrices themselves. For example, the subspaces we can
define out of them (i.e. row and null spaces).

We have then discussed linear transformations and their geometry and how

eigenvalues and eigenvectors play into the understanding of their geometry
and their change of variables.
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Quadratic Forms

But what about more complicated equations?
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Quadratic Forms

But what about more complicated equations? One's that aren't linear.

Patrick Meisner (KTH) Lecture 19 4/27



Quadratic Forms

But what about more complicated equations? One's that aren't linear. For
example:
x2 + 4xy x3 4 3xz 4 2y*
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Quadratic Forms

But what about more complicated equations? One's that aren't linear. For
example:
x2 + 4xy x3 4 3xz 4 2y*

Can the work we have done help us understand these?
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Quadratic Forms

But what about more complicated equations? One's that aren't linear. For
example:

x2 + 4xy x3 4 3xz 4 2y*
Can the work we have done help us understand these? Let's look at the
simplest class of these: quadratic forms
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Quadratic Forms

But what about more complicated equations? One's that aren't linear. For
example:
x2 + 4xy x3 4 3xz 4 2y*

Can the work we have done help us understand these? Let's look at the
simplest class of these: quadratic forms

Definition

A quadratic form on R” is a polynomial in n variables where the total
degree of each term is 2.
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Quadratic Forms

But what about more complicated equations? One's that aren't linear. For
example:
x2 + 4xy x3 4 3xz 4 2y*

Can the work we have done help us understand these? Let's look at the
simplest class of these: quadratic forms

Definition

A quadratic form on R” is a polynomial in n variables where the total
degree of each term is 2.For example:

Q(X) = alx12 + 32X22 +-oFapx"+apr1xaxo + apioxixz+ -+ agxsxz + ...

\ /”_/7

clow Lermy.
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Example of Quadratic Form

Consider the quadratic form

Q(X) = X2 + 4x1x0 + 3x3
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Example of Quadratic Form

Consider the quadratic form
Q(X) = X2 + 4x1x0 + 3x3

Can we use vectors and matrices to understand this?
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Example of Quadratic Form

Consider the quadratic form
Q(X) = X2 + 4x1x0 + 3x3

Can we use vectors and matrices to understand this? If we let X = (x1, x2),
then

X12 + 4x1x2 + 3X22
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Example of Quadratic Form

Consider the quadratic form
Q(X) = X2 + 4x1x0 + 3x3

Can we use vectors and matrices to understand this? If we let X = (x1, x2),
then

X12 + 4x1x0 + 3X22 = X12 + 2x1X0 + 2x0x1 + 3x22
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Example of Quadratic Form

Consider the quadratic form
Q(X) = X2 + 4x1x0 + 3x3

Can we use vectors and matrices to understand this? If we let X = (x1, x2),
then

X12 + 4x1x0 + 3X22 = X12 + 2x1X0 + 2x0x1 + 3x22

= x1(x1 + 2x2) + x2(2x1 + 2x3)
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Example of Quadratic Form

Consider the quadratic form
Q(X) = X2 + 4x1x0 + 3x3

Can we use vectors and matrices to understand this? If we let X = (x1, x2),
then

X12 + 4x1x0 + 3X22 = X12 + 2x1X0 + 2x0x1 + 3x22

= x1(x1 + 2x2) + x2(2x1 + 2x3)

x| | x1+2x
X2 2x1 + 2x3
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Example of Quadratic Form

Consider the quadratic form
Q(X) = X2 + 4x1x0 + 3x3

Can we use vectors and matrices to understand this? If we let X = (x1, x2),
then

X12 + dx1x0 + 3X22 = X12 + 2x1x0 + 2x0x1 + 3x22
= x1(x1 + 2x2) + x2(2x1 + 2x3)
x| | x1+2x
X2 2x1 + 2x3

£ (699
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Example of Quadratic Form

Consider the quadratic form

Q(X) = X2 + 4x1x0 + 3x3
S —

Can we use vectors and matrices to understand this? If we let X = (x1, x2),
then

X12 + 4x1x0 + 3X22 = X12 + 2x1X0 + 2x0x1 + 3x22

= x1(x1 + 2x2) + x2(2x1 + 2x3)
x| | x1+2x
X2 2x1 + 2x3

£ (39

(% =XTAX
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Quadratic Forms and Matrices

For any quadratic form on R", Q, you can find a square n X n matrix such
that Q(X) = xT AX
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Quadratic Forms and Matrices

For any quadratic form on R", Q, you can find a square n X n matrix such
that Q(X) = xT AX

Suppose

Q(X) = a1,1x1x1
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Quadratic Forms and Matrices

Theorem

For any quadratic form on R", Q, you can find a square n X n matrix such
that Q(X) = xT AX

Proof.
Suppose

Q(X) = a1 1x1x1 + ar2x1x2
— B——
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Quadratic Forms and Matrices

Theorem

For any quadratic form on R", Q, you can find a square n X n matrix such
that Q(X) = xT AX

Proof.
Suppose

Q(X) = a11x1x1 + a1 2x1x2 + -+ - + a1 pX1Xp

.
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Quadratic Forms and Matrices

For any quadratic form on R", Q, you can find a square n X n matrix such
that Q(X) = xT AX

Suppose

Q(X) = a1,1x1x1 + a12x1x2 + - - - + a1,pX1Xn + 32, 1X0X1

==
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Quadratic Forms and Matrices

For any quadratic form on R", Q, you can find a square n X n matrix such
that Q(X) = xT AX

Suppose

Q(X) = a1 1x1x1 + a12x1X2 + + - - + a1 pX1Xn + A2,1X2X1 + a2 2X0X2
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Quadratic Forms and Matrices

For any quadratic form on R", Q, you can find a square n X n matrix such
that Q(X) = xT AX

Suppose

Q(X) = a1 1x1x1 + a12x1X2 + - -+ + a1 pX1 Xy + @2,1X0X1 + @2 2X0X2 + . ...
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Quadratic Forms and Matrices

Theorem

For any quadratic form on R", Q, you can find a square n X n matrix such
that Q(X) = xT AX

Proof.
Suppose

Q(X) = 31,101 + 12X + o ALnXiXn + 00X + 200000 + -
~

—

Then setting

a a 5060 a
1,1 <:|£2 J_LG
3271 3272 0oo 327,,
A==
dnl dn2 .-- dnn
V.
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Quadratic Forms and Matrices

Theorem
For any quadratic form on R", Q, you can find a square n X n matrix such
that Q(X) = xT AX -

Proof.
Suppose  TeuRekwetio- (6 Juskt o pep Pl {Qm

Q(X) = a1 1x1x1 + a12x1X2 + - -+ + a1 nX1 Xy + @2,1X0X1 + @2 2X0X2 + . ...

— (‘_\
Then setting brertise:,
ay1 d12 ... ain et X1 fx
a a ... a
A= [T TR LR s ey,
: . - : (/Z&((j % M('} ,/
an’]_ an’2 .o a,,’n
We get Q(X) = _’Td_f(’. T s ~ Aw )
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Quadratic Forms and Matrices

Theorem

For any quadratic form on R", Q, you can find a square n X n matrix such
that Q(X) = xT AX

Proof.
Suppose

Q(X) = a1 1x1x1 + a12x1X2 + - -+ + a1 pX1 Xy + @2,1X0X1 + @2 2X0X2 + . ...

Then setting

d11 4812 ... 4din
3271 3272 0oo 327,,
dnl dn2 .-- dnn
We get Q(X) = xT AX. O
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Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote

Q()_() = a11x1x1 + a12x1x2 + - 4 a1, pX1Xp + 32,1X2X1 + @22X0X2 + . ..
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Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote
Q()_() = a11x1x1 + a12x1x2 + - 4 a1, pX1Xp + 32,1X2X1 + @22X0X2 + ...
—— —

However, we see that xixo = xox1
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Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote
Q()_() = ap1x1x1 + a12x1x2 + - 4 a1, pX1Xp + 32,1X2X1 + @22X0X2 + . ..
= —

However, we see that x;xo = xpx1, so we could simplify this and get

Q()?) = .3171X12 + 3272X22 + -+ a,,7,7x,2,
z

~
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Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote
Q()_() = ap1x1x1 + a12xix2 + - 4 a1, pX1Xp + 32,1X0X1 + @22X0X2 + . ..
However, we see that x;xo = xpx1, so we could simplify this and get

- 2 2 2
Q(X) = ar1x{ + a2oxy + -+ annxy + (312 + a2 1)x1x0 + . ..
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Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote
Q()_() = a11x1x1 + a12x1x2 + - 4 a1, pX1Xp + 32,1X2X1 + @22X0X2 + . ..
However, we see that x;xo = xpx1, so we could simplify this and get

- 2 2 2
Q(X) = 311X +apoxy + -+ annxy + (a2 + a1)xixe + ...

= —

2 2 2 /
=a11x] +axpxs + -+ apaXy +2a1x1x0 + ...
- — = 2

——
==

where we have just set 3,1,2 = %(3172 + ay1) and so on.

—_—
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Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote
Q()_() = a11x1x1 + a12x1x2 + - 4 a1, pX1Xp + 32,1X2X1 + @22X0X2 + . ..
However, we see that x;xo = xpx1, so we could simplify this and get

- 2 2 2
Q(X) = ar1x{ + a2oxy + -+ annxy + (312 + a2 1)x1x0 + . ..

_ 2 2 2 /
=aLi1xy + 3&2(2 —+ -+ aMXn +231’2X1X2 4+ ...

--%
where we have just set 3,1,2 = %(3172 + ay1) and so W, if we define
o M {{/?(j L7/L

ks

>YMN

904 '7L L@R

dne Al =
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Quadratic Forms and Symmetric Matrices

Note that in the above proof we wrote
Q()_() = a11x1x1 + a12x1x2 + - 4 a1, pX1Xp + 32,1X2X1 + @22X0X2 + . ..
However, we see that x;xo = xpx1, so we could simplify this and get

- 2 2 2
Q(X) = ar1x{ + a2oxy + -+ annxy + (312 + a2 1)x1x0 + . ..

2 2 2 /
=a11x{ +a2x + -+ annxy 23 xx + ...

where we have just set a} , = %(3172 + a21) and so on.Hence, if we define

/ / /
S I N I )
/ / /
s d12 922 d3 .- Iy
/ / /
al,n a2,n a3,n an,n
we see that A’ is symmetric and Q(X) = — 3TAz.
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Concrete Example

1
Explicitly write down the quadratic form for the matrix A = | 4
7

o OC1 N
O O W

and find a symmetric matrix A’ that gives the same quadratic form.
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Concrete Example

1
Explicitly write down the quadratic form for the matrix A = | 4
7

o OC1 N
O O W

and find a symmetric matrix A’ that gives the same quadratic form.

Q(x) = X7 AR
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Concrete Example

o OC1 N
O O W

1
Explicitly write down the quadratic form for the matrix A = | 4
7

and find a symmetric matrix A’ that gives the same quadratic form.

X1 1 2 3 X1
Q) =x"@X)= |x| (|4 5 6] |x
X3 (‘\ 7 8 9 X3

- J
b&mu« /J(—ZJ x) we Koo X = /2
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Concrete Example

o OC1 N
O O W

1
Explicitly write down the quadratic form for the matrix A = | 4
7

and find a symmetric matrix A’ that gives the same quadratic form.

x| 12 3\ [x
QX)) =xTAX=|x|-|[4 5 6] |x
X3 8 9 X3

:_(qul —|—2X1X2 +_§X1X3 —I—i_X1X2 + 5xoxp + 6x0x3 —I—ZSX3X1 + 8x3x2 + 9x3x3
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Concrete Example

1
Explicitly write down the quadratic form for the matrix A = | 4
7

o OC1 N
O O W

and find a symmetric matrix A’ that gives the same quadratic form.

X1 1 2 3 X1
QX)) =xTAX=|x|-|[4 5 6] |x
X3 7 8 9 X3

= x1x1 + 2x1x0 + 3x1x3 + 4x1x0 + Dxoxo + 6x0x3 + Tx3x1 + 8x3%0 + 9x3X3
=3 R — _ — —_—

= X12 + 5X22 + 9X32 + 6x1x2 + 10x1x3 + 14XgX3
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Concrete Example

1
Explicitly write down the quadratic form for the matrix A = | 4
7

o OC1 N
O O W

and find a symmetric matrix A’ that gives the same quadratic form.

X1 1 2 3 X1
QX)) =xTAX=|x|-|[4 5 6] |x
X3 7 8 9 X3

= x1X1 + 2x1x2 + 3x1x3 + 4x1x20 + Sxox0 + 6x2x3 + Tx3x1 + 8x3x2 + 9x3X3
= X% + 5X22 + 9X32 4 6x1x0 + 10x1x3 + 14x0x3

=1 +5x2 +.9x3 + 2(3x1x2) + 2(5x13) + 2(7x2x3)
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Concrete Example Continued

Hence we see that if A = , then

~N B~

2
5
8

O O W

Q(X) = Xkx = x¥ 4+ 5x3 4+ 95§ + 2(3x1x2) + 2(5x1x3) + 2(7Tx2%3)
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Concrete Example Continued

Hence we see that if A = , then

~N B~

2
5
8

O O W

Q%) = xTx =G + 5x3 + 9x5 + 2(3x1x0) + 2(5x1x3) + 2(7x2x3)

4 9 X =xTAX
=X @é%x A
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The Quadratic Form of a Symmetric Matrix

Therefore, when we are talking about the matrix of a quadratic form we
may always assume it is symmetric.
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The Quadratic Form of a Symmetric Matrix

Therefore, when we are talking about the matrix of a quadratic form we
may always assume it is symmetric.

Definition

Given an n X n symmetric matrix A, we define the quadratic form
associated with A to be

Qa(x) = XTAX
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Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the
simplest matrices, which are diagonal matrices.
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Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the
simplest matrices, which are diagonal matrices. Now, if

d 0 ... 0
0 d ... 0
0 0 ... d,
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Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the
simplest matrices, which are diagonal matrices. Now, if

d 0 ... 0
0 d ... O
0 0 ... d
then
Qb(x) = XT DX
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Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the
simplest matrices, which are diagonal matrices. Now, if

d 0 ... 0
0 d ... O
0 0 ... d
then
X1 d1 0 ce 0 X1
X 0 d 0 X
Qo(x) =xTDx= |’ ? ?
Xn 0 0 o« dn Xn
Patrick Meisner (KTH) Lecture 19
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Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the
simplest matrices, which are diagonal matrices. Now, if

d 0 ... 0
0 d& ... 0
0 0 d,
then (
(%
X1 gl o ... 0 X1 X1 (i)il
X: 0 d ... 0 X: X dox:
Qo(x) = 77D = | = =0
Xn 0O 0 ... d, Xp Xp dnxn
- - S
Lecture 19 11/27

Patrick Meisner (KTH)



Simplest Quadratic Forms

The simplest quadratic forms will be the ones that are associated to the
simplest matrices, which are diagonal matrices. Now, if

d 0 ... 0
B 0 d ... O
0 0 ... d
then
X1 d 0 ... 0 X1 X1 d,anl
NCTLyE o Y 1 ISl il P L Y
X.n 0 0 d'n X.n Xn dnXn

= dix§ +dog + -+ dox)
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices.

A sysmgive =7 Con P otthoger & O 4 et
Sueh Khot- ’AVC PTD P
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric

matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP

Hence
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP
Hence

Qa(x) = XTAX
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP
—
Hence
Qa(x) = XTAx = X" PTDPX
- —_—
Patrick Meisner (KTH) Lecture 19
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP
Hence
Qa(x) = T Ax = X" PTDPx = (PX)" D(PX)
U
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=P'DpP
Hence
Qa(¥) = XTAX = XTPTDPx = (PX)T D(PX) = Qp(PX)
(\\/’7
Patrick Meisner (KTH) Lecture 19
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP
Hence
Qa(¥) = XTAX = XTPTDPx = (PX)T D(PX) = Qp(PX)
Now, we can view P as a change oj\basis operation.

& Monome |
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP
Hence
Qa(¥) = XTAX = XTPTDPx = (PX)T D(PX) = Qp(PX)

Now, we can view P as a change of basis operation. Hence, if we denote
y = PX, this is essentially just looking at X is a different basis.

i
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP
Hence
Qa(¥) = XTAX = XTPTDPx = (PX)T D(PX) = Qp(PX)
Now, we can view P as a change of basis operation. Hence, if we denote

y = PX, this is essentially just looking at X is a different basis. Moreover,
we get

Qa(x)
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP
Hence
Qa(¥) = XTAX = XTPTDPx = (PX)T D(PX) = Qp(PX)
Now, we can view P as a change of basis operation. Hence, if we denote

y = PX, this is essentially just looking at X is a different basis. Moreover,
we get

Qa(¥) = Qp(Px)
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP
Hence
Qa(¥) = XTAX = XTPTDPx = (PX)T D(PX) = Qp(PX)

Now, we can view P as a change of basis operation. Hence, if we denote
y = PX, this is essentially just looking at X is a different basis. Moreover,
we get

Qa(¥) = Qb(P) = Qo(7)
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP
Hence
Qa(¥) = XTAX = XTPTDPx = (PX)T D(PX) = Qp(PX)
Now, we can view P as a change of basis operation. Hence, if we denote

y = PX, this is essentially just looking at X is a different basis. Moreover,
we get

Qa(X) = Qo(PX) = Qo(¥) = Ayf + -+ Aoys
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

A=PTDP
Hence
Qa(¥) = XTAX = XTPTDPx = (PX)T D(PX) = Qp(PX)

Now, we can view P as a change of basis operation. Hence, if we denote
y = PX, this is essentially just looking at X is a different basis. Moreover,
we get

Qa(X) = Qo(PX) = Qp(¥) = My + - + Ay

where the \; are the diagonal entries of D
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Principle Axes Theorem

Since our quadratic forms can always be associated with symmetric
matrices, we can always orthogonally diagonalize these matrices. That is,
we can always find an orthogonal matrix P such that

_ pT (
A=PTOP. 0 N L e
Hence Lo 0= M “'WZ‘/’” +

Qa(¥) = XTAX = XTPTDPx = (PX)T D(PX) = Qp(PX)

Now, we can view P as a change of basis operation. Hence, if we denote
y = PX, this is essentially just looking at X is a different basis. Moreover,
we get

Qa(X) = Qp(PX) = Qp(¥) = Ayt + -+ Awyi

where the \; are the diagonal entries of D, which are the eigenvalues of A.
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Let Q(X) = xl2 - x32 — 4dx1x0 + 4xox3. Find a change of basis such that
Q(Y) = Ayf + Aoyd + Asys.
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Let Q(X) = xl2 - x32 — 4dx1x0 + 4xox3. Find a change of basis such that
Q(Y) = Ayf + Aoyd + Asys.

First, need to find th(}Lmatrix associated to Q.

sﬂqmcm’b
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Let Q(X) :__xl2 - x32 — 4dx1x0 + 4xox3. Find a change of basis such that
Q(Y) = Ayf + Aoyd + Asys.

First, need to find the matrix associated to Q. We know that
ai1 = 1,
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Let Q(X) = x12; x32 — 4dx1x0 + 4xox3. Find a change of basis such that
Q(Y) = Ayf + Aoyd + Asys.

First, need to find the matrix associated to Q. We know that
a1 = lap =0,
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Let Q(X) = xl2 — 32 — 4dx1x0 + 4xox3. Find a change of basis such that
Q(Y) = Ayf + Aoyd + Asys.

First, need to find the matrix associated to Q. We know that
a1 =1lap =0, a33=—1.

Patrick Meisner (KTH) Lecture 19 13 /27



Let Q(X) = x1 — x3 — 4X1X2 + 4xpx3. Find a change of basis such that
Q(Y) = Myf + Xoy3 +)\3Y3

First, need to find the matrix associated to Q. We know that

ayl = 1,3272 =0, a3 = —1. Further, 231’2 = —4,
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Q(¥Y) = AyZ + AoyZ + Asy2.

First, need to find the matrix associated to Q. We know that
ayl = 1,3272 =0, a3 = —1. Further, 231’2 = —4, 23173 =0,
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Let Q(X) = x1 — x3 —4x1x0 + 4x2)<3 Find a change of basis such that
Q(Y) = Myf + Xoy3 +)\3Y3
First, need to find the matrix associated to Q. We know that
_a11 = 1,3272 =0, a3 = —1. Further, 2_31’2 = —4,423173 =0, _2_3273 =4
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Let Q(X) = xl2 - x32 — 4dx1x0 + 4xox3. Find a change of basis such that
Q(Y) = Ayf + Aoyd + Asys.

First, need to find the matrix associated to Q. We know that
ayl = 1,3272 =0, a3 = —1. Further, 231’2 = —4, 23173 =0, 23273 =4
and A will have to be symmetric.
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Let Q(X) = xl2 - x32 — 4dx1x0 + 4xox3. Find a change of basis such that
Q(Y) = Ay + Aoy3 + Aay3.
First, need to find the matrix associated to Q. We know that
il:1322 0, a3 = —1. Further, 2312——4 2313—0 2323—4

and A will have to be symmetrlc Hence

L 20
252
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Let Q(X) = xl2 - x32 — 4dx1x0 + 4xox3. Find a change of basis such that
Q(Y) = Ayf + Aoy + dsys.

First, need to find the matrix associated to Q. We know that

ayl = 1,3272 =0, a3 = —1. Further, 231’2 = —4, 23173 =0, 23273 =4
and A will have to be symmetric. Hence _
{
1 -2 0 = T OP
A=|-2 0 2
0o 2 -1

Now, we must orthogonally diagonalize A.
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Let Q(X) = xl2 - x32 — 4dx1x0 + 4xox3. Find a change of basis such that
Q(Y) = Ay + Aoy3 + Aay3.
First, need to find the matrix associated to Q. We know that
ayl = 1,3272 =0, a3 = —1. Further, 231’2 = —4, 23173 =0, 23273 =4
and A will have to be symmetric. Hence
1 -2 0
A=1-2 0 2
0o 2 -1

Now, we must orthogonally diagonalize A. Without showing the work, we
get that the eigenvalues are A\; =0, Ao = =3 and \» =3
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Let Q(X) = xl2 - x32 — 4dx1x0 + 4xox3. Find a change of basis such that
Q(Y) = Ayf + Aoyd + Asys.

First, need to find the matrix associated to Q. We know that
ayl = 1 22 = 0, a3 = —1. Further, 231 2= —4, 23173 =0, 2}32,3 =4
and A will have to be symmetric. Hence

LK =25 <

@ % s wieod K Aetay

K% Ky — f{ X X
Now, we must orthogonally diagonalize A. Without showing the work, we
get that the eigenvalues are A\; =0, A\» = —3 and A\» = 3 and that we can
find an orthonormal basis of eigenvectors:
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Example 2

Hence,

A=PTDP
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Hence,

2/3  1/3 2/3 3, #1/3 2/
A=PTDP = (1/3 —2/3 2/3 @; 2/3 2/3)
-2/3 2/3 2/3 2/3) \2/

T \/l{
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Example 2

Hence,

2/3 1/3 2/3\ /0 0 O\ /2/3 -1/3 -2/3
A=PTDP = (1/3 —2/3 2/3) (o -3 o) (1/3 -2/3 2/3)
-2/3 2/3 2/3/\0o 0 3/ \2/3 2/3 2/3

and so

Qa(¥) = xT A%
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Example 2

Hence,

2/3 1/3 2/3\ /0 0 O\ /2/3 -1/3 -2/3
A=PTDP = (1/3 —2/3 2/3) (o -3 o) (1/3 -2/3 2/3)
-2/3 2/3 2/3/\0o 0 3/ \2/3 2/3 2/3

and so

Qa(x) = XTAX = X" PTDPX
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Example 2

Hence,

2/3 1/3 2/3\ /0 0 O\ /2/3 -1/3 -2/3
A=PTDP = (1/3 —2/3 2/3) (o -3 0) (1/3 -2/3 2/3)
-2/3 2/3 2/3/\0o 0 3/ \2/3 2/3 2/3

and so

Qa(¥) = XTAX = XTPTDPx = (PX)T D(PX)
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Example 2

Hence,

2/3 1/3 2/3\ /0 0 O\ /2/3 -1/3 -2/3
A=PTDP = (1/3 —2/3 2/3) (o -3 0) (1/3 -2/3 2/3)
-2/3 2/3 2/3)\0o 0 3/ \2/3 2/3 2/3

and so N
Oy,

4

Qa(X) = XTAX = xTPTDPX = (PX)" D(PX) = y" Dy = —3y3 + 3y3

—_—
where
2/3 *1/3 *2/3 X1 2X1—1X2—2X3 = \{/
)7: PxX = ]_/3 —2/3 2/3) |:X2] = [§X1§X2+§X3] =T
—  \2/3 2/3 2/3) |x a+ie+ix] oy,
;\

——
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Example 3

Confirm the fact that
Qa(X) = Qp(¥)
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Example 3

Confirm the fact that
Qa(x) = Qp(¥)
by showing, by hand, that

Qp(¥) = —3y3 +3y3
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Example 3

Confirm the fact that
Qa(x) = Qp(¥)
by showing, by hand, that

Qo(¥) = =3y + 35
1 2 2 \? 2 2 2 \?
=-3l=xt—=x4+=x3)] +3(=x1+=x+=x3

3 3 3 3 3 3
— ———
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Example 3

Confirm the fact that
Qa(x) = Qp(¥)
by showing, by hand, that

Qp(¥) = —3y3 +3y3

1 2 2 \? 2 2 2 \?
=-3l=xt—=x4+=x3)] +3(=x1+=x+=x3

3 3 3 3 3 3
2 2
= X7 — X3 — 4x1x2 + 4x2x3
\
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Example 3

Confirm the fact that
Qa(x) = Qp(¥)
by showing, by hand, that

Qp(¥) = —3y3 +3y3

AL tor 2 2
CAU“ P 1 2 2 2 2 2
b =3 (- Tty 3(Satets
5o s L 3X1 3X2 + 3X3 + 3><1 + 3x2 + 3x3
9 = xf — x32 —4x1x0 + 4x0Xx3

= Qa(x)
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Geometry of Quadratic Forms

Much like how we wish to understand the solutions of AX = b using
geometry, we also would like to understand the solutions of 5A2>_<’) =k
using geometry. =

QAr (&) <R
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Geometry of Quadratic Forms

Much like how we wish to understand the solutions of AX = b using
geometry, we also would like to understand the solutions of Qa(X) = k
using geometry. Let us first start with the simplest example:

Geometrically explain the solutions to Q,(X) = 1\2 ‘6)

@t\(i}:\ ?Txv,?? < ( (y <\/>
'\,\/\/LwlT o XfLe solAion s - /BL te G?} (X)) = Xé-]-y‘ /Z 7

Te  sddios  guwwdticly Bfa v \(u‘f»fe Cebered of
©0) it wedic YE — &P o
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Geometry of a 2 x 2 Diagonal

If D= (Cél 3) with di, d> > 0, geometrically explain the solutions to
2

the quadratic form Qp(X) = k with k > 0.
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Geometry of a 2 x 2 Diagonal

If D= (Cél 3) with di, d> > 0, geometrically explain the solutions to
2

the quadratic form Qp(X) = k with k > 0.

We note that

_(dy 0
°-(5 a)
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Geometry of a 2 x 2 Diagonal

If D= (Cél 3) with di, d> > 0, geometrically explain the solutions to
2

——  _ ———
the quadratic form Qp(X) = k with k > 0.

We note that

-8 3)-(F (5
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Geometry of a 2 x 2 Diagonal

If D= (Cél 3) with di, d> > 0, geometrically explain the solutions to
2

the quadratic form Qp(X) = k with k > 0.

We note that
-3 3) (5 55 5
()

0 Vd

_—
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Geometry of a 2 x 2 Diagonal

If D= (Cél 3) with di, d> > 0, geometrically explain the solutions to
2

the quadratic form Qp(X) = k with k > 0.

We note that
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Geometry of a 2 x 2 Diagonal

If D= (Cél 3) with di, d> > 0, geometrically explain the solutions to
2

the quadratic form Qp(X) = k with k > 0.

We note that

Hence,
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Geometry of a 2 x 2 Diagonal

If D= (Cél 3) with di, d> > 0, geometrically explain the solutions to
2

the quadratic form Qp(X) = k with k > 0.

We note that

o~ (5 9)-(F B)(F &)

Hence,

Qp(x) = x"Dx =x"BTBx
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Geometry of a 2 x 2 Diagonal

If D= (Cél 3) with di, d> > 0, geometrically explain the solutions to
2

the quadratic form Qp(X) = k with k > 0.

We note that
o~ (5 9)-(F B)(F %)
() (5 )

Qp(x) =x"Dx=x"BTBx = (BX)"Bx

Hence,
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Geometry of a 2 x 2 Diagonal

If D= (Cél 3) with di, d> > 0, geometrically explain the solutions to
2

the quadratic form Qp(X) = k with k > 0.

We note that
o~ (5 9)-(F B)(F %)
() (5 )

Qp(xX) =x"Dx=x"B"Bx = (B)‘(’)IB% = Qu(BX)
Ty

Hence,
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Geometry of a 2 x 2 Diagonal 2

Hence, we can view the solutions to Qp(X) = Q1 (BX) = k

Patrick Meisner (KTH) Lecture 19 18 /27



Geometry of a 2 x 2 Diagonal 2

Hence, we can view the solutions to Qp(X) = Q,(BX) = k as the set of X
who, after the action of B, lie on the circle of radius k.

Qa (> Yook e e Foo e
94 R?o@ﬁbu /‘b\
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Geometry of a 2 x 2 Diagonal 2

Hence, we can view the solutions to Qp(X) = Q,(BX) = k as the set of X
who, after the action of B, lie on the circle of radius k. So, what does the

action of B do? ; e
b= ( o Ve
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Geometry of a 2 x 2 Diagonal 2

Hence, we can view the solutions to Qp(X) = Q,(BX) = k as the set of X
who, after the action of B, lie on the circle of radius k. So, what does the
action of B do? Stretches the x-axis by v/di and the y-axis by /d>.

6:[‘ O
@“ O e f—‘?(:(;;

o ¢
. /\>

=

(\
\(y('“ ~<9| ‘Q—a>
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Geometry of a 2 x 2 Diagonal 2

Hence, we can view the solutions to Qp(X) = Q,(BX) = k as the set of X
who, after the action of B, lie on the circle of radius k. So, what does the
action of B do? Stretches the x-axis by v/di and the y-axis by /d>.

Hence, the set of solutions to Qp(X) = k is the ellipse whose x-radius is of
length % and whose y-radius is of Iength

“ﬁ?
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Geometry of a 2 x 2 Diagonal 3
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Geometry of a 2 x 2 Diagonal 3

0
form Qp(X) = k and k >0

-1 : : : .
Let D = < (1)) geometrically explain the solutions to the quadratic

We see that

o= [ (3 O[]
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Geometry of a 2 x 2 Diagonal 3

0
form Qp(X) = k and k >0

-1 : : : .
Let D = < (1)) geometrically explain the solutions to the quadratic

We see that

oun-[]'(2 9] s

So then Qp(X) =k = y?=x>+k
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Geometry of a 2 x 2 Diagonal 3

Let D = (%1 g) geometrically explain the solutions to the quadratic

form Qp(xX) = k and k>0

We see that b ?}Lk
—>  prhg,

our- [ (2 O] e §
N

So then Qp(X) = k = y? =x>+k
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Geometry of a 2 x 2 Diagonal 4

Similarly if D = [1 _OJ then Qp(X) = k = x? = y% + k and we get

0 P —
a hyperbola.
—
K
'
A’%U/W"AJ /br7O
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Geometry of a 2 x 2 Diagonal 4

Similarly if D = [(1) _OJ then Qp(X) = k = x? = y% + k and we get

a hyperbola.

Further, if D = { 0 d

that Qp(X) = k will be either a parabola or a hyperbola whose x-axis was
stretched by a factor of \/%T and y-axis was stretched bg a factor of %

0 or dh 0 with di, d» > 0, then we get
0 —d

d2

D\—,C/ ?> 1 o= (7" 4
W ) &
v /\)

%1
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Geometry of a 2 x 2 Diagonal 5

Finally, if D = <_0dl (il ) with di, d> > 0 then 0//61/(47) vesef g
—a2
|~
Qp(X) = —dix® — doy® = k
%
has no solutions if k 4 O but is just the ellipse if kK < 0.
>
—J( Z<L- CQ’I,YK = 7 9\

Z
—) J(XLJ( C/LY = %
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Geometry of a 2 x 2 Diagonal 5

Finally, if D = —d 0 with di, d» > 0 then
0 —d»

Qp(X) = —dix® — doy? = k

has no solutions if k # 0 but is just the ellipse if kK < 0.

>
_ L L
Moreover, if D = < :1 c(/)) with di, d> > 0 then = 6/0( SOy i’&
— 2
- 7

Apres”

?0(\»\440 Qp(X) = —d1x2 + d2y2 = _k b O
is the same as Q—D( ) = k, and so would be a hyperbola.
-— D

S
yiﬂs <«

b igpertele,
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Geometry of a 2 x 2 Diagonal 5

—di 0 )
0 _d2> with di, d> > 0 then

Finally, if D = (
Qp(X) = —dix® — doy? = k
has no solutions if k 4 0 but is just the ellipse if kK < 0.
7

—dp 0

Moreover, if D = < 0 d

) with di, d> > 0 then

Qp(X) = —dix® + day® = —k
is the same as Q_p(X) = k, and so would be a hyperbola.

Hence, we may always assume k > 0
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Geometry of an Arbitrary 2 x 2

If Ais any symmetric 2 X 2 matrix, geometrically describe the solution
Q(X) =k, k > 0.
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Geometry of an Arbitrary 2 x 2

If Ais any symmetric 2 X 2 matrix, geometrically describe the solution
Q(X) =k, k > 0.

Well, we known that we can write A = PT DP, where the columns of P
are the eigenvectors of A.

22/27
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Geometry of an Arbitrary 2 x 2

If Ais any symmetric 2 X 2 matrix, geometrically describe the solution
Q(X) =k, k > 0.

Well, we known that we can write A = PT DP, where the columns of P
are the eigenvectors of A. Moreover, we know that his means that

Qa(X) = Qp(PX) = Qp(Y)

Patrick Meisner (KTH) Lecture 19 22/27



Geometry of an Arbitrary 2 x 2

If Ais any symmetric 2 X 2 matrix, geometrically describe the solution
Q(X) =k, k > 0.

Well, we known that we can write A = PT DP, where the columns of P
are the eigenvectors of A. Moreover, we know that his means that

Qa(X) = Qp(PX) = Qp(Y)

Moreover, y = PX can viewed as just an orthonormal change of basis.
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Geometry of an Arbitrary 2 x 2

If Ais any symmetric 2 X 2 matrix, geometrically describe the solution
Q(X) =k, k > 0.

Well, we known that we can write A = PT DP, where the columns of P
are the eigenvectors of A. Moreover, we know that his means that

Qa(X) = Qp(PX) = Qp(Y)

Moreover, y = PX can viewed as just an orthonormal change of basis.

Thus, in the basis of eigenvectors of A, we know that Q4 will be an ellipse,
parabola, or hyperEoia %epending on the properties of D.

Patrick Meisner (KTH) Lecture 19 22/27



Geometry of an Arbitrary 2 x 2

If Ais any symmetric 2 X 2 matrix, geometrically describe the solution
Q(X) =k, k > 0.

Well, we known that we can write A = PT DP, where the columns of P
are the eigenvectors of A. Moreover, we know that his means that

Qa(X) = Qp(PX) = Qp(Y)

Moreover, y = PX can viewed as just an orthonormal change of basis.
Thus, in the basis of eigenvectors of A, we know that Q4 will be an ellipse,
parabola, or hyperbola depending on the properties of D.

in e shudod  Lasic
That is, Qa(X) will be an ellipse, parabola or hyperbola stretched in the
direction the eigenvectors of A.
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Sketch the solutions to Qa(X) = 36 where A = ( > _2>.
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Sketch the solutions to Qa(X) = 36 where A = ( > _2>.

-2 8

First, we calculate the eigenvalues and eigenvectors:
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Sketch the solutions to Qa(X) = 36 where A = ( > _2>.

-2 8

First, we calculate the eigenvalues and eigenvectors:

2 _1
)\1:47)‘2:97‘71: [\/lgl ‘72: [ 3/3]

V5 V5
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Example

Sketch the solutions to Qa(X) = 36 where A = (_52 _82>

First, we calculate the eigenvalues and eigenvectors:
2 1 ‘\F‘
)\124,>\2=97\71=[‘{§]\72=[ é/gl &

NS W Lvs V5 (
Hence, it looks like a circI;\of\r;iiiusb that has been “stretched” by % in

the V| direction a factor of 5 in the v, direction.

we el Aoy LA finiph G«es
ot {e(('y. (el
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Definition

A quadratic form Qa(X) = XT AX is said to be
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Definition
A quadratic form Qa(X) = XT AX is said to be
@ positive definite if Qa(x) > 0 for all X # 0
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Definition

A quadratic form Qa(X) = XT AX is said to be
O positive definite if Qa(x) > 0 for all X#0
@ negative definite if Qa(X) < 0 for all X# 0
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Definition

A quadratic form Qa(X) = XT AX is said to be
O positive definite if Qa(x) > 0 for all X#0
@ negative definite if Qa(X) < 0 for all X# 0
@ indefinite if Q4(X) has both positive and negative values
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Definiteness and Eigenvalues

We see to understand the geometry of Qa(X) it is necessary to understand
the geometry of Qp(X) which only depends on the eigenvalues of A.

Patrick Meisner (KTH) Lecture 19 25 /27



Definiteness and Eigenvalues

We see to understand the geometry of Qa(X) it is necessary to understand
the geometry of Qp(X) which only depends on the eigenvalues of A.

Theorem

If A is a symmetric matrix then
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Definiteness and Eigenvalues

We see to understand the geometry of Qa(X) it is necessary to understand
the geometry of Qp(X) which only depends on the eigenvalues of A.

Theorem

If A is a symmetric matrix then

Q Qa(x) is positive definite if and only if all the eigenvalues of A are
positive
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Definiteness and Eigenvalues

We see to understand the geometry of Qa(X) it is necessary to understand
the geometry of Qp(X) which only depends on the eigenvalues of A.

Theorem

If A is a symmetric matrix then
Q Qa(x) is positive definite if and only if all the eigenvalues of A are
positive
@ Qa(X) is negative definite if and only if all the eigenvalues of A are
negative
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Definiteness and Eigenvalues

We see to understand the geometry of Qa(X) it is necessary to understand
the geometry of Qp(X) which only depends on the eigenvalues of A.

Theorem
If A is a symmetric matrix then @”i D se
Q Qa(x) is positive definite if and only if all the eigenvalues of A are
positive 5w ogeh S8 ko (o elipa Br Aeo)
@ Qa(X) is negative Jefinite if and only if all the eigenvalues of A are
negative
@ Qa(x) is indefinite if and only if at least one eigenvalue is positive
and at least one is negative |

NAI\.JI: L [/11 Ne L:)(a_ v
P hetro o
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Definiteness and Eigenvalues

We see to understand the geometry of Qa(X) it is necessary to understand
the geometry of Qp(X) which only depends on the eigenvalues of A.

Theorem

If A is a symmetric matrix then
Q Qa(x) is positive definite if and only if all the eigenvalues of A are
positive
@ Qa(x) is negative definite if and only if all the eigenvalues of A are
negative

@ Qa(x) is indefinite if and only if at least one eigenvalue is positive
and at least one is negative

Note, if Qa(X) is negative definite, then Q_A(X) is positive definite so we
may only consider positive definite and indefinite.
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Positive Definiteness and Squares

If A is a symmetric matrix, then the following statements are equivalent

Q A is positive definite
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Positive Definiteness and Squares

If A is a symmetric matrix, then the following statements are equivalent
© A is positive definite ~ —> all Copvd— o Oifie
@ There is a B such that A = B>
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Positive Definiteness and Squares

If A is a symmetric matrix, then the following statements are equivalent
Q A is positive definite
@ There is a B such that A= B?
© There is an invertible matrix C such that A= CTC
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Positive Definiteness and Squares

If A is a symmetric matrix, then the following statements are equivalent

Q A is positive definite
@ There is a B such that A = B2
© There is an invertible matrix C such that A= C'C

Hence, by the same proof as before if A is positive definite, then

Qa(¥) = Q1,(Cx)
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Positive Definiteness and Squares

If A is a symmetric matrix, then the following statements are equivalent

Q A is positive definite
@ There is a B such that A = B2
© There is an invertible matrix C such that A= C'C

Hence, by the same proof as before if A is positive definite, then
Qa(X) = Q,(Cx) and hence will be an n-dimensional circle in the “C”
coordinate
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Positive Definiteness and Squares
Telcwany Aok e s B H Qatdeh Hometry =,
s G an  n—dim @[/{'Pg@,

If A is a symmetric matrix, then the following statements are equivalent

Q A is positive definite
@ There is a B such that A = B2
© There is an invertible matrix C such that A= C'C

Hence, by the same proof as before if A is positive definite, then

Qa(X) = Q,(Cx) and hence will be an n-dimensional circle in the “C”
coordinate , or an n-dimensional ellipse that is stretched by a factor of \/1/\7
in the V; direction, where the )\; are the eigenvalues of A and the V; the I
corresponding eigenvectors.
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Definiteness and 2 x 2 Matrices.

If A is a symmetric 2 X 2 matrix, then
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Definiteness and 2 x 2 Matrices.

If A is a symmetric 2 X 2 matrix, then

@ X" AX =1 defines an ellipse if A is positive definite
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Definiteness and 2 x 2 Matrices.

If A is a symmetric 2 X 2 matrix, then

@ X" AX =1 defines an ellipse if A is positive definite

@ xXTAX =1 has no geometry (no graph) is A is negative definite
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Definiteness and 2 x 2 Matrices.

If A is a symmetric 2 X 2 matrix, then

@ X" AX =1 defines an ellipse if A is positive definite
@ xXTAX =1 has no geometry (no graph) is A is negative definite
@ X" AX =1 defines a hyperbola if A is indefinite
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