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Topics for Today

1 Orthogonal Diagonalization

2 Powers of Matrices

3 Cayley-Hamilton Theorem
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Orthogonally Similar

Recall we say that two square matrices A and C are similar if and only if
there is an invertible matrix, P, such that C = P−1AP.

Definition

We say that two square matrices A and C are orthogonally similar if
there is an orthogonal matrix, P, such that C = PTAP.

Recall also that if P is orthogonal that PT = P−1 and so if two matrices
are orthogonally similar then they are also similar.

Theorem

Two square matrices are orthogonally similar if and only if there exists
orthonormal bases with respect to which the matrices represent the same
linear transformation.
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Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the
nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for
which PTAP is a diagonal matrix, and if so how does one find such a P?
If such a matrix P exists, then A is said to be orthogonally
diagonalizable and P is said to orthogonally diagonalize A.

Patrick Meisner (KTH) Lecture 18 4 / 19



Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the
nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for
which PTAP is a diagonal matrix

, and if so how does one find such a P?
If such a matrix P exists, then A is said to be orthogonally
diagonalizable and P is said to orthogonally diagonalize A.

Patrick Meisner (KTH) Lecture 18 4 / 19



Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the
nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for
which PTAP is a diagonal matrix, and if so how does one find such a P?

If such a matrix P exists, then A is said to be orthogonally
diagonalizable and P is said to orthogonally diagonalize A.

Patrick Meisner (KTH) Lecture 18 4 / 19



Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the
nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for
which PTAP is a diagonal matrix, and if so how does one find such a P?
If such a matrix P exists, then A is said to be orthogonally
diagonalizable and P is said to orthogonally diagonalize A.

Patrick Meisner (KTH) Lecture 18 4 / 19



Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the
nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for
which PTAP is a diagonal matrix, and if so how does one find such a P?
If such a matrix P exists, then A is said to be orthogonally
diagonalizable and P is said to orthogonally diagonalize A.

Patrick Meisner (KTH) Lecture 18 4 / 19



Orthonormal Eigenvectors

Note that if an n× n matrix A is orthogonally diagonalizable then it would
have to be diagonalizable.

Hence, it would have to have n linearly independent eigenvectors
~v1, . . . , ~vn and be diagonalized by the matrix

P =
(
~v1 ~v2 . . . ~vn

)
Therefore, we see that A would be orthogonally diagonalizable if and only
if P was orthogonal.

Theorem

An n× n matrix is orthogonally diagonalizable if and only if there exists an
orthonormal set of n eigenvectors of A.
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Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally
diagonalizable.

Indeed, we immediately see one condition.

Theorem

If A is orthogonally diagonalizable than A is symmetric (i.e. AT = A).

Proof.

A is orthogonaly diagonalizable if and only if A = PTDP for some
orthogonal matrix P. Then

AT = (PTDP)T = PTDT (PT )T = PTDP = A
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Orthogonal Eigenvectors

Theorem

If A is a symmetric matrix and ~v1 and ~v2 are two eigenvectors of A
corresponding to two different eigenvalues λ1 and λ2, then ~v1 and ~v2 are
orthogonal.

Proof.

λ1(~v1 · ~v2) = (λ1~v1)T~v2 = (A~v1)T~v2 = ~vT1 AT~v2

= ~vT1 A~v2 = ~vT1 (λ2~v2) = λ2(~v1 · ~v2)

Now, since λ1 6= λ2, this can only happen if ~v1 · ~v2 = 0, hence they are
orthogonal.
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Symmetric is Orthogonally Diagonalizable

Theorem

A square matrix A is orthogonally diagonalizable if and only if it is
symmetric.

Hard part of this theorem is to prove that if A is symmetric then it is
diagonalizable. We won’t prove this, but Exercise P4 on pg.480 of the
textbook goes through the proof step by step.

However, once we know that if A is symmetric then it is diagonalizable, we
can perform the Gram-Schmidt process to each eigenspace and find
orthonormal bases for each eigenspace and use the previous theorem to
guarantee that combining these will form a set of n orthonormal
eigenvectors.
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Orthogonally Diagonalizing a Symmetric Matrix

Let A be an n × n symmetric matrix.

Then to orthogonally diagonalize it,
we do the following process

1 Find λ1, . . . , λk , the eigenvalues of A

2 For each eigenvalue λi , find a basis for the eigenspace
Eλi = span{~vi ,1, . . . , ~vi ,gi}

3 Perform the Gram-Schmidt process on each basis of Eλi to find an
orthonormal basis for Eλi = span{~ui ,1, . . . , ~ui ,gi}

4 The resulting set of n eigenvectors

{~u1,1, . . . , ~u1,g1 , ~u2,1, . . . , ~uk,gk}

are orthonormal.
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Example

Exercise

Find a matrix P that orthogonally diagonalizes the matrix

A =

4 2 2
2 4 2
2 2 4



First: check that it is symmetric and so can be orthogonally diagonalized.

Now, find the eigenvectors. A routine computation shows that

det(A− tI3) = (t − 2)2(t − 8)

and so the eigenvalues are λ1 = 2 and λ2 = 8.
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Example 2

Row reduce

A− 2I3 =

2 2 2
2 2 2
2 2 2

 and A− 8I3 =

−4 2 2
2 −4 2
2 2 −4



to find that E2 = span{~v1, ~v2} and E8 = span{~v3} where

~v1 =

−1
1
0

 , ~v2 =

−1
0
1

 , ~v3 =

1
1
1


Note: a previous theorem tells us that ~v3 should be orthogonal to ~v1 and
~v2 a quick calculation confirms this.
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Example 3

Performing Gram-Schmidt on E2 = span{~v1, ~v2}, we get

~w1 = ~v1 ~w2 = ~v2 − proj~v1~v2 = ~v2 −
~v1 · ~v2
‖~v1‖2

~v1 =

−1
−1
2



~u1 =
1

‖~w1‖
~w1 =

−
1√
2

1√
2

0

 ~u2 =
1

‖~w2‖
~w2 =

−
1√
6

− 1√
6

2√
6


Performing Gram-Schmidt of E8 = span{~v3}, we get

~w3 = ~v3 ~u3 =
1

‖~w3‖
~w3 =


1√
3
1√
3
1√
3


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Example 4

Hence, we see that

P

=

−
1√
2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

1√
3


diagonalizes A and, in fact

PTAP =

−
1√
2

1√
2

0

− 1√
6
− 1√

6
2√
6

1√
3

1√
3

1√
3


4 2 2

2 4 2
2 2 4


−

1√
2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

1√
3



=

2 0 0
0 2 0
0 0 8


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Calculating Powers of Diagonalizable Matrices

It is common that we wish to multiply matrices together.

However, this is
computationally taxing as you have seen by now. However, in the special
case of raising diagonalizable matrices to a power, it becomes somewhat
easy.

Theorem

If A is diagonalizable by P with diagonal matrix D, then A = PDP−1 and
for any k,

Ak = PDkP−1
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Powers of Diagonals

This is useful since calculating Dk when D is diagonal is easy:



d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn




k

=


dk
1 0 . . . 0
0 dk

2 . . . 0
...

...
. . .

...
0 0 . . . dk

n


Exercise

Use these ideaes to compute A13 for

A =

0 0 −2
1 2 1
1 0 3


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Example Solution

Using all the techniques we have developed so far, one can show that

A =

−2 −1 0
1 0 1
1 1 0

1 0 0
0 2 0
0 0 2

−2 −1 0
1 0 1
1 1 0

−1

Thus,

A13 =


−2 −1 0

1 0 1
1 1 0

1 0 0
0 2 0
0 0 2

−2 −1 0
1 0 1
1 1 0

−1


13

−2 −1 0
1 0 1
1 1 0

1 0 0
0 213 0
0 0 213

−2 −1 0
1 0 1
1 1 0

−1
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Cayley-Hamilton Theorem

Recall that the characteristic polynomial of a square matrix is det(A− tIn).

Theorem (Cayley-Hamilton Theorem)

If we write

det(A− tIn) = tn + cn−1t
n−1 + · · ·+ c1t + c0

then we get that

An + cn−1A
n−1 + · · ·+ c1A + c0In = 0

We then say the “every square matrix satisfies it’s characteristic equation”.
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Sketch of Proof for Diagonalizable A

If A = PDP−1 is diagonalizable then we get Ak = PDkP−1.

We can then
use this to show that

An + cn−1A
n−1 + · · ·+ c1A + c0In

= P(Dn + cn−1D
n−1 + · · ·+ c1D + c0In)P−1

Further, since D is diagonal, we get that the inner matrix will also be
diagonal. Moreover, the diagonal entries of D will be the eigenvalues of A:
λ1, . . . , λn. So, the diagonal entries of the inner matrix will be

λni + cn−1λ
n−1
i + · · ·+ c1λi + c0 = det(A− λi In) = 0

by definition of an eigenvalue.
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Example

Let A =

(
1 2
3 4

)
.

Then it’s characteristic polynomial will be

det(A−tI2) = det

((
1− t 2

3 4− t

))
= (1−t)(4−t)−2×3 = t2−5t−2

Hence,

A2 − 5A− 2I2 =

(
1 2
3 4

)(
1 2
3 4

)
− 5

(
1 2
3 4

)
− 2

(
1 0
0 1

)

=

[
7 10

15 22

]
−
(

5 10
15 20

)
−
(

2 0
0 2

)
=

(
0 0
0 0

)
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