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Topics for Today

@ Orthogonal Diagonalization
@ Powers of Matrices

© Cayley-Hamilton Theorem
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Orthogonally Similar

Recall we say that two square matrices A and C are similar if and only if
there is an invertible matrix, P, such that C = P"1AP.

_— oz
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Orthogonally Similar

Recall we say that two square matrices A and C are similar if and only if
there is an invertible matrix, P, such that C = P~1AP.

Definition
We say that two square matrices A and C are orthogonally similar if
there is an orthogonal matrix, P, such that C = PTAP.

—_—
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Orthogonally Similar

Recall we say that two square matrices A and C are similar if and only if
there is an invertible matrix, P, such that C = P~1AP.

Definition
We say that two square matrices A and C are orthogonally similar if
there is an orthogonal matrix, P, such that C = PTAP.

~
Recall also that if P is orthogonal that PT = p~1 = A p
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Orthogonally Similar

Recall we say that two square matrices A and C are similar if and only if
there is an invertible matrix, P, such that C = P~1AP.

Definition

We say that two square matrices A and C are orthogonally similar if
there is an orthogonal matrix, P, such that C = PTAP.

Recall also that if P is orthogonal that P = P! and so if two matrices
are orthogonally similar then they are also similar.
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Orthogonally Similar

Recall we say that two square matrices A and C are similar if and only if
there is an invertible matrix, P, such that C = P~1AP.

Definition

We say that two square matrices A and C are orthogonally similar if
there is an orthogonal matrix, P, such that C = PTAP.

Recall also that if P is orthogonal that P = P! and so if two matrices
are orthogonally similar then they are also similar.

Two square matrices are orthogonally similar if and only if there exists
orthonormal bases with respect to which the matrices represent the same
linear transformation.
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Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the
nicest matrices, this leads to an obvious next question.
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Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the
nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for
which PTAP is a diagonal matrix
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Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the
nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for
which PTAP is a diagonal matrix, and if so how does one find such a P?
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Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the
nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for
which PTAP is a diagonal matrix, and if so how does one find such a P?
If such a matrix P exists, then A is said to be orthogonally
diagonalizable and P is said to orthogonally diagonalize A.
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Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the
nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for
which PTAP is a diagonal matrix, and if so how does one find such a P?
If such a matrix P exists, then A is said to be orthogonally
diagonalizable and P is said to orthogonally diagonalize A.
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onormal Eigenvectors

Note that if an n x n matrix A is orthogonally diagonalizable then it would
have to be diagonalizable.
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onormal Eigenvectors

Note that if an n x n matrix A is orthogonally diagonalizable then it would
have to be diagonalizable.

Hence, it would have to have n linearly independent eigenvectors
Vi,...,V, and be diagonalized by the matrix

P=(# & ... ©)
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Orthonormal Eigenvectors

Note that if an n x n matrix A is orthogonally diagonalizable then it would
have to be diagonalizable.

Hence, it would have to have n linearly independent eigenvectors

Vi,...,V, and be diagonalized by the matrix
P=(h v ... V)
PE————

Therefore, we see that A would be orthogonally diagonalizable if and only

if P was orthogonal. - -
A=Y D&

(§v ? eads Wy \\0?/5 QJ‘)SII)Q?O/];,‘\ W PT”P/l
A% DP
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Orthonormal Eigenvectors

Note that if an n x n matrix A is orthogonally diagonalizable then it would
have to be diagonalizable.

Hence, it would have to have n linearly independent eigenvectors
Vi,...,V, and be diagonalized by the matrix I (yf‘J(LK)ﬁO,\(,I/
=~ .. -
P=(h W ... V) R
on  othwnouy sef.

Therefore, we see that A would be orthogonally diagonalizable if and only
if P was orthogonal.

An n X n matrix is orthogonally diagonalizable if and only if there exists an
orthonormal set of n eigenvectors of A.

x[\m(r\, ndp el
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Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally
diagonalizable.
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Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally
diagonalizable. Indeed, we immediately see one condition.

If A is orthogonally diagonalizable than A is symmetric (i.e. AT = A).
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Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally
diagonalizable. Indeed, we immediately see one condition.

If A is orthogonally diagonalizable than A is symmetric (i.e. AT = A).

A is orthogonaly diagonalizable if and only if A= PT DP for some
orthogonal matrix P.
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Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally
diagonalizable. Indeed, we immediately see one condition.

If A is orthogonally diagonalizable than A is symmetric (i.e. AT = A).

A is orthogonaly diagonalizable if and only if A= PT DP for some
orthogonal matrix P. Then

AT
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Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally
diagonalizable. Indeed, we immediately see one condition.

If A is orthogonally diagonalizable than A is symmetric (i.e. AT = A).

A is orthogonaly diagonalizable if and only if A= PT DP for some
orthogonal matrix P. Then

AT = (PTDP)T
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Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally
diagonalizable. Indeed, we immediately see one condition.

If A is orthogonally diagonalizable than A is symmetric (i.e. AT = A).

A is orthogonaly diagonalizable if and only if A= PT DP for some
orthogonal matrix P. Then

AT = (PTD@”T(PT)T
N
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Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally
diagonalizable. Indeed, we immediately see one condition.

If A is orthogonally diagonalizable than A is symmetric (i.e. AT = A).

A is orthogonaly diagonalizable if and only if A= PT DP for some
orthogonal matrix P. Then

/\
AT = (PTDP)T = PTDT(PT)T = PTDP
S~ =1

SO ) I A
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Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally
diagonalizable. Indeed, we immediately see one condition.

If A is orthogonally diagonalizable than A is symmetric (i.e. AT = A).

A is orthogonaly diagonalizable if and only if A= PT DP for some
orthogonal matrix P. Then

AT =(PTDP)T =PTDT(PT)T =P"DP = A
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Orthogonal Eigenvectors

If A is a symmetric matrix and v, and v are two eigenvectors of A
corresponding to two different eigenvalues A1 and Xy, then vi and v, are
orthogonal.
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Orthogonal Eigenvectors

If A is a symmetric matrix and v, and v are two eigenvectors of A
corresponding to two different eigenvalues A1 and Xy, then vi and v, are
orthogonal.

Proof.
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Orthogonal Eigenvectors

If A is a symmetric matrix and v, and v are two eigenvectors of A
corresponding to two different eigenvalues A1 and Xy, then vi and v, are
orthogonal.

Proof.

M- %) = (M) ik

@%»@i)
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Orthogonal Eigenvectors

If A is a symmetric matrix and v, and v are two eigenvectors of A
corresponding to two different eigenvalues A1 and Xy, then vi and v, are
orthogonal.

Proof.

MV ) = (M) T = (AR) T

Voo Sloucetor e A with
65% o A
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Orthogonal Eigenvectors

If A is a symmetric matrix and v, and v are two eigenvectors of A
corresponding to two different eigenvalues A1 and Xy, then vi and v, are
orthogonal.

Proof.

M%) =M\n) T =(AR) % = AT
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Orthogonal Eigenvectors

A= A

If A is a symmetric matrix and Vi and V> are two eigenvectors of A
corresponding to two different eigenvalues A1 and Xy, then vi and v, are
orthogonal.
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Orthogonal Eigenvectors

If A is a symmetric matrix and v, and v are two eigenvectors of A
corresponding to two different eigenvalues A1 and Xy, then vi and v, are
orthogonal.

Proof.

M%) =M\n) T =(AR) % = AT

= vl A = 7 (\aik)
(
Vo 1S am €.iggr vedor o A

I YA\
WIS C/% \J‘alrf 4
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Orthogonal Eigenvectors

If A is a symmetric matrix and v, and v are two eigenvectors of A
corresponding to two different eigenvalues A1 and Xy, then vi and v, are
orthogonal.

Proof.

M%) =M\n) T =(AR) % = AT

= VAl = ¥ (Maih) = Ao - )

I
QRN
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Orthogonal Eigenvectors

If A is a symmetric matrix and v, and v are two eigenvectors of A
corresponding to two different eigenvalues A1 and Xy, then vi and v, are

orthogonal.

Proof.

M(Ab) = (M) %= (AR) % = F AT R

= 7 Al = 7 (Maip) = do(4- )

Now, since A\; # )Xo, this can only happen if v4 - o =0
— —_—
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Orthogonal Eigenvectors

If A is a symmetric matrix and v, and v are two eigenvectors of A
corresponding to two different eigenvalues A1 and Xy, then vi and v, are
orthogonal.

Proof.

M%) =M\n) T =(AR) % = AT

= VA = i (Math) = Xa(¥ - 1)

Now, since A\; # Ay, this can only happen if v; - v, = 0, hence they are
orthogonal. [

v
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Symmetric is Orthogonally Diagonalizable

A square matrix A is orthogonally diagonalizable if and only if it is
symmetric.

=) e

Lﬁf‘» alwase  dove..
e Vovea'd  shwa et 0 Mot Her

W\M
(1\4\ eorly (MQQ\OZ/(LM e vetors

ae N
;?u\mc oo e %Wmcf;{/\g v o Souk Gf%/\ & e con
ge Ve 9o g0n | Y el k.
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Symmetric is Orthogonally Diagonalizable

A square matrix A is orthogonally diagonalizable if and only if it is
symmetric.

Hard part of this theorem is to prove that if A is symmetric then it is
diagonalizable.
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Symmetric is Orthogonally Diagonalizable

A square matrix A is orthogonally diagonalizable if and only if it is
symmetric.

Hard part of this theorem is to prove that if A is symmetric then it is
diagonalizable. We won't prove this, but Exercise P4 on pg.480 of the

textbook goes through the proof step by step.7_Q
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Symmetric is Orthogonally Diagonalizable

A square matrix A is orthogonally diagonalizable if and only if it is
symmetric.

Hard part of this theorem is to prove that if A is symmetric then it is
diagonalizable. We won't prove this, but Exercise P4 on pg.480 of the
textbook goes through the proof step by step.

However, once we know that if A is symmetric then it is diagonalizable, we
can perform the Gram-Schmidt process to each eigenspace and find
orthonormal bases for each eigenspace
_ - ~ qu A Au

6 b ek Bam (A-AT) - 2 S g

7 @ Seout ¢ e 1Py
= span | Voo Vg ot A
\:@dﬁmd(s 6< o Vi Ve cheto getloorm

o, youelovs
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Symmetric is Orthogonally Diagonalizable

A square matrix A is orthogonally diagonalizable if and only if it is
symmetric.

Hard part of this theorem is to prove that if A is symmetric then it is
diagonalizable. We won't prove this, but Exercise P4 on pg.480 of the
textbook goes through the proof step by step.

However, once we know that if A is symmetric then it is diagonalizable, we
can perform the Gram-Schmidt process to each eigenspace and find
orthonormal bases for each eigenspace and use the previous theorem to
guarantee that combining these will form a set of n orthonormal
eigenvectors.
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Orthogonally Diagonalizing a Symmetric Matrix

Let A be an n X n symmetric matrix.
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Orthogonally Diagonalizing a Symmetric Matrix

Let A be an n x n symmetric matrix. Then to orthogonally diagonalize it,
we do the following process
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Orthogonally Diagonalizing a Symmetric Matrix

Let A be an n x n symmetric matrix. Then to orthogonally diagonalize it,
we do the following process

@ Find X1, ..., Ak, the eigenvalues of A
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Orthogonally Diagonalizing a Symmetric Matrix

Let A be an n x n symmetric matrix. Then to orthogonally diagonalize it,
we do the following process

@ Find X1, ..., Ak, the eigenvalues of A

@ For each eigenvalue )\;, find a basis for the eigenspace
E)\i = span{\7}71, SRR ‘7"7gi}
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Orthogonally Diagonalizing a Symmetric Matrix

Let A be an n x n symmetric matrix. Then to orthogonally diagonalize it,
we do the following process

@ Find X1, ..., Ak, the eigenvalues of A

@ For each eigenvalue )\;, find a basis for the eigenspace

E)\,' = Span{v},l; ) Vi,g,-}
@ Perform the Gram-Schmidt process on each basis of Ej; to find an
orthonormal basis for E\, = span{dj1,..., U4}

Patrick Meisner (KTH) Lecture 18 9/19



Orthogonally Diagonalizing a Symmetric Matrix

Let A be an n x n symmetric matrix. Then to orthogonally diagonalize it,
we do the following process

@ Find X1, ..., Ak, the eigenvalues of A

@ For each eigenvalue )\;, find a basis for the eigenspace

E)\,' = Span{v},l; ) Vi,g,-}
@ Perform the Gram-Schmidt process on each basis of Ej; to find an
orthonormal basis for E\, = span{dj1,..., U4}

@ The resulting set of n eigenvectors

{L_I'171, ey L717g1, L_I)271, Ceey Jk,gk}
~_ N~ S~
are orthonormal. (;g( CA GQK
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Example

Exercise

Find a matrix P that orthogonally diagonalizes the matrix

4
2
2

2 2
A= 4 2
2 4
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Example

Exercise

Find a matrix P that orthogonally diagonalizes the matrix

4@@
A= @(‘21)4

First: check that it is symmetric and so can be orthogonally diagonalized.

Patrick Meisner (KTH) Lecture 18

10/19



Example

Exercise

Find a matrix P that orthogonally diagonalizes the matrix

A=

NN D

2 2
4 2
2 4

First: check that it is symmetric and so can be orthogonally diagonalized.

Now, find the eigenvectors.
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Example

Exercise

Find a matrix P that orthogonally diagonalizes the matrix

A=

NN D

2 2
4 2
2 4

First: check that it is symmetric and so can be orthogonally diagonalized.

“RAves
Now, find the eigenveetors. A routine computation shows that

C’\M;\i (ﬁ% det(A — th) = (t — 2)%(t — 8)
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Example

Exercise

Find a matrix P that orthogonally diagonalizes the matrix
Yaee A-G SymmC}f\‘— oL
4 2 2 s diogoaliatle ¢
A=12 4 2 Wﬁwllm(fip(,'@ el o
2 2 4 S o K ocibhube wif)

o, < WAL D gl

G%uhm ¥e/‘ EV/L(/) A y.
N

: L . b 4 o . .
First: check that it is symmetric and so can be orthogonally diagonalized.

Now, find the eigenvectors. A routine computation shows that

oMHMQ\L o }1(:(4>
det(A — th) = t—2@t—8 T oo s a
QJ\IIL\'I/IML s P/”dy
and so the eigenvalues are \; = 2 and \» = 8. AR i,
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Example 2

Row reduce
2 2 2 —4 2 2
A-2h=12 2 2 and A-8k=12 -4 2
2 2 2 2 —4

e ool [ 15)
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Example 2

Row reduce
2 2 2 —4 2 2
A-2h=12 2 2 and A-8k=12 -4 2
2 2 2 2 2 —4

to find that E; = span{vi, o} and Eg = span{v3} where

-1 -1 1
=1, m=10],n=|1
0 1 1

A?é_

—

Patrick Meisner (KTH) Lecture 18 11/19



Example 2

Row reduce
2 2 2 —4 2 2
A-2h=12 2 2 and A-8k=12 -4 2
2 2 2 2 2 —4

to find that Ex = span{vi, b} and Eg = span{v3} where

Note: a previous theorem tells us that v3 should be orthogonal to vj and
V5 a quick calculation confirms this. Nt ek odl 0g0nal 2 V.
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get

—

1= Vi

=
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get
w1 = Vi Wy = V3 — Projy Va

we v Hug co Had
i g( 'y Cir s«%ang
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get

L V-
]l

— —

1= Vi

=
N
|
St
|
o
=
pe)
=
N
I
N
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get

-1

- L L L L Vit
Clrw =0 D= V2 — ProjpVa = Vo — ——— V1 = -1
> ([l 2
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get

L L R 1
w1 = Wi W = V2 — Projy Va = Vo — ——— V] = -1
([l 2
. 1
up S W1
[[wa |
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get

~ = - = - AN = \71 \72 N -1
(|7 ow=wv Wo = V2 —projp Vo = v — ——v = -1
[Vl 2
S‘L
\L\m -L
i = il wy = %
EA N
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get

L S L L ViV, -1
w1 =W Wo = V2 —projp Vo = v — ——v = -1
vl 2
_1
,, 1 Y2 _, |-
th —— w1 = | o5 2= o W2
[[wa | 5 o |
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get

. . R -1
1 =W W = V2 — projy Va = Vo — ——— V1 = -1
([l 2

—

i

1 _1 2
——w = | % Uy = W = |~
V2 V6
[[wa | 5 w2~ |
V6

—

\71/“ S iU,(UUB L 26{0"(1) (5
odewnd bad Yo~ &
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get

L L R -1
Wy = Vi Wy = V2 — projpVa = Vo — ———=W; -1
[l 2

_1 _1

L1 V2 L1 Vo

h=i==W=| lh = 7=—Wo = |~z

|| W | ‘§ [z | ye

Performing Gram-Schmidt of Eg = span{v3}, we get
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get

L L L L ViV -1
Wy = vp Wp = Vo — projpva = vp — ——v; = | —1
[l 2
_ 1 _ 1
L1 V2 L1 Vo
L[l e = W]. prmn —_ D g = W2 prmn —_— =
[[wa | v [[Wa|| °
NG

Performing Gram-Schmidt of Eg = span{v3}, we get

— — — 1 —
w3 = v3 U3:mW3
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Example 3

Performing Gram-Schmidt on E, = span{vj, b}, we get

L L L L ViV -1
Wy = vp Wp = Vo — projpva = vp — ——v; = | —1
[l 2

_ 1 1

L1 V2 L1 Vo
n=y=yw1=1| 5 Up = y—=—W2 = | = &
[[wa | v [[Wa|| °

NG

Performing Gram-Schmidt of Eg = span{v3}, we get %CJ,/ G, dy J

1
\\\ L . 1 V3 Yy s
LT MER BT ImI T B ety
V3 fceyrs %[ }Q}
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Example 4

Hence, we see that
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Example 4

Hence, we see that

111
2 6 B
p_| 27 0
0 %
Y U %
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Example 4

Hence, we see that

1 1 1

V2 V6 /3

p_| L _1 T
V2o 6

0 %

diagonalizes A
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Example 4

Hence, we see that

1 1 1

V2 V6 /3

p_| L _1 T
V2o 6

0 %

diagonalizes A and, in fact

PTAP
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Hence, we see that

~3-[SHS
1717_%2%

g

I
Q.

diagonalizes A and, in fact

~SHSHS =
s

1Wﬁ17ﬁ0 5

~
AN AN <

AN < N

< NN

o oS-I
SRR

g

PTAP =

13/19

Lecture 18
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Example 4

Eﬂeru se

Hence, we see that
do

L 1 1 thy Lriple

p_ f _ﬁ f M0 Ore dute o

f j\f ﬁ Si;)\ *hﬂ;kﬂ:/ (ndrel

/o
diagonalizes A and, in fact &0
-1 1 9

T VRGP I B
P"AP = —1% —1% ? 2 4 2
ViV owval 2 2d

I
TR
O@O
Qoo
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Calculating Powers of Diagonalizable Matrices

It is common that we wish to multiply matrices together.
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Calculating Powers of Diagonalizable Matrices

It is common that we wish to multiply matrices together. However, this is
computationally taxing as you have seen by now.
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Calculating Powers of Diagonalizable Matrices

It is common that we wish to multiply matrices together. However, this is
computationally taxing as you have seen by now. However, in the special
case of raising diagonalizable matrices to a power, it becomes somewhat

easy.
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Calculating Powers of Diagonalizable Matrices

It is common that we wish to multiply matrices together. However, this is
computationally taxing as you have seen by now. However, in the special
case of raising diagonalizable matrices to a power, it becomes somewhat

easy.

If A is diagonalizable by P with diagonal matrix D, then A= PDP~! and
e dins
Ak = ppkp~t |

for any k,

¥ g

K= (Rov <o (rpe) (opY- ke

-\ d

-\ ~ —_ ~\ h ~

= ppEeDe Py S CEDODT DL ppt
= 1 T oz

(r‘kem\i»g{ & say @D?/(jk_‘ Q/Q D)ZPA\/L I <9">"f././.’{>
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Powers of Diagonals

This is useful since calculating DX when D is diagonal is easy:
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Powers of Diagonals

This is useful since calculating DX when D is diagonal is easy:

d 0 ... 0\\"“
0 db ... 0
0 0 ... d,
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Powers of Diagonals

This is useful since calculating DX when D is diagonal is easy:

d 0 ... 0\\* /d~ o ... 0

0 &b ... 0 0 df ... 0
0 0 ... dk

n

onl‘;’L %W\ ¥G CQ/ Cz&()r\g‘ {
(A
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Powers of Diagonals

This is useful since calculating DX when D is diagonal is easy:

d 0 ... 0\\* /d~ o ... 0
0 &b ... 0 0 df ... 0
0 0 ... dy 0 0 ... dk

Exercise

Use these ideaes to compute A3 for
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Powers of Diagonals

This is useful since calculating DX when D is diagonal is easy:

d 0 ... 0\\* /d~ o ... 0
0 &b ... 0 0 df ... 0
0 0 ... dy 0 0 ... dk

Exercise

Use these ideaes to compute A3 for
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Example Solution

Using all the techniques we have developed so far, one can show that
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Example Solution

Using all the techniques we have developed so far, one can show that
—2 -1 0\ /1 0 -
A=11 0 1 0

1 1 0 0

(e)

-2 -1 0
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N O
= =
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o =

Thus,

_1\ 13
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Example Solution

Using all the techniques we have developed so far, one can show that

Thus,

Patrick Meisner (KTH)

-2

-1

0\ /1 0 0\ /-2 -1 0
1110 2 0 1 0 1
o/ \o 0 2 1 1 0

~(

D P _1\ 13
0\ /1 0 0\ /-2 -1 0
1110 2 0 1 0 1
0o/ \o 0 2 1%0

% -

> P B
1 0 O -2 -1 0
0 213 0 1 0 1
0 0 213 1 1 0
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Cayley-Hamilton Theorem

Recall that the characteristic polynomial of a square matrix is det(A — tl,).
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Cayley-Hamilton Theorem

Recall that the characteristic polynomial of a square matrix is det(A — tl,).

Theorem (Cayley-Hamilton Theorem)

If we write

det(A—th) =t"+co1t" 1+ +at+c
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Cayley-Hamilton Theorem

Recall that the characteristic polynomial of a square matrix is det(A — tl,).

Theorem (Cayley-Hamilton Theorem)

If we write
det(A—th) =t"+cp1t" '+ tat+g b
then we get that Y incked, I
n n—1 Vo
Y/\JA +cn1A + -+ A+ alh =0
\/ (r /R\
Cef b Ao\ o S (A AN o ke o
ITA o) (A S ey O /Vlﬁt’\\f\(‘)(

(CE A % R
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Cayley-Hamilton Theorem

Recall that the characteristic polynomial of a square matrix is det(A — tl,).

Theorem (Cayley-Hamilton Theorem)

If we write
det(A—th) =t"+co1t" 1+ +at+c
then we get that

A"+ AT o A+ ol =0

We then say the “every square matrix satisfies it's characteristic equation”.

v
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Sketch of Proof for Diagonalizable A

If A= PDP~! is diagonalizable then we get Ak = PD¥P~1,
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Sketch of Proof for Diagonalizable A

If A= PDP~1 is diagonalizable then we get AK = PD¥P~1. We can then
use this to show that

A"t e AT b+ At ol
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Sketch of Proof for Diagonalizable A

If A= PDP~1 is diagonalizable then we get AK = PD¥P~1. We can then
use this to show that

@Gﬂﬁ‘ﬁiw A" 4 e 1At A ool
\1
A
7 =P(D"+cp1D" 4 D+ qoly) P

Further, since D is diagonal, we get that the inner matrix will also be
diagonal.
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Sketch of Proof for Diagonalizable A

If A= PDP~1 is diagonalizable then we get AK = PD¥P~1. We can then
use this to show that

A"t e AT b+ At ol

=P(D"+ cp1D" M4+ D+ coln) P

Further, since D is diagonal, we get that the inner matrix will also be
diagonal. Moreover, the diagonal entries of D will be the eigenvalues of A:
Alyeeoy Ap.
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Sketch of Proof for Diagonalizable A

If A= PDP~1 is diagonalizable then we get AK = PD¥P~1. We can then
use this to show that

A"t e AT b+ At ol

—

= P(D"+ o1 D" 14+ D+ Goly) P

Further, since D is diagonal, we get that the inner matrix will also be
diagonal. Moreover, the diagonal entries of D will be the eigenvalues of A:
A1, ..., An. So, the diagonal entries of the inner matrix will be

AT+ Cn,1A7_1 + -4 ali+ o
2i L)
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Sketch of Proof for Diagonalizable A

If A= PDP~1 is diagonalizable then we get AK = PD¥P~1. We can then
use this to show that

A"t e AT b+ At ol

=P(D"+ ¢y 1D" - 4 D+ coly) P

Further, since D is diagonal, we get that the inner matrix will also be
diagonal. Moreover, the diagonal entries of D will be the eigenvalues of A:
A1, ..., An. So, the diagonal entries of the inner matrix will be

At AT\ o = det(A— \ily)

I e BN Gl e @
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Sketch of Proof for Diagonalizable A

If A= PDP~1 is diagonalizable then we get AK = PD¥P~1. We can then
use this to show that

A"t e AT b+ At ol

¥
=P(D"+ ¢ 1Dt + -+ D+ coly) P

Further, since D is diagonal, we get that the inner matrix will also be
diagonal. Moreover, the diagonal entries of D will be the eigenvalues of A:
A1, ..., An. So, the diagonal entries of the inner matrix will be

ATt AT e o = det(A— \ily) =0

by definition of an eigenvalue.

> o ‘{-‘a N P c(& Jfago\,,l e O de‘ %({ [N .
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1 2
Let A= <3 4).
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Let A= (; i) Then it's characteristic polynomial will be

det(A — tlg)
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Let A= (; i) Then it's characteristic polynomial will be

det(A—th) = det ((1 g t 4Ef))
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Let A= (; i) Then it's characteristic polynomial will be

det(A—tb)zdet((l t 2 ))z(l—t)(4—t)—2><3
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Let A= (; i) Then it's characteristic polynomial will be

det(A—th) = det ((13t 4315)) —(1-t)(4—t)—2x3 =2 5¢t2

Patrick Meisner (KTH) Lecture 18 19/19



Let A= (; i) Then it's characteristic polynomial will be

cmdA—wb):cmt<<13t 4Et)) —(1-t)(4—t)—2x3 =2 —5t-2(

Hence,

M—M—{Q
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Let A= (El5 i) Then it's characteristic polynomial will be

det(A—tlg):det<<13t 4315)) —(1-t)(4—t)-2x3=¢2—5t-2
Hence,
) (1 2\ (1 2 12 10
A _5A_2’2_<3 4) (3 4>_5<3 4>_2<0 1)
A A
Aﬂ,
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Let A= (; i) Then it's characteristic polynomial will be

det(A—th) = det ((13t 4315)) —(1-t)(4—t)—2x3 =2 5¢t2

Hence,

e @O0 () 9
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Let A= (El5 i) Then it's characteristic polynomial will be

det(A—th) = det ((13t 4315)) —(1-t)(4—t)—2x3 =2 5¢t2

Hence,

) (1 2\ (1 2\ (12 (10
A _5A_2’2_<3 4) (3 4) 5<3 4> 2(0 1)

_[7 10] (5 10
~ |15 22] T \15 20
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Let A= (El5 i) Then it's characteristic polynomial will be

det(A—th) = det ((13t 4315)) —(1-t)(4—t)—2x3 =2 5¢t2

Hence,

) (1 2\ (1 2\ (12 (10
A_5A_2’2_<3 4)(3 4) 5<3 4> 2(0 1)
_[7 10] (5 10 (20
~ 15 22 15 20 0 2
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Let A= (El5 2). Then it's characteristic polynomial will be

det(A—th) = det ((13t 4315)) —(1-t)(4—t)—2x3 =2 5¢t2

Hence,
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