SF 1684 Algebra and Geometry Lecture 18

Patrick Meisner
KTH Royal Institute of Technology

Topics for Today

(1) Orthogonal Diagonalization
(2) Powers of Matrices
(3) Cayley-Hamilton Theorem

Orthogonally Similar

Recall we say that two square matrices A and C are similar if and only if there is an invertible matrix, P, such that $\underset{\sim}{C}=P_{\sim}^{-1} A P$.

Orthogonally Similar

Recall we say that two square matrices A and C are similar if and only if there is an invertible matrix, P, such that $C=P^{-1} A P$.

Definition

We say that two square matrices A and C are orthogonally similar if there is an orthogonal matrix, P, such that $C=P^{T} A P$.

Orthogonally Similar

Recall we say that two square matrices A and C are similar if and only if there is an invertible matrix, P, such that $C=P^{-1} A P$.

Definition

We say that two square matrices A and C are orthogonally similar if there is an orthogonal matrix, P, such that $C=P^{T} A P$.

Recall also that if P is orthogonal that $P^{T}=P^{-1}$

Orthogonally Similar

Recall we say that two square matrices A and C are similar if and only if there is an invertible matrix, P, such that $C=P^{-1} A P$.

Definition

We say that two square matrices A and C are orthogonally similar if there is an orthogonal matrix, P, such that $C=P^{T} A P$.

Recall also that if P is orthogonal that $P^{T}=P^{-1}$ and so if two matrices are orthogonally similar then they are also similar.

Orthogonally Similar

Recall we say that two square matrices A and C are similar if and only if there is an invertible matrix, P, such that $C=P^{-1} A P$.

Definition

We say that two square matrices A and C are orthogonally similar if there is an orthogonal matrix, P, such that $C=P^{\top} A P$.

Recall also that if P is orthogonal that $P^{T}=P^{-1}$ and so if two matrices are orthogonally similar then they are also similar.

Theorem

Two square matrices are orthogonally similar if and only if there exists orthonormal bases with respect to which the matrices represent the same linear transformation.

Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the nicest matrices, this leads to an obvious next question.

Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for which $P^{T} A P$ is a diagonal matrix

Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for which $P^{T} A P$ is a diagonal matrix, and if so how does one find such a P ?

Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for which $P^{T} A P$ is a diagonal matrix, and if so how does one find such a P ? If such a matrix P exists, then A is said to be orthogonally diagonalizable and P is said to orthogonally diagonalize A.

Orthogonal Diagonalization Problem

Since orthonormal bases are the nicest bases and diagonal matrices are the nicest matrices, this leads to an obvious next question.

Question (Orthogonal Diagonalization Problem)

Given a square matrix A, does there exist an orthogonal matrix P for which $P^{T} A P$ is a diagonal matrix, and if so how does one find such a P ? If such a matrix P exists, then A is said to be orthogonally diagonalizable and P is said to orthogonally diagonalize A.

Orthonormal Eigenvectors

Note that if an $n \times n$ matrix A is orthogonally diagonalizable then it would have to be diagonalizable.

Orthonormal Eigenvectors

Note that if an $n \times n$ matrix A is orthogonally diagonalizable then it would have to be diagonalizable.

Hence, it would have to have n linearly independent eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ and be diagonalized by the matrix

$$
P=\left(\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}
\end{array}\right)
$$

Orthonormal Eigenvectors

Note that if an $n \times n$ matrix A is orthogonally diagonalizable then it would have to be diagonalizable.

Hence, it would have to have n linearly independent eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ and be diagonalized by the matrix

$$
P=\left(\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}
\end{array}\right)
$$

Therefore, we see that A would be orthogonally diagonalizable if and only if P was orthogonal.

Orthonormal Eigenvectors

Note that if an $n \times n$ matrix A is orthogonally diagonalizable then it would have to be diagonalizable.

Hence, it would have to have n linearly independent eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ and be diagonalized by the matrix

$$
P=\left(\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}
\end{array}\right) \quad \begin{array}{lll}
& & v_{1} \ldots \\
\text { an } & v_{n} & \text { form } \\
\text { orthonomal set. }
\end{array}
$$

Therefore, we see that A would be orthogonally diagonalizable if and only if P was orthogonal.

Theorem

An $n \times n$ matrix is orthogonally diagonalizable if and only if there exists an orthonormal set of n eigenvectors of A.
lin early indeperlant.

Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally diagonalizable.

Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally diagonalizable. Indeed, we immediately see one condition.

Theorem

If A is orthogonally diagonalizable than A is symmetric (i.e. $A^{T}=A$).

Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally diagonalizable. Indeed, we immediately see one condition.

Theorem

If A is orthogonally diagonalizable than A is symmetric (i.e. $A^{T}=A$).

Proof.

A is orthogonaly diagonalizable if and only if $A=P^{T} D P$ for some orthogonal matrix P.

Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally diagonalizable. Indeed, we immediately see one condition.

Theorem

If A is orthogonally diagonalizable than A is symmetric (i.e. $A^{T}=A$).

Proof.

A is orthogonaly diagonalizable if and only if $A=P^{T} D P$ for some orthogonal matrix P. Then
A^{T}

Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally diagonalizable. Indeed, we immediately see one condition.

Theorem

If A is orthogonally diagonalizable than A is symmetric (i.e. $A^{T}=A$).

Proof.

A is orthogonaly diagonalizable if and only if $A=P^{T} D P$ for some orthogonal matrix P. Then

$$
A^{T}=\left(P^{T} D P\right)^{T}
$$

Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally diagonalizable. Indeed, we immediately see one condition.

Theorem

If A is orthogonally diagonalizable than A is symmetric (i.e. $A^{T}=A$).

Proof.

A is orthogonaly diagonalizable if and only if $A=P^{T} D P$ for some orthogonal matrix P. Then

$$
A^{T}=(\underbrace{\left.P^{T} D P\right)^{T}=P^{T} D^{T}\left(P^{T}\right)^{T}}
$$

Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally diagonalizable. Indeed, we immediately see one condition.

Theorem

If A is orthogonally diagonalizable than A is symmetric (i.e. $A^{T}=A$).

Proof.

A is orthogonaly diagonalizable if and only if $A=P^{T} D P$ for some orthogonal matrix P. Then

$$
A^{T}=\left(P^{T} D P\right)^{T}=P^{T} D^{T}\left(P^{T}\right)^{T}=P^{T} \stackrel{D}{D} P
$$

Condition for Orthogonally Diagonalizable

We wish to find an easier property for when A is orthogonally diagonalizable. Indeed, we immediately see one condition.

Theorem

If A is orthogonally diagonalizable than A is symmetric (i.e. $A^{T}=A$).

Proof.

A is orthogonaly diagonalizable if and only if $A=P^{T} D P$ for some orthogonal matrix P. Then

$$
A^{T}=\left(P^{T} D P\right)^{T}=P^{T} D^{T}\left(P^{T}\right)^{T}=P^{T} D P=A
$$

Orthogonal Eigenvectors

Abstract

Theorem If A is a symmetric matrix and \vec{v}_{1} and \vec{v}_{2} are two eigenvectors of A corresponding to two different eigenvalues λ_{1} and λ_{2}, then \vec{v}_{1} and \vec{v}_{2} are orthogonal.

Orthogonal Eigenvectors

Theorem

If A is a symmetric matrix and $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are two eigenvectors of A corresponding to two different eigenvalues λ_{1} and λ_{2}, then \vec{v}_{1} and \vec{v}_{2} are orthogonal.

Proof.

$$
\lambda_{1}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)
$$

Orthogonal Eigenvectors

Theorem

If A is a symmetric matrix and \vec{v}_{1} and \vec{v}_{2} are two eigenvectors of A corresponding to two different eigenvalues λ_{1} and λ_{2}, then \vec{v}_{1} and \vec{v}_{2} are orthogonal.

Proof.

$$
\begin{gathered}
\lambda_{1}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)=\left(\lambda_{1} \vec{v}_{1}\right)^{T} \vec{v}_{2} \\
\uparrow \\
\left(\lambda \vec{v}_{1}\right) \cdot\left(\overrightarrow{v_{l}}\right)
\end{gathered}
$$

Orthogonal Eigenvectors

Theorem

If A is a symmetric matrix and \vec{v}_{1} and \vec{v}_{2} are two eigenvectors of A corresponding to two different eigenvalues λ_{1} and λ_{2}, then \vec{v}_{1} and \vec{v}_{2} are orthogonal.

Proof.

$$
\begin{aligned}
& \lambda_{1}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)=\left(\lambda_{1} \vec{v}_{1}\right)^{T} \vec{v}_{2}=\left(A \vec{v}_{1}\right)^{T} \vec{v}_{2} \\
& \hat{\Gamma} \\
& v_{1} \text { is eigevicetor at } A \text { with } \\
& \text { eigenval } \lambda_{1}
\end{aligned}
$$

Orthogonal Eigenvectors

Theorem

If A is a symmetric matrix and \vec{v}_{1} and \vec{v}_{2} are two eigenvectors of A corresponding to two different eigenvalues λ_{1} and λ_{2}, then \vec{v}_{1} and \vec{v}_{2} are orthogonal.

Proof.

$$
\lambda_{1}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)=\left(\lambda_{1} \vec{v}_{1}\right)^{T} \vec{v}_{2}=\left(A \vec{v}_{1}\right)^{T} \vec{v}_{2}=\vec{v}_{1}^{T} A^{T} \vec{v}_{2}
$$

Orthogonal Eigenvectors

$A^{T}=A$

Theorem

If A is a symmetric matrix and \vec{v}_{1} and \vec{v}_{2} are two eigenvectors of A corresponding to two different eigenvalues λ_{1} and λ_{2}, then \vec{v}_{1} and \vec{v}_{2} are orthogonal.

Proof.

$$
\begin{aligned}
& \lambda_{1}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)=\left(\lambda_{1} \vec{v}_{1}\right)^{T} \vec{v}_{2}=\left(A \vec{v}_{1}\right)^{T} \vec{v}_{2}=\vec{v}_{1}^{T} A^{T} \vec{v}_{2} \\
& \quad=\vec{v}_{1}^{T} A \vec{v}_{2}
\end{aligned}
$$

Orthogonal Eigenvectors

Theorem

If A is a symmetric matrix and \vec{v}_{1} and \vec{v}_{2} are two eigenvectors of A corresponding to two different eigenvalues λ_{1} and λ_{2}, then \vec{v}_{1} and \vec{v}_{2} are orthogonal.

Proof.

$$
\begin{gathered}
\lambda_{1}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)=\left(\lambda_{1} \vec{v}_{1}\right)^{T} \vec{v}_{2}=\left(A \vec{v}_{1}\right)^{T} \vec{v}_{2}=\vec{v}_{1}^{T} A^{T} \vec{v}_{2} \\
=\vec{v}_{1}^{T} A \vec{v}_{2}=\vec{v}_{1}^{T}\left(\lambda_{2} \overrightarrow{v_{2}}\right) \\
v_{2} \text { is an eigervator of } A \\
\text { with cigervath } \lambda_{2}
\end{gathered}
$$

Orthogonal Eigenvectors

Theorem

If A is a symmetric matrix and \vec{v}_{1} and \vec{v}_{2} are two eigenvectors of A corresponding to two different eigenvalues λ_{1} and λ_{2}, then \vec{v}_{1} and \vec{v}_{2} are orthogonal.

Proof.

$$
\begin{gathered}
\lambda_{1}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)=\left(\lambda_{1} \vec{v}_{1}\right)^{T} \vec{v}_{2}=\left(A \vec{v}_{1}\right)^{T} \vec{v}_{2}=\vec{v}_{1}^{T} A^{T} \vec{v}_{2} \\
=\vec{v}_{1}^{T} A \vec{v}_{2}=\vec{v}_{1}^{T}\left(\lambda_{2} \vec{v}_{2}\right)=\lambda_{2}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right) \\
\left(\overrightarrow{v_{1}}\right)=\left(\lambda_{2} \vec{v}_{2}\right)
\end{gathered}
$$

Orthogonal Eigenvectors

Theorem

If A is a symmetric matrix and \vec{v}_{1} and \vec{v}_{2} are two eigenvectors of A corresponding to two different eigenvalues λ_{1} and λ_{2}, then \vec{v}_{1} and \vec{v}_{2} are orthogonal.

Proof.

$$
\begin{gathered}
\lambda_{1}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)=\left(\lambda_{1} \vec{v}_{1}\right)^{T} \vec{v}_{2}=\left(A \vec{v}_{1}\right)^{T} \vec{v}_{2}=\vec{v}_{1}^{\top} A^{\top} \vec{v}_{2} \\
=\vec{v}_{1}^{\top} A \vec{v}_{2}=\vec{v}_{1}^{\top}\left(\lambda_{2} \vec{v}_{2}\right)=\lambda_{2}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)
\end{gathered}
$$

Now, since $\lambda_{1} \neq \lambda_{2}$, this can only happen if $\vec{v}_{1} \cdot \vec{v}_{2}=0$

Orthogonal Eigenvectors

Theorem

If A is a symmetric matrix and \vec{v}_{1} and \vec{v}_{2} are two eigenvectors of A corresponding to two different eigenvalues λ_{1} and λ_{2}, then \vec{v}_{1} and \vec{v}_{2} are orthogonal.

Proof.

$$
\begin{gathered}
\lambda_{1}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)=\left(\lambda_{1} \vec{v}_{1}\right)^{T} \vec{v}_{2}=\left(A \vec{v}_{1}\right)^{T} \vec{v}_{2}=\vec{v}_{1}^{T} A^{T} \vec{v}_{2} \\
=\vec{v}_{1}^{T} A \vec{v}_{2}=\vec{v}_{1}^{T}\left(\lambda_{2} \overrightarrow{v_{2}}\right)=\lambda_{2}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)
\end{gathered}
$$

Now, since $\lambda_{1} \neq \lambda_{2}$, this can only happen if $\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=0$, hence they are orthogonal.

Symmetric is Orthogonally Diagonalizable

Theorem
A square matrix A is orthogonally diagonalizable if and only if it is symmetric.
\Leftrightarrow done.
(F) almost dove...

What wee haven't shown yet is that there are n linearly independent eigenvator.
eigenrectury corresponding to the same eigenvalue con be be orthogonal to each otter.

Symmetric is Orthogonally Diagonalizable

Theorem

A square matrix A is orthogonally diagonalizable if and only if it is symmetric.

Hard part of this theorem is to prove that if A is symmetric then it is diagonalizable.

Symmetric is Orthogonally Diagonalizable

Theorem

A square matrix A is orthogonally diagonalizable if and only if it is symmetric.

Hard part of this theorem is to prove that if A is symmetric then it is diagonalizable. We won't prove this, but Exercise P4 on pg. 480 of the textbook goes through the proof step by step.

Symmetric is Orthogonally Diagonalizable

Theorem

A square matrix A is orthogonally diagonalizable if and only if it is symmetric.

Hard part of this theorem is to prove that if A is symmetric then it is diagonalizable. We won't prove this, but Exercise P4 on pg. 480 of the textbook goes through the proof step by step.

However, once we know that if A is symmetric then it is diagonalizable, we can perform the Gram-Schmidt process to each eigenspace and find orthonormal bases for each eigenspace
λ is eigenvale

$$
E_{\lambda}=\operatorname{uul}\left(A-\lambda I_{n}\right)=\{v: A v=\lambda u\}
$$

$$
\left.=\operatorname{span} \mid V_{1, \ldots}, V_{g}\right\} \quad(g=\operatorname{seoncti}\} \quad \text { ul }
$$

Symmetric is Orthogonally Diagonalizable

Theorem

A square matrix A is orthogonally diagonalizable if and only if it is symmetric.

Hard part of this theorem is to prove that if A is symmetric then it is diagonalizable. We won't prove this, but Exercise P4 on pg. 480 of the textbook goes through the proof step by step.

However, once we know that if A is symmetric then it is diagonalizable, we can perform the Gram-Schmidt process to each eigenspace and find orthonormal bases for each eigenspace and use the previous theorem to guarantee that combining these will form a set of n orthonormal eigenvectors.

Orthogonally Diagonalizing a Symmetric Matrix

Let A be an $n \times n$ symmetric matrix.

Orthogonally Diagonalizing a Symmetric Matrix

Let A be an $n \times n$ symmetric matrix. Then to orthogonally diagonalize it, we do the following process

Orthogonally Diagonalizing a Symmetric Matrix

Let A be an $n \times n$ symmetric matrix. Then to orthogonally diagonalize it, we do the following process
(1) Find $\lambda_{1}, \ldots, \lambda_{k}$, the eigenvalues of A

Orthogonally Diagonalizing a Symmetric Matrix

Let A be an $n \times n$ symmetric matrix. Then to orthogonally diagonalize it, we do the following process
(1) Find $\lambda_{1}, \ldots, \lambda_{k}$, the eigenvalues of A
(2) For each eigenvalue λ_{i}, find a basis for the eigenspace $E_{\lambda_{i}}=\operatorname{span}\left\{\vec{v}_{i, 1}, \ldots, \vec{v}_{i, g_{i}}\right\}$

Orthogonally Diagonalizing a Symmetric Matrix

Let A be an $n \times n$ symmetric matrix. Then to orthogonally diagonalize it, we do the following process
(1) Find $\lambda_{1}, \ldots, \lambda_{k}$, the eigenvalues of A
(2) For each eigenvalue λ_{i}, find a basis for the eigenspace $E_{\lambda_{i}}=\operatorname{span}\left\{\vec{v}_{i, 1}, \ldots, \vec{v}_{i, g_{i}}\right\}$
(3) Perform the Gram-Schmidt process on each basis of $E_{\lambda_{i}}$ to find an orthonormal basis for $E_{\lambda_{i}}=\operatorname{span}\left\{\vec{u}_{i, 1}, \ldots, \vec{u}_{i, g_{i}}\right\}$

Orthogonally Diagonalizing a Symmetric Matrix

Let A be an $n \times n$ symmetric matrix. Then to orthogonally diagonalize it, we do the following process
(1) Find $\lambda_{1}, \ldots, \lambda_{k}$, the eigenvalues of A
(2) For each eigenvalue λ_{i}, find a basis for the eigenspace $E_{\lambda_{i}}=\operatorname{span}\left\{\vec{v}_{i, 1}, \ldots, \vec{v}_{i, g_{i}}\right\}$
(3) Perform the Gram-Schmidt process on each basis of $E_{\lambda_{i}}$ to find an orthonormal basis for $E_{\lambda_{i}}=\operatorname{span}\left\{\vec{u}_{i, 1}, \ldots, \vec{u}_{i, g_{i}}\right\}$
(a) The resulting set of n eigenvectors
are orthonormal.

$$
\underbrace{\left\{\vec{u}_{1,1}, \ldots, \vec{u}_{1, g_{1}}\right.}_{E_{\lambda_{1}}}, \underbrace{\left.\vec{u}_{2,1}, \ldots, \vec{u}_{k, g_{k}}\right\}}_{\mathcal{A}_{1}}
$$

Example

Exercise

Find a matrix P that orthogonally diagonalizes the matrix

$$
A=\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right)
$$

Example

Exercise

Find a matrix P that orthogonally diagonalizes the matrix

$$
A=\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right)
$$

First: check that it is symmetric and so can be orthogonally diagonalized.

Example

Exercise

Find a matrix P that orthogonally diagonalizes the matrix

$$
A=\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right)
$$

First: check that it is symmetric and so can be orthogonally diagonalized.
Now, find the eigenvectors.

Example

Exercise

Find a matrix P that orthogonally diagonalizes the matrix

$$
A=\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right)
$$

First: check that it is symmetric and so can be orthogonally diagonalized. Now, find the eigenvectors. A routine computation shows that

$$
\text { chor ody } \quad \operatorname{det}\left(A-t t_{3}\right)=(t-2)^{2}(t-8)
$$

Example

Exercise

Find a matrix P that orthogonally diagonalizes the matrix

First: check that it is symmetric and so can be orthogonally diagonalized.
Now, find the eigenvectors. A routine computation shows that

Example 2

Row reduce

$$
\begin{array}{ll}
A-2 I_{3}=\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right) \quad \text { and } \quad A-8 I_{3}=\left(\begin{array}{ccc}
-4 & 2 & 2 \\
2 & -4 & 2 \\
2 & 2 & -4
\end{array}\right) \\
=\operatorname{Eull}\left(A-2 F_{j}\right)
\end{array}
$$

Example 2

Row reduce

$$
A-2 /_{3}=\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right) \quad \text { and } \quad A-8 /_{3}=\left(\begin{array}{ccc}
-4 & 2 & 2 \\
2 & -4 & 2 \\
2 & 2 & -4
\end{array}\right)
$$

to find that $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ and $E_{8}=\operatorname{span}\left\{\vec{v}_{3}\right\}$ where

$$
\vec{v}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Example 2

Row reduce

$$
A-2 /_{3}=\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right) \quad \text { and } \quad A-8 /_{3}=\left(\begin{array}{ccc}
-4 & 2 & 2 \\
2 & -4 & 2 \\
2 & 2 & -4
\end{array}\right)
$$

to find that $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ and $E_{8}=\operatorname{span}\left\{\vec{v}_{3}\right\}$ where

$$
\vec{v}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Note: a previous theorem tells us that \vec{v}_{3} should be orthogonal to \vec{v}_{1} and \vec{v}_{2} a quick calculation confirms this.

$$
V_{1} \text { is net orthogonal to } V_{c} \text {. }
$$

Example 3

Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

Example 3

Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

$$
\vec{w}_{1}=\vec{v}_{1}
$$

Example 3
Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

$$
\vec{w}_{1}=\vec{v}_{1} \quad \vec{w}_{2}=\vec{v}_{2}-\operatorname{proj}_{\vec{v}_{1}} \vec{v}_{2}
$$

we de this so that
wi \& wi am orthoyond

Example 3

Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

$$
\vec{w}_{1}=\vec{v}_{1} \quad \vec{w}_{2}=\vec{v}_{2}-\operatorname{proj}_{\vec{v}_{1}} \vec{v}_{2}=\vec{v}_{2}-\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}
$$

Example 3

Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

$$
\left[\begin{array}{c}
-1 \\
1 \\
\vdots
\end{array}\right]=\vec{w}_{1}=\vec{v}_{1} \quad \vec{w}_{2}=\vec{v}_{2}-\operatorname{proj}_{\vec{v}_{1}} \vec{v}_{2}=\vec{v}_{2}-\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right]
$$

Example 3

Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

$$
\begin{aligned}
& \vec{w}_{1}=\vec{v}_{1} \quad \vec{w}_{2}=\vec{v}_{2}-\operatorname{proj}_{\vec{v}_{1}} \vec{v}_{2}=\vec{v}_{2}-\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] \\
& \vec{u}_{1}=\frac{1}{\left\|\vec{w}_{1}\right\|} \vec{w}_{1}
\end{aligned}
$$

Example 3

Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

$$
\begin{aligned}
& \left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\vec{w}_{1}=\vec{v}_{1} \quad \vec{w}_{2}=\vec{v}_{2}-\operatorname{proj}_{\vec{v}_{1}} \vec{v}_{2}=\vec{v}_{2}-\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] \\
& \left\|w_{1}\right\|=\sqrt{2} \\
& \vec{u}_{1}=\frac{1}{\left\|\vec{w}_{1}\right\|} \vec{w}_{1}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]
\end{aligned}
$$

Example 3

Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

$$
\begin{aligned}
& \vec{w}_{1}=\vec{v}_{1} \quad \vec{w}_{2}=\vec{v}_{2}-\operatorname{proj}_{\vec{v}_{1}} \vec{v}_{2}=\vec{v}_{2}-\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] \\
& \vec{u}_{1}=\frac{1}{\left\|\vec{w}_{1}\right\|} \vec{w}_{1}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \quad \vec{u}_{2}=\frac{1}{\left\|\vec{w}_{2}\right\|} \vec{w}_{2}
\end{aligned}
$$

Example 3

Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

$$
\begin{aligned}
& {\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]=\vec{w}_{1}=\vec{v}_{1} \quad \overrightarrow{w_{2}}=\vec{v}_{2}-\operatorname{proj}_{\vec{v}_{1}} \vec{v}_{2}=\vec{v}_{2}-\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right]} \\
& \vec{u}_{1}=\frac{1}{\left\|\vec{w}_{1}\right\|} \vec{w}_{1}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \quad \vec{u}_{2}=\frac{1}{\left\|\vec{w}_{2}\right\|} \vec{w}_{2}=\left[\begin{array}{c}
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right] \quad\left\|w_{2}\right\|=\sqrt{6} \\
& E_{2}=\operatorname{spa}\left\{u_{1}, u_{u}\right\} \&\left\{u_{1}, u_{2}\right\} \text { is } \mathrm{cm}_{n} \\
& \text { ortlonad basi for } E_{2} \text {. }
\end{aligned}
$$

Example 3

Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

$$
\begin{gathered}
\vec{w}_{1}=\vec{v}_{1} \quad \vec{w}_{2}=\vec{v}_{2}-\operatorname{proj}_{\vec{v}_{1}} \vec{v}_{2}=\vec{v}_{2}-\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] \\
\vec{u}_{1}=\frac{1}{\left\|\vec{w}_{1}\right\|} \vec{w}_{1}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \quad \vec{u}_{2}=\frac{1}{\left\|\vec{w}_{2}\right\|} \vec{w}_{2}=\left[\begin{array}{c}
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right]
\end{gathered}
$$

Performing Gram-Schmidt of $E_{8}=\operatorname{span}\left\{\vec{v}_{3}\right\}$, we get

$$
\vec{w}_{3}=\vec{v}_{3}
$$

Example 3

Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

$$
\begin{gathered}
\vec{w}_{1}=\vec{v}_{1} \quad \vec{w}_{2}=\vec{v}_{2}-\operatorname{proj}_{\vec{v}_{1}} \vec{v}_{2}=\vec{v}_{2}-\frac{\overrightarrow{v_{1}} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] \\
\vec{u}_{1}=\frac{1}{\left\|\vec{w}_{1}\right\|} \vec{w}_{1}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \quad \vec{u}_{2}=\frac{1}{\left\|\vec{w}_{2}\right\|} \overrightarrow{w_{2}}=\left[\begin{array}{c}
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right]
\end{gathered}
$$

Performing Gram-Schmidt of $E_{8}=\operatorname{span}\left\{\vec{v}_{3}\right\}$, we get

$$
\vec{w}_{3}=\vec{v}_{3} \quad \vec{u}_{3}=\frac{1}{\left\|\vec{w}_{3}\right\|} \vec{w}_{3}
$$

Example 3

Performing Gram-Schmidt on $E_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, we get

$$
\begin{gathered}
\vec{w}_{1}=\vec{v}_{1} \quad \vec{w}_{2}=\vec{v}_{2}-\operatorname{proj}_{\vec{v}_{1}} \vec{v}_{2}=\vec{v}_{2}-\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] \\
\vec{u}_{1}=\frac{1}{\left\|\vec{w}_{1}\right\|} \vec{w}_{1}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \quad \vec{u}_{2}=\frac{1}{\left\|\vec{w}_{2}\right\|} \vec{w}_{2}=\left[\begin{array}{c}
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right]
\end{gathered}
$$

Performing Gram-Schmidt of $E_{8}=\operatorname{span}\left\{\vec{v}_{3}\right\}$, we get
$\left\{u_{1}, u_{2}, u_{z}\right)$

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \vec{w}_{3}=\vec{v}_{3} \quad \vec{u}_{3}=\frac{1}{\left\|\vec{w}_{3}\right\|} \vec{w}_{3}=\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right] \quad \begin{gathered}
\text { form/ an } \\
\text { orth normal } \\
\text { basis for } \mathbb{R}^{3}
\end{gathered}
$$

Example 4

Hence, we see that

P

Example 4

Hence, we see that

$$
P=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

Example 4

Hence, we see that

$$
P=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

diagonalizes A

Example 4

Hence, we see that

$$
P=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

diagonalizes A and, in fact

$$
P^{T} A P
$$

Example 4

Hence, we see that

$$
P=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

diagonalizes A and, in fact

$$
P^{T} A P=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right)\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

Example 4

Hence, we see that

> Exercise:

$$
\begin{aligned}
& P=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right] \begin{array}{c}
\text { do this triple } \\
\text { math's pro dust to } \\
\text { see that yon indeed } \\
\text { get the diagonal. }
\end{array} \\
& \text { fact }
\end{aligned}
$$

diagonalizes A and, in fact

$$
\begin{gathered}
P^{T} A P=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right)\left[\begin{array}{c}
\left(\frac{1}{\sqrt{2}}\right. \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right] \\
=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & (2) & 0 \\
0 & 0 & 8
\end{array}\right)
\end{gathered}
$$

Calculating Powers of Diagonalizable Matrices

It is common that we wish to multiply matrices together.

Calculating Powers of Diagonalizable Matrices

It is common that we wish to multiply matrices together. However, this is computationally taxing as you have seen by now.

Calculating Powers of Diagonalizable Matrices

It is common that we wish to multiply matrices together. However, this is computationally taxing as you have seen by now. However, in the special case of raising diagonalizable matrices to a power, it becomes somewhat easy.

Calculating Powers of Diagonalizable Matrices
It is common that we wish to multiply matrices together. However, this is computationally taxing as you have seen by now. However, in the special case of raising diagonalizable matrices to a power, it becomes somewhat easy.

Theorem
If A is diagonalizable by P with diagonal matrix D, then $A=P D P^{-1}$ and for any k,

$$
A^{k}=P D^{k} P^{-1}
$$

$$
\downarrow
$$

$$
\begin{aligned}
& A^{k}=\left(P D P^{-1}\right)^{k}=\left(P D P^{-1}\right)\left(P D P^{-1}\right)\left(P D P^{-1}\right) \ldots\left(P O D^{-1}\right) \\
& =P D P^{-1} P D \underbrace{P^{-1}}_{I} P \underbrace{-1}_{I}-\cdots \underset{I}{P} D P^{-1}-P D D D^{\perp} D \underline{P}^{-1}=P D^{k} P^{-1}
\end{aligned}
$$

Powers of Diagonals

This is useful since calculating D^{k} when D is diagonal is easy:

Powers of Diagonals

This is useful since calculating D^{k} when D is diagonal is easy:

$$
\left(\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\right)^{k}
$$

Powers of Diagonals

This is useful since calculating D^{k} when D is diagonal is easy:

$$
\left(\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\right)^{k}=\left(\begin{array}{cccc}
d_{1}^{k} & 0 & \ldots & 0 \\
0 & d_{2}^{k} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}^{k}
\end{array}\right)
$$

only tin for diagonal!!!

Powers of Diagonals

This is useful since calculating D^{k} when D is diagonal is easy:

$$
\left(\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\right)^{k}=\left(\begin{array}{cccc}
d_{1}^{k} & 0 & \ldots & 0 \\
0 & d_{2}^{k} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}^{k}
\end{array}\right)
$$

Exercise

Use these ideaes to compute A^{13} for

$$
A=\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)
$$

Powers of Diagonals

This is useful since calculating D^{k} when D is diagonal is easy:

$$
\left(\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)\right)^{k}=\left(\begin{array}{cccc}
d_{1}^{k} & 0 & \ldots & 0 \\
0 & d_{2}^{k} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}^{k}
\end{array}\right)
$$

Exercise

Use these ideaes to compute A^{13} for

$$
A=\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)
$$

Example Solution

Using all the techniques we have developed so far, one can show that

$$
A=\left(\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & (2) & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)^{-1}\right.
$$

Example Solution

Using all the techniques we have developed so far, one can show that

$$
A=\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)^{-1}
$$

Thus,

$$
A^{13}=\left(\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)^{-1}\right)^{13}
$$

Example Solution

Using all the techniques we have developed so far, one can show that

$$
A=\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)^{-1}
$$

Thus,

$$
A^{13}=\left(\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)^{-1}\right)^{13}
$$

$$
=\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2^{13} & 0 \\
0 & 0 & 2^{13}
\end{array}\right)\left(\begin{array}{ccc}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)^{-1}
$$

Cayley-Hamilton Theorem

Recall that the characteristic polynomial of a square matrix is $\operatorname{det}\left(A-t I_{n}\right)$. $\hat{\jmath}$
t is
a variable

Cayley-Hamilton Theorem

Recall that the characteristic polynomial of a square matrix is $\operatorname{det}\left(A-t I_{n}\right)$.
Theorem (Cayley-Hamilton Theorem)
If we write

$$
\operatorname{det}\left(A-t t_{n}\right)=t^{n}+c_{n-1} t^{n-1}+\cdots+c_{1} t+c_{0}
$$

Cayley-Hamilton Theorem

Recall that the characteristic polynomial of a square matrix is $\operatorname{det}\left(A-t I_{n}\right)$.

Theorem (Cayley-Hamilton Theorem)

If we write

$$
\left.\operatorname{det}\left(A-t I_{n}\right)=t^{n}+c_{n-1} t^{n-1}+\cdots+c_{1} t+c_{0}\right) \text { no } t
$$

then we get that

Cayley-Hamilton Theorem

Recall that the characteristic polynomial of a square matrix is $\operatorname{det}\left(A-t I_{n}\right)$.

Theorem (Cayley-Hamilton Theorem)

If we write

$$
\operatorname{det}\left(A-t l_{n}\right)=t^{n}+c_{n-1} t^{n-1}+\cdots+c_{1} t+c_{0}
$$

then we get that

$$
A^{n}+c_{n-1} A^{n-1}+\cdots+c_{1} A+c_{0} I_{n}=0
$$

We then say the "every square matrix satisfies it's characteristic equation".

Sketch of Proof for Diagonalizable A

If $A=P D P^{-1}$ is diagonalizable then we get $A^{k}=P D^{k} P^{-1}$.

Sketch of Proof for Diagonalizable A

If $A=P D P^{-1}$ is diagonalizable then we get $A^{k}=P D^{k} P^{-1}$. We can then use this to show that

$$
A^{n}+c_{n-1} A^{n-1}+\cdots+c_{1} A+c_{0} I_{n}
$$

Sketch of Proof for Diagonalizable A

If $A=P D P^{-1}$ is diagonalizable then we get $A^{k}=P D^{k} P^{-1}$. We can then use this to show that

Further, since D is diagonal, we get that the inner matrix will also be diagonal.

Sketch of Proof for Diagonalizable A

If $A=P D P^{-1}$ is diagonalizable then we get $A^{k}=P D^{k} P^{-1}$. We can then use this to show that

$$
\begin{gathered}
A^{n}+c_{n-1} A^{n-1}+\cdots+c_{1} A+c_{0} I_{n} \\
=P\left(D^{n}+c_{n-1} D^{n-1}+\cdots+c_{1} D+c_{0} I_{n}\right) P^{-1}
\end{gathered}
$$

Further, since D is diagonal, we get that the inner matrix will also be diagonal. Moreover, the diagonal entries of D will be the eigenvalues of A : $\lambda_{1}, \ldots, \lambda_{n}$.

Sketch of Proof for Diagonalizable A

If $A=P D P^{-1}$ is diagonalizable then we get $A^{k}=P D^{k} P^{-1}$. We can then use this to show that

$$
\begin{gathered}
A^{n}+c_{n-1} A^{n-1}+\cdots+c_{1} A+c_{0} I_{n} \\
=P\left(\widetilde{D^{n}}+c_{n-1} \overline{D^{n-1}}+\cdots+\widetilde{c_{1} D}+\widetilde{c_{0} I_{n}}\right) P^{-1}
\end{gathered}
$$

Further, since D is diagonal, we get that the inner matrix will also be diagonal. Moreover, the diagonal entries of D will be the eigenvalues of A : $\lambda_{1}, \ldots, \lambda_{n}$. So, the diagonal entries of the inner matrix will be

$$
\underline{\lambda_{i}^{n}}+\underline{c}_{n-1} \lambda_{i}^{n-1}+\cdots+c_{1} \lambda_{i}+c_{0}
$$

Sketch of Proof for Diagonalizable A

If $A=P D P^{-1}$ is diagonalizable then we get $A^{k}=P D^{k} P^{-1}$. We can then use this to show that

$$
\begin{gathered}
A^{n}+c_{n-1} A^{n-1}+\cdots+c_{1} A+c_{0} I_{n} \\
=P\left(D^{n}+c_{n-1} D^{n-1}+\cdots+c_{1} D+c_{0} I_{n}\right) P^{-1}
\end{gathered}
$$

Further, since D is diagonal, we get that the inner matrix will also be diagonal. Moreover, the diagonal entries of D will be the eigenvalues of A : $\lambda_{1}, \ldots, \lambda_{n}$. So, the diagonal entries of the inner matrix will be

$$
\begin{aligned}
& \lambda_{i}^{n}+c_{n-1} \lambda_{i}^{n-1}+\cdots+c_{1} \lambda_{i}+c_{0}=\operatorname{det}\left(A-\lambda_{i} I_{n}\right) \\
& \operatorname{det}\left(A-t f_{1}\right)=t^{n}+G_{1-1} \epsilon^{n-1} L-+C_{0}
\end{aligned}
$$

Sketch of Proof for Diagonalizable A

If $A=P D P^{-1}$ is diagonalizable then we get $A^{k}=P D^{k} P^{-1}$. We can then use this to show that

$$
\begin{gathered}
A^{n}+c_{n-1} A^{n-1}+\cdots+c_{1} A+c_{0} I_{n} \\
=P\left(\underline{\left.D^{n}+c_{n-1} D^{n-1}+\cdots+c_{1} D+c_{0} I_{n}\right)} P^{-1}\right.
\end{gathered}
$$

Further, since D is diagonal, we get that the inner matrix will also be diagonal. Moreover, the diagonal entries of D will be the eigenvalues of A : $\lambda_{1}, \ldots, \lambda_{n}$. So, the diagonal entries of the inner matrix will be

$$
\lambda_{i}^{n}+c_{n-1} \lambda_{i}^{n-1}+\cdots+c_{1} \lambda_{i}+c_{0}=\operatorname{det}\left(A-\lambda_{i} I_{n}\right)=0
$$

by definition of an eigenvalue.

Example

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.

Example

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Then it's characteristic polynomial will be $\operatorname{det}\left(A-t l_{2}\right)$

Example

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Then it's characteristic polynomial will be

$$
\operatorname{det}\left(A-t t_{2}\right)=\operatorname{det}\left(\left(\begin{array}{cc}
1-t & 2 \\
3 & 4-t
\end{array}\right)\right)
$$

Example

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Then it's characteristic polynomial will be

$$
\operatorname{det}\left(A-t I_{2}\right)=\operatorname{det}\left(\left(\begin{array}{c}
1-t) \\
3
\end{array}\right.\right.
$$

Example

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Then it's characteristic polynomial will be

$$
\operatorname{det}\left(A-t t_{2}\right)=\operatorname{det}\left(\left(\begin{array}{cc}
1-t & 2 \\
3 & 4-t
\end{array}\right)\right)=(1-t)(4-t)-2 \times 3=t^{2}-5 t-2
$$

Example

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Then it's characteristic polynomial will be

$$
\operatorname{det}\left(A-t l_{2}\right)=\operatorname{det}\left(\left(\begin{array}{cc}
1-t & 2 \\
3 & 4-t
\end{array}\right)\right)=(1-t)(4-t)-2 \times 3=t^{2}-5 t-20
$$

Hence,

$$
A^{2}-5 A-2 \sqrt{2}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Then it's characteristic polynomial will be

$$
\operatorname{det}\left(A-t 1_{2}\right)=\operatorname{det}\left(\left(\begin{array}{cc}
1-t & 2 \\
3 & 4-t
\end{array}\right)\right)=(1-t)(4-t)-2 \times 3=t^{2}-5 t-2
$$

Hence,

$$
\begin{gathered}
A^{2}-5 A-2 I_{2}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-5\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
A
\end{gathered}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Then it's characteristic polynomial will be

$$
\operatorname{det}\left(A-t 1_{2}\right)=\operatorname{det}\left(\left(\begin{array}{cc}
1-t & 2 \\
3 & 4-t
\end{array}\right)\right)=(1-t)(4-t)-2 \times 3=t^{2}-5 t-2
$$

Hence,

$$
\begin{aligned}
A^{2}- & 5 A-2 I_{2}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{1}{3}\binom{2}{4}-5\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left[\begin{array}{ll}
7 & 10 \\
15 & 22
\end{array}\right.
\end{aligned}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Then it's characteristic polynomial will be

$$
\operatorname{det}\left(A-t 1_{2}\right)=\operatorname{det}\left(\left(\begin{array}{cc}
1-t & 2 \\
3 & 4-t
\end{array}\right)\right)=(1-t)(4-t)-2 \times 3=t^{2}-5 t-2
$$

Hence,

$$
\begin{gathered}
A^{2}-5 A-2 I_{2}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-5\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
=\left[\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right]-\left(\begin{array}{cc}
5 & 10 \\
15 & 20
\end{array}\right)
\end{gathered}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Then it's characteristic polynomial will be

$$
\operatorname{det}\left(A-t 1_{2}\right)=\operatorname{det}\left(\left(\begin{array}{cc}
1-t & 2 \\
3 & 4-t
\end{array}\right)\right)=(1-t)(4-t)-2 \times 3=t^{2}-5 t-2
$$

Hence,

$$
\begin{gathered}
A^{2}-5 A-2 I_{2}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-5\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
=\left[\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right]-\left(\begin{array}{cc}
5 & 10 \\
15 & 20
\end{array}\right)-\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
\end{gathered}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Then it's characteristic polynomial will be

$$
\operatorname{det}\left(A-t t_{2}\right)=\operatorname{det}\left(\left(\begin{array}{cc}
1-t & 2 \\
3 & 4-t
\end{array}\right)\right)=(1-t)(4-t)-2 \times 3=t^{2}-5 t-2
$$

Hence,

$$
\left.\begin{array}{c}
A^{2}-5 A-2 I_{2}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-5\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
=\left(\begin{array}{ll}
7 & 10 \\
15 & 22
\end{array}\right)-\binom{5}{15}-\binom{20}{20}=\binom{2}{0}=0 \\
0
\end{array}\right)
$$

