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Topics for Today

@ Similar Matrices
@ Diagonalization
© Eigenvalues and Diagonalizability
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Similar Matrices

We have seen that if T : R” — R" is a linear transformation and B and B’

are two different bases for R”, then we get two different matrices that
define T in each of the bases
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We have seen that if T : R” — R" is a linear transformation and B and B’

are two different bases for R”, then we get two different matrices that
define T in each of the bases, namely:

[T]s and [T]s

Further, we know that we can relate these two matrices through the
change of basis matrix.
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We have seen that if T : R” — R" is a linear transformation and B and B’

are two different bases for R”, then we get two different matrices that
define T in each of the bases, namely:
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Further, we know that we can relate these two matrices through the
change of basis matrix. That is,
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Similar Matrices

We have seen that if T : R” — R" is a linear transformation and B and B’

are two different bases for R”, then we get two different matrices that
define T in each of the bases, namely:

[T]s and [T]s

Further, we know that we can relate these two matrices through the
change of basis matrix. That is,

[T]B’ - PB—)B’[T]BPELB/
LT & s 0 CDp

Definition

If A and C are square matrices of the same size, then we say that C is
similar to A if there is an invertible matrix P such that C = P~LAP.
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First Properties of Similar Matrices

© Two square matrices are similar if and only if there exists bases with
respect to which the matrices represent the same linear transformation

@ Similar matrices have the same determinant
© Similar matrices have the same trace

@ Similar matrices have the same nullity

© Similar matrices have the same rank )
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Diagonalization

We saw in the previous slides that the matrices

3 2 10
A—<2 3> and C_<O 5)

are similar
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Diagonalization

We saw in the previous slides that the matrices

3 2 10
A—<2 3> and C_<O 5)

are similar using the invertible matrix

(43

sl
Sl
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Diagonalization

We saw in the previous slides that the matrices

3 2 10
A—<2 3> and C_<O 5)

are similar using the invertible matrix

(.

Sl
Sl

) that is, we showed C = pApP—1
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Diagonalization

We saw in the previous slides that the matrices

3 2 10
A—<2 3> and C_<0 5)

are similar using the invertible matrix

1 1

P = ( V2 @) that is, we showed C = PAP~!
V2 V2

We were then able to use the fact that C was diagonal to easily interpret

the linear transformations geometrically.
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Diagonalization

We saw in the previous slides that the matrices

3 2 10
A—<2 3> and C_<0 5)

are similar using the invertible matrix

1 1
P = ( V2 @) that is, we showed C = PAP~!
V2 V2

We were then able to use the fact that C was diagonal to easily interpret
the linear transformations geometrically.

Question (The Diagonalization Problem)

Given a square matrix A, does there exist an invertible matrix_P for which
P~LAP is a diagonal matrix, and if so, how does one find such a P?
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Diagonalization

We saw in the previous slides that the matrices

3 2 10
A—<2 3> and C_<0 5)

are similar using the invertible matrix

1 1

P = < V2 @) that is, we showed C = PAP~!
V2 V2

We were then able to use the fact that C was diagonal to easily interpret

the linear transformations geometrically.

Question (The Diagonalization Problem)

Given a square matrix A, does there exist an invertible matrix P for which
P~LAP is a diagonal matrix, and if so, how does one find such a P? If
such a P exists, then A is said to be diagonalizable and P is said to
diagonalize A.
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Eigenvalues and Diagonalization

Recall, that we say that A is an eigenvalue of a square matric A, if there
exists a vector v such that AV = \v.
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Eigenvalues and Diagonalization

Recall, that we say that A is an eigenvalue of a square matric A, if there
exists a vector v such that AV = \v.

Theorem
If A is similar to the diagonal matrix

d 0 ... 0
0 d ... 0
0 0 ... d,
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Eigenvalues and Diagonalization

Recall, that we say that A is an eigenvalue of a square matric A, if there
exists a vector v such that AV = \v.

Theorem

If A is similar to the diagonal matrix
d 0 ... 0
0 d ... 0
0 0 ... d

then di, d>, ..., d, are eigenvalues of A.
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Eigenvalues and Diagonalization

Recall, that we say that A is an eigenvalue of a square matric A, if there
exists a vector v such that AV = \v.

Theorem

If A is similar to the diagonal matrix
d 0 ... 0
0 d ... 0
0 0 ... d

then di, d>, ..., d, are eigenvalues of A.

Note that saying A is similar to a diagonal matrix is equivalent to saying
that A is diagonalizable.
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Eigenvectors and Diagonalization

Recall that we say vV is an eigenvector of A if satisfies AV = AV for some
eigenvalue \.
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Eigenvectors and Diagonalization

Recall that we say V is an eigenvector of A if satisfies AV = AV for some
eigenvalue \.

Theorem

If a matrix A is diagonalizable and P is the invertible matrix that
diagonalizes it, then the columns of P are eigenvectors of A.
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Eigenvectors and Diagonalization

Recall that we say V is an eigenvector of A if satisfies AV = AV for some
eigenvalue \.

Theorem

If a matrix A is diagonalizable and P is the invertible matrix that
diagonalizes it, then the columns of P are eigenvectors of A. Moreover, if

d 0 ... 0

0 d ... 0
A=p| . A TP

0 0 ... d,

then the it" column of P is an eigenvector of the eigenvalue dj.
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Condition for Diagonalizable

An n x n matrix A is diagonalizable if and only if it has n linearly
independent eigenvectors.
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How to Diagonalize

Corollary

If A has eigenvalues A1, A2, ..., An, and linearly independent eigenvectors
Vi,..

., Vn (where \; is the eigenvalue of V;),
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How to Diagonalize

Corollary

If A has eigenvalues A1, Mg, . .

., A\n, and linearly independent eigenvectors
Vi, ..

., Vn (where \; is the eigenvalue of V;), then if we set

P=(#a & ... V)
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How to Diagonalize

Corollary

If A has eigenvalues A1, A2, ..., An, and linearly independent eigenvectors

Vi,...,Vn (where \; is the eigenvalue of v;), then if we set
P= (\71 Vo ... \7,,)
we get
A 0 ... O
) 0 X ... 0
PAP=D=1| . . .
0 O An
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How to Diagonalize

Corollary
If A has eigenvalues A1, Ao, .

..y An, and linearly independent eigenvectors
Vi,...,Vn (where \; is the eigenvalue of v;), then if we set
P = (\71 Vo ... \7,,)
we get

A 0 ... 0
) 0 X ... 0
PAP=D=1| . . .
0 O An

Hence, A= PDP~1.
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How to Diagonalize

Corollary

If A has eigenvalues A1, A2, ..., An, and linearly independent eigenvectors

Vi,...,Vn (where \; is the eigenvalue of v;), then if we set
P = (\71 Vo ... \7,,)
we get

A 0 ... O
) 0 X ... O
PAP=D=1| . . .
0 0 ... X\,

Hence, A= PDP1.

We may then describe the linear transformation T, geometrically by
saying that it "stretches R” in the direction of V; by a factor of A\;".
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Recall that an X is an eigenvalue if and only if det(A — Al,) = 0.
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Recall that an X is an eigenvalue if and only if det(A — Al,) = 0. Further,

V is an eigenvector of the eigenvalue X if only if V is in the null space of
A— A,
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Recall that an X is an eigenvalue if and only if det(A — Al,) = 0. Further

V is an eigenvector of the eigenvalue X if only if V is in the null space of
A— A,

Use these ideas to diagonalize A = (3 2)

2 3)°

e (/3 '—(/'ﬁ
(Ay’— <4\(2 l/ﬁ,\( 7 s \/m R
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Recall that an X is an eigenvalue if and only if det(A — Al,) = 0. Further,

V is an eigenvector of the eigenvalue X if only if V is in the null space of
A— A,

2 3

Use these ideas to diagonalize A = (3 2).

To find \:
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Recall that an X is an eigenvalue if and only if det(A — Al,) = 0. Further,

V is an eigenvector of the eigenvalue X if only if V is in the null space of
A— A,

Use these ideas to diagonalize A = (3 2).

2 3

To find \:

det(A — Abk)
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Recall that an X is an eigenvalue if and only if det(A — Al,) = 0. Further,

V is an eigenvector of the eigenvalue X if only if V is in the null space of
A— A,

Use these ideas to diagonalize A = (3 2).

2 3

To find \:

seta— ) ot (2 2) -2 (2 9))
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Recall that an X is an eigenvalue if and only if det(A — Al,) = 0. Further,

V is an eigenvector of the eigenvalue X if only if V is in the null space of
A— A,

2 3

Use these ideas to diagonalize A = (3 2).

To find \:

det(A—Alz)Zdet<<g ;)—AG) 2)) :det<<3;/\ 33)\>>
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Recall that an X is an eigenvalue if and only if det(A — Al,) = 0. Further,

V is an eigenvector of the eigenvalue X if only if V is in the null space of
A— A,

Use these ideas to diagonalize A = (3 2).

2 3
To find X: ~
winsy=a((33) 23 9)) =o((5257)

=(3-))?*-4
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Recall that an X is an eigenvalue if and only if det(A — Al,) = 0. Further,

V is an eigenvector of the eigenvalue X if only if V is in the null space of
A— A,

2 3

Use these ideas to diagonalize A = (3 2).

To find \:

det(A—Alz)Zdet<<g ;)—AG) 2)) :det<<3;/\ 33)\>>

=(B-))?-4=X-6)1+5
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Recall that an X is an eigenvalue if and only if det(A — Al,) = 0. Further,

V is an eigenvector of the eigenvalue X if only if V is in the null space of
A— A,

2 3

Use these ideas to diagonalize A = (3 2).

To find \:

det(A—Alz)Zdet<<g ;)—AG) 2)) :det<<3;/\ 33)\>>

=(3-XN)?—4=X-6)A+5=(1-5)(\-1)=0
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Recall that an X is an eigenvalue if and only if det(A — Al,) = 0. Further,

V is an eigenvector of the eigenvalue X if only if V is in the null space of
A— A,

2 3

Use these ideas to diagonalize A = (3 2).

To find \:

det(A—Alz)Zdet<<g g)_)‘<(l) 2)) :det<<3£/\ 33)\>>

=B3-)2)2-4=X-6A+5=(1-5(\-1)=0
So the eigenvalues of Aare Ay =1 and A\, =5
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Example 2

To find eigenvectors, we need to find null(A —]l,) and null(A — 5/,)
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)

A—1,
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)

=299
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)

-GG 9-G2)
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)

(3 D-6 -GG o
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)

(3 D-6 -GG o
= a1 =soen ([ ]}
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)

(3 D-6 -GG o
= a1 =soen ([ ]}
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)

An=(35) (1) =G 2 (o)
— a1 =seon {[ 4]}
a-sn=(33)-5(3 9)

Patrick Meisner (KTH) Lecture 17 13 /27



Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)

(3 D-6 -GG o
= mita- = ([ 1]}
A-5/n=<§ §>—5<<1) 2) :<_22 —22>
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)

(3 D-6 -GG o
— watr- -1}
A-5/n=<§ §>‘5<<1) 2) :<_22 —22> %((1) _01>

Patrick Meisner (KTH) Lecture 17 13 /27



Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)
3 2 10 2 2 11
A== <2 3)‘(0 1> _<2 2> _><0 0)
1
= null(A — k) = span { [_1] }
3 2 10 -2 2 1 -1
Ao = <2 3>_5<0 1) _<2 —2) - (o o>

— null(A — 5k) = span { m }
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)
3 2 10 2 2 11
A== <2 3)‘(0 1> _<2 2> _><0 0)
1
= null(A — k) = span { [_1] }
3 2 10 -2 2 1 -1
Ao = <2 3>_5<0 1) _<2 —2) - (o o>

— null(A — 5k) = span { m }

Hence, we may conclude that

3)
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)
3 2 10 2 2 11
A== <2 3)‘(0 1> _<2 2> _><0 0)
1
= null(A — k) = span { [_1] }
Vi
3 2 10 -2 2 1 -1
Ao = <2 3>_5<0 1) _<2 —2) - (o o>

— null(A — 5k) = span { m }

Hence, we may conclude that Ve

G3-00
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)
3 2 10 2 2 11

A== <2 3)‘(0 1> _<2 2> _><0 0)
1

= null(A —1h) :span{ 1 }
Vi

3 2 10 -2 2 1 -1
Ao = <2 3>_5<0 1) _<2 —2) - (o o>

= null(A —5k) = span { m }

Ve

Hence, we may conclude that

G3-0) s

Patrick Meisner (KTH) Lecture 17 13 /27



Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)
3 2 10 2 2 11
A== <2 3)‘(0 1> _<2 2> _><0 0)
= null(A —]k) = span 1
-1
3 2 10 -2 2 1 -1
A_5'”_<2 3>_5<0 1)‘(2 —2>_>(0 o>

— a5~ { [}

Hence, we may conclude that

)-(0 60
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Example 2

To find eigenvectors, we need to find null(A — /,) and null(A — 51,)
3 2 10 2 2 11
A== <2 3)‘(0 1> _<2 2> _><0 0)
1
= null(A — k) = span { [_1] }
3 2 10 -2 2 1 -1
Ao = <2 3>_5<0 1) _<2 —2) - (o o>

— null(A — 5k) = span { m }

Hence, we may conclude that

-GGG
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Permuting Eigenvalues

It is important that you are consistent with the eigenvalues and
eigenvectors!
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Permuting Eigenvalues

It is important that you are consistent with the eigenvalues and
eigenvectors!

That is, the eigenvector of the first column must correspond with the first
eigenvalue on the diagonal and so on.
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Permuting Eigenvalues

It is important that you are consistent with the eigenvalues and
eigenvectors!

That is, the eigenvector of the first column must correspond with the first
eigenvalue on the diagonal and so on.

However, as long as you maintain consistency, you can rearrange as you
want. That is,
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Permuting Eigenvalues

It is important that you are consistent with the eigenvalues and
eigenvectors!

That is, the eigenvector of the first column must correspond with the first
eigenvalue on the diagonal and so on.

However, as long as you maintain consistency, you can rearrange as you

PNy’
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Permuting Eigenvalues

It is important that you are consistent with the eigenvalues and
eigenvectors!

That is, the eigenvector of the first column must correspond with the first
eigenvalue on the diagonal and so on.

However, as long as you maintain consistency, you can rearrange as you

want. That is,
<3 2)7&<1 1) <5 0>(1 1>—1 Creorces -
2 3 -1 1/\0 1/\-1 1 bty

but . {Z! b M 'C=/m~
3 2\ 5 0 1 1\ ) See Hoe
2 3) 01 1 -1 1 CHN oot
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Changing Eigenvectors

Moreover, the eigenvectors you choose have some freedom.
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Changing Eigenvectors

Moreover, the eigenvectors you choose have some freedom. You may
change them as long as you make sure they remain a basis!
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Changing Eigenvectors

Moreover, the eigenvectors you choose have some freedom. You may

change them as long as you make sure they remain a basis! That is, we
have previously seen that

C\(‘C/”«\i”,
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Changing Eigenvectors

Moreover, the eigenvectors you choose have some freedom. You may
change them as long as you make sure they remain a basis! That is, we
have previously seen that

1 1 1 1\ 1
(3 2>:<\/§ ﬁ><1 0)(\@ ﬁ>
2 3 -1+ LJlos5){-L+ L
V2 V2 V2 V2
This is fine since

3 1))

forms a basis for R? where the first vector is an eigenvector of the
eigenvalue 1 and the second vector is an eigenvector of the eigenvalue 5.
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Changing Eigenvectors

Moreover, the eigenvectors you choose have some freedom. You may
change them as long as you make sure they remain a basis! That is, we
have previously seen that

1 1 1 1\ 1
32 ﬁﬁlo NV
23 -1 1 05_L;
\@ﬁ V2 V2

r -

This is fine since
) [Su,, ol of\l\/‘a/
& Catt \‘L N
wW I g méd/g

forms a basis for R? where the first vector is an eigenvector of the
eigenvalue 1 and the second vector is an eigenvector of the eigenvalue 5.

One reason we may want to consider this, somewhat more complicated
basis, is that it is orthonormal whereas the one we found in the example

was only orthogonal.
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Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:
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Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:

det(A — Abk)
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Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:

det(A — M) = det (G (1)) - (flJ g))
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Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:

det(A—)\/z)Zdet(G (1))—A((1) ‘f)) :0"“((11A 10A>>
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Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:

S

seta ey =eee(( ) 2 (3 9)) = ((527))

D

=(1-))?-0x1
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Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:

det(A—)\/z)Zdet(G (1))—A((1) ‘f)) :0"“((11A 10A>>

=(1-X2)?-0x1=(\-1)>=0
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Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:

det(A—)\/z)Zdet(G (1))—A((1) ‘f)) :0"“((11A 10A>>

=(1-X2)?-0x1=(\-1)>=0

So we only get one eigenvalue: \; = 1.
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Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:

det(A—)\/z)Zdet(G (1))—A((1) ‘f)) :0"“((11A 10A>>

=(1-X2)?-0x1=(\-1)>=0

So we only get one eigenvalue: \; = 1.

A—1I,
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Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:

det(A—)\/z)Zdet(G (1))—A((1) ‘f)) :0"“((11A 10A>>

=(1-X2)?-0x1=(\-1)>=0

So we only get one eigenvalue: \; = 1.
10 10
A=l = (1 1) _<o 1)

Patrick Meisner (KTH) Lecture 17 16 /27



Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:

det(A—)\/z)Zdet(G (1))—A((1) ‘f)) :0"“((11A 10A>>

=(1-X2)?-0x1=(\-1)>=0

So we only get one eigenvalue: \; = 1.
10 10 00
A=l = (1 1) _<o 1) - <1 0>
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Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:

det(A—)\/z)Zdet(G (1))—A((1) i’)) :0"“((1;A 10A>>

=(1-A)?-0x1=(\-1)=0

So we only get one eigenvalue: \; = 1.
10 10 00 0
A—I,= (1 1) - <0 1) = <1 0> = null(A — k) = span { [1] }
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Not Diagonalizable

0
11

Show that the matrix A = [1

] is NOT diagonalizable.

Let’s try and diagonalize it by finding it's eigenvalues and eigenvectors:

det(A—)\/z)Zdet(G (1))—A((1) i’)) :0"“((1;A 10A>>

=(1-2)?-0x1=(A-1?=0 |/ _ [Cf]é

So we only get one eigenvalue: \; = 1.
—_—

G DD~ men v

Hence, we only get ONE linearly independent eigenvector instead of the
TWO we need.
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3 x 3 Example

The issue in the above example is NOT in the fact that we had fewer
eigenvalues than we had dimensions.
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3 x 3 Example

The issue in the above example is NOT in the fact that we had fewer
eigenvalues than we had dimensions. For instance, the matrix

1/2 -1 1/2
A= o 1 o0
—3/2 -3 5)2
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3 x 3 Example

The issue in the above example is NOT in the fact that we had fewer
eigenvalues than we had dimensions. For instance, the matrix

-1

1/2 -1 1/2 101\ /1 00\ /101
A=| 0o 1 o |=(o1o0]lo1o0][0o10
—-3/2 -3 5/2 1 23/ \0o0 2/ \1 23

P O p
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3 x 3 Example

The issue in the above example is NOT in the fact that we had fewer
eigenvalues than we had dimensions. For instance, the matrix

12 -1 1/2 10 1\ (Do oy /10 1\
A=1| o 1 0| =1/010 0@0 010
-3/2 -3 5/2 123/ \oo0pe/\1 23

2.

=3

And so we see that A is diagonalizable yet has only two eigenvalues 1 and
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3 x 3 Example

The issue in the above example is NOT in the fact that we had fewer
eigenvalues than we had dimensions. For instance, the matrix

12 -1 1/2 0 () 0 0\ /1 0 1\ "
A= 0 1 o) =1pll1lo o@o 010
—3/2 -3 5/2 2/\3)/ \o 0 12 3

And so we see that A is diagonalizable yet has only two eigenvalues 1 and
2. Moreover, we can read off the eigenvectors that correspond to 1 and 2
from the invertible matrix.
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3 x 3 Example

The issue in the above example is NOT in the fact that we had fewer
eigenvalues than we had dimensions. For instance, the matrix

-1

1/2 -1 1/2 101 00\ /101
A= o 1 o] =(o1o|l[o@o]|[o 10
~3/2 -3 52 123/ %002/ \123

And so we see that A is diagonalizable yet has only two eigenvalues 1 and
2. Moreover, we can read off the eigenvectors that correspond to 1 and 2
from the invertible matrix. That is, eigenvector with eigenvalues 1 and 2
are

17 o
A=1= v= 0], |1
1| |2
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3 x 3 Example

The issue in the above example is NOT in the fact that we had fewer
eigenvalues than we had dimensions. For instance, the matrix

-1

1/2 -1 1/2 101\ /100\ /1071
A= o 1 o] =(o1o0]f[o10]|[0o10
—3/2 -3 5)2 123/ \0 0 12 3

And so we see that A is diagonalizable yet has only two eigenvalues 1 and
2. Moreover, we can read off the eigenvectors that correspond to 1 and 2
from the invertible matrix. That is, eigenvector with eigenvalues 1 and 2

1 0 1
A=1 = v=|0{,]|1 A=2 = v=|0
1 2 3

\ ;s
Rern g o
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Hence, the issue with A = E ﬂ came from the fact that the eigenvalue

only corresponded to 1 linearly independent eigenvectors instead of the
two we need.
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Hence, the issue with A = E ﬂ came from the fact that the eigenvalue

only corresponded to 1 linearly independent eigenvectors instead of the
two we need. This leads us to discuss the eigenspaces.
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Eigenspaces

Hence, the issue with A = came from the fact that the eigenvalue

1 1]
only corresponded to 1 linearly independent eigenvectors instead of the
two we need. This leads us to discuss the eigenspaces.

Definition

If Ais a matrix and X is an eigenvalue of A, then we define the
eigenspace of ), denote E,, to be all the vectors v such that v is an
eigenvector with eigenvalue \.
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Eigenspaces

Hence, the issue with A = came from the fact that the eigenvalue

1 1]
only corresponded to 1 linearly independent eigenvectors instead of the
two we need. This leads us to discuss the eigenspaces.

Definition

If Ais a matrix and X is an eigenvalue of A, then we define the
eigenspace of ), denote E,, to be all the vectors v such that v is an
eigenvector with eigenvalue \.Equivalently

Ey={V:AV = \i}
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Eigenspaces

Hence, the issue with A = came from the fact that the eigenvalue

1 1]
only corresponded to 1 linearly independent eigenvectors instead of the
two we need. This leads us to discuss the eigenspaces.

Definition

If Ais a matrix and X is an eigenvalue of A, then we define the
eigenspace of ), denote E,, to be all the vectors v such that v is an
eigenvector with eigenvalue \.Equivalently

Ey={V:AV = \i}

or

Ex = null(A — Al,).
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Distinct Eigenspaces are Linearly Independent

Let A be an n x n matrix and let \1, ..., ¢ be distinct eigenvalues. Then

if v € Ey, fori =1,...,k, then the set {vi,...,Vj} is linearly
independent. //\ 7
all elep et
OI(( ((Z (3 OV,‘Y— ¥€(‘{/IJ\ el‘éﬂ\SPC”@.
Thet &

By corr es e .

d)(‘}-?‘ ef ot 6/\9_04,\ L/\W{ij_
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Distinct Eigenspaces are Linearly Independent

Theorem

Let A be an n x n matrix and let \1, ..., ¢ be distinct eigenvalues. Then
if v € Ey, fori =1,...,k, then the set {vi,...,Vj} is linearly
independent.

Sketch of Proof.

In the case k = 2, if vj and v, were linearly dependent, then v; = cv5 for
some cC.

| \
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Distinct Eigenspaces are Linearly Independent

Theorem

Let A be an n x n matrix and let \1, ..., ¢ be distinct eigenvalues. Then
if v € Ey, fori =1,...,k, then the set {vi,...,Vj} is linearly
independent.

Sketch of Proof.

In the case k = 2, if vj and v, were linearly dependent, then v; = cv5 for
some c.Hence,

| \

AMvi = Avy
A
[
oo, Vi
300 prog oa . i fA J
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Distinct Eigenspaces are Linearly Independent

Theorem

Let A be an n x n matrix and let \1, ..., ¢ be distinct eigenvalues. Then
if v € Ey, fori =1,...,k, then the set {vi,...,Vj} is linearly
independent.

Sketch of Proof.

In the case k = 2, if vj and v, were linearly dependent, then v; = cv5 for
some c.Hence,

| \

)\1\71 = A\71 = A(C\72)
™
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Distinct Eigenspaces are Linearly Independent

Theorem

Let A be an n x n matrix and let \1, ..., ¢ be distinct eigenvalues. Then
if v € Ey, fori =1,...,k, then the set {vi,...,Vj} is linearly
independent.

Sketch of Proof.

In the case k = 2, if vj and v, were linearly dependent, then v; = cv5 for
some c.Hence,

| \

)\1\71 = A\71 = A(C\72) = C(A\72)
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Distinct Eigenspaces are Linearly Independent

Theorem

Let A be an n x n matrix and let \1, ..., ¢ be distinct eigenvalues. Then
if v € Ey, fori =1,...,k, then the set {vi,...,Vj} is linearly
independent.

Sketch of Proof.

In the case k = 2, if vj and v, were linearly dependent, then v; = cv5 for
some c.Hence,

| \

)\1\71 = A\71 = A(C\72) = C(A\72) = C()\2\72)

0

becaua Vi s o Q%qu
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Distinct Eigenspaces are Linearly Independent

Theorem

Let A be an n x n matrix and let \1, ..., ¢ be distinct eigenvalues. Then
if v € Ey, fori =1,...,k, then the set {vi,...,Vj} is linearly
independent.

Sketch of Proof.

In the case k = 2, if vj and v, were linearly dependent, then v; = cv5 for
some c.Hence,

| \

)\1\71 = A\71 = A(C\72) = C(A\72) = C()\2\72) = )\2(C\72)
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Distinct Eigenspaces are Linearly Independent

Theorem

Let A be an n x n matrix and let \1, ..., ¢ be distinct eigenvalues. Then
if v € Ey, fori =1,...,k, then the set {vi,...,Vj} is linearly
independent.

Sketch of Proof

In the case k = 2, if vj and v, were linearly dependent, then v; = cv5 for
some c.Hence,

| \

)\1\71 = A\71 = A(C\72) = C(A\72) = C()\2\72) = )\2(C\72) = )\2\71

Neuy 0w
S

N
|
And so, it would have to be that \; = A\» . |
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Distinct Eigenspaces are Linearly Independent

Theorem

Let A be an n x n matrix and let \1, ..., ¢ be distinct eigenvalues. Then
if v € Ey, fori =1,...,k, then the set {vi,...,Vj} is linearly
independent.

Sketch of Proof.

In the case k = 2, if vj and v, were linearly dependent, then v; = cv5 for
some c.Hence,

| \

)\1\71 = A\71 = A(C\72) = C(A\72) = C()\2\72) = )\2(C\72) = )\2\71

And so, it would have to be that Ay = A5, which contradicts the
assumption that the \; were distinct. []
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Corollary
If an n x n matrix A has n distinct eigenvalues then it is diagonalizable. l
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Corollary

If an n x n matrix A has n distinct eigenvalues then it is diagonalizable.

Let A\1,..., A\, be the n distinct eigenvalues of A.
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Corollary

If an n x n matrix A has n distinct eigenvalues then it is diagonalizable.

Proof.

Let A1,..., A, be the n distinct eigenvalues of A. Let vi, ..., V, be any set
of vectors such that v; € E), for i =1,;n.
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Corollary

If an n x n matrix A has n distinct eigenvalues then it is diagonalizable.

Proof.
Let A1,..., A, be the n distinct eigenvalues of A. Let vi, ..., V, be any set
of vectors such that v; € Ey, for i = 1,,n. Then

{Vi,...,Vn}

is a set of n linearly independent eigenvectors and so A is diagonalizable.
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Corollary

If an n x n matrix A has n distinct eigenvalues then it is diagonalizable.

Proof.
Let A1,..., A, be the n distinct eigenvalues of A. Let vi, ..., V, be any set
of vectors such that v; € Ey, for i = 1,,n. Then

{Vi,...,Vn}

is a set of n linearly independent eigenvectors and so A is diagonalizable.
In particular:

0 ... 0
0 .0
: @ N N 7,) !

0 O

A=@D@ .- @)
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Geometric Multiplicity

Definition

If Ais a matrix and A is an eigenvalue, then we define the geometric
multiplicity of A to be the dimension of its eigenspace Ej.
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Geometric Multiplicity

Definition
If Ais a matrix and A is an eigenvalue, then we define the geometric
multiplicity of \ to be the dimension of its eigenspace Ej.

Theorem

A n x n matrix A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues is n.
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Geometric Multiplicity

If Ais a matrix and X is an eigenvalue, then we define the geometric
multiplicity of \ to be the dimension of its eigenspace Ej.

v
Theorem

A n x n matrix A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues is n.

.

Sketch of Proof.

Let A1, ..., Ak be the set of distinct eigenvalues.
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Geometric Multiplicity

If Ais a matrix and X is an eigenvalue, then we define the geometric
multiplicity of \ to be the dimension of its eigenspace Ej.

v
Theorem

A n x n matrix A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues is n.

.

Sketch of Proof.

Let A1,..., Ak be the set of distinct eigenvalues. Let g; be the geometric
multiplicity of A;.

?c 6Ql/‘“ (E;\> Eb Con ¥/‘Wﬂ o 174&3 JC'
Ep(; wits 2 vedtps.
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Geometric Multiplicity

If Ais a matrix and X is an eigenvalue, then we define the geometric
multiplicity of \ to be the dimension of its eigenspace Ej.

v
Theorem

A n x n matrix A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues is n.

.

Sketch of Proof.

Let A1,..., Ak be the set of distinct eigenvalues. Let g; be the geometric
multiplicity of A;. Then we can find a basis for each eigenspace E); as
Ex; = span{Vi1, Via, .., Vig}
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Geometric Multiplicity

If Ais a matrix and X is an eigenvalue, then we define the geometric
multiplicity of \ to be the dimension of its eigenspace Ej.

v
Theorem

A n x n matrix A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues is n.

.

Sketch of Proof.

Let A1,..., Ak be the set of distinct eigenvalues. Let g; be the geometric
multiplicity of A;. Then we can find a basis for each eigenspace E); as

E)\,':Span{v},lav}ﬂ?"'a‘_/}%}/ [[\/‘ \’q(g\

Then the set of vectors {Vi 1, Vi2,...,Vig,V01,...,Vkg,} i the largest
linearly independent set of elgenlms. \H%M o e mork Lok

y
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Geometric Multiplicity

If Ais a matrix and X is an eigenvalue, then we define the geometric
multiplicity of \ to be the dimension of its eigenspace Ej.

v
Theorem

A n x n matrix A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues is n.

.

Sketch of Proof.
Let A1,..., Ak be the set of distinct eigenvalues. Let g; be the geometric
multiplicity of A;. Then we can find a basis for each eigenspace E); as
Ey, = span{Vj1,Vi2,...,Vig}

Then the set of vectors {Vi 1, Vi2,...,Vig,V01,...,Vkg,} i the largest
linearly independent set of eigenvalues. Hence, A is diagonalizable if and

; Veck
onlyifgi+g+---+gc=n """ O
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Characteristic Polynomial

Recall that the X is an eigenvalue of A if and only if det(A — Al,) = 0.
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Characteristic Polynomial

Recall that the X is an eigenvalue of A if and only if det(A — A/,) = 0.1f we
view A as a variable then we see that det(A — Al,) will be a polynomial of
degree n.
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Characteristic Polynomial

Recall that the X is an eigenvalue of A if and only if det(A — A/,) = 0.1f we
view A as a variable then we see that det(A — Al,) will be a polynomial of
degree n.

Definition
The polynomial given by det(A — tl,) is called the characteristic
polynomial of A. T
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Characteristic Polynomial

Recall that the X is an eigenvalue of A if and only if det(A — A/,) = 0.1f we
view A as a variable then we see that det(A — Al,) will be a polynomial of
degree n.

Definition

The polynomial given by det(A — tl,) is called the characteristic
polynomial of A. Moreover, we see that A is an eigenvalue of A if and
only if it is a root of the characteristic polynomial of A.
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Characteristic Polynomial

Recall that the X is an eigenvalue of A if and only if det(A — A/,) = 0.1f we
view A as a variable then we see that det(A — Al,) will be a polynomial of
degree n.

Definition

The polynomial given by det(A — tl,) is called the characteristic
polynomial of A. Moreover, we see that A is an eigenvalue of A if and
only if it is a root of the characteristic polynomial of A.

We know that if r1, ..., r, are the root of any polynomial P(t), then we
can write P(t) = (t —n)(t —r)---(t — rn)
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Characteristic Polynomial

Recall that the X is an eigenvalue of A if and only if det(A — A/,) = 0.1f we
view A as a variable then we see that det(A — Al,) will be a polynomial of
degree n.

Definition

The polynomial given by det(A — tl,) is called the characteristic
polynomial of A. Moreover, we see that A is an eigenvalue of A if and
only if it is a root of the characteristic polynomial of A.

We know that if r1, ..., r, are the root of any polynomial P(t), then we
can write P(t) = (t — rn)(t — r2) - - - (t — rp)Of course, the roots
n,r,...,rm may not be distinct.
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Characteristic Polynomial

Recall that the X is an eigenvalue of A if and only if det(A — A/,) = 0.1f we
view A as a variable then we see that det(A — Al,) will be a polynomial of
degree n.

Definition

The polynomial given by det(A — tl,) is called the characteristic
polynomial of A. Moreover, we see that A is an eigenvalue of A if and
only if it is a root of the characteristic polynomial of A.

We know that if r1, ..., r, are the root of any polynomial P(t), then we
can write P(t) = (t — rn)(t — r2) - - - (t — rp)Of course, the roots
r, rm,...,rm may not be distinct. Hence, for any root r, we define the

multiplicity of it to be the number of times it appears on the list of r;.
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Characteristic Polynomial

Recall that the X is an eigenvalue of A if and only if det(A — A/,) = 0.1f we
view A as a variable then we see that det(A — Al,) will be a polynomial of
degree n.

Definition

The polynomial given by det(A — tl,) is called the characteristic
polynomial of A. Moreover, we see that A is an eigenvalue of A if and
only if it is a root of the characteristic polynomial of A.

We know that if r1, ..., r, are the root of any polynomial P(t), then we
can write P(t) = (t — rn)(t — r2) - - - (t — rp)Of course, the roots
r, rm,...,rm may not be distinct. Hence, for any root r, we define the

multiplicity of it to be the number of times it appears on the list of r;.
We can extend this to eigenvalues.
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Algebraic Multiplicity

Definition

Let A be a matrix and let A be an eigenvalue of A. Then we define the
algebraic multiplicity of A\ to be the multiplicity of A as a root of the
characteristic polynomial.
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Algebraic Multiplicity

Definition

Let A be a matrix and let A be an eigenvalue of A. Then we define the
algebraic multiplicity of A\ to be the multiplicity of A as a root of the
characteristic polynomial.

Note: the algebraic multiplicity of an eigenvalue )\ is not to be confused
with the geometric multiplicity of A!
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Algebraic Multiplicity

Definition

Let A be a matrix and let A be an eigenvalue of A. Then we define the
algebraic multiplicity of A\ to be the multiplicity of A as a root of the
characteristic polynomial.

Note: the algebraic multiplicity of an eigenvalue )\ is not to be confused
with the geometric multiplicity of Al While these two concepts are very
much related, they are indeed different things.
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Algebraic Multiplicity

Definition

Let A be a matrix and let A be an eigenvalue of A. Then we define the
algebraic multiplicity of A\ to be the multiplicity of A as a root of the
characteristic polynomial.

Note: the algebraic multiplicity of an eigenvalue )\ is not to be confused
with the geometric multiplicity of Al While these two concepts are very
much related, they are indeed different things.

Let A be a matrix and let \1, ..., A\ be the set of distinct eigenvalues of
A. Let a; be the algebraic multiplicity of \; fori =1,...,k. Then

atat---+ta=n

Patrick Meisner (KTH) Lecture 17 23 /27



Relating Algebraic and Geometric Multiplicities

Theorem

Let A be a matrix and let \1, ..., A\, be a set of distinct eigenvalues of A.
Let a1,...,ax and g1, ...,8k be the algebraic and geometric multiplicities
of A. Then
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Relating Algebraic and Geometric Multiplicities

Theorem

Let A be a matrix and let \1, ..., A\, be a set of distinct eigenvalues of A.
Let a1,...,ax and g1, ...,8k be the algebraic and geometric multiplicities
of A. Then

Q 1<g <agjforalli=1,...,k
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Relating Algebraic and Geometric Multiplicities

Qi Theorer

Theorem

Let A be a matrix and let \1, ..., A\, be a set of distinct eigenvalues of A.

Let a1,...,ax and g1, ...,8k be the algebraic and geometric multiplicities
of A. Then

Q 1<g <agjforalli=1,...,k
@ A is diagonalizable if and only if a; = g; foralli=1,... k.
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Rundown of Terminology in Examples
3 2
If A= <2 3>.
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Rundown of Terminology in Examples

If A= <§ g) then the characteristic polynomial is

det(A—tl) = (¢t —1)(t —5)
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Rundown of Terminology in Examples

If A= <§ g) then the characteristic polynomial is

det(A—tl) = (¢t —1)(t —5)

The eigenvalues are 1 and 5.
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Rundown of Terminology in Examples

If A= <§ g) then the characteristic polynomial is

L A
det(A—tl) = (¢t —1)(t —5)

The eigenvalues are 1 and 5. The arithmetic multiplicity of 1 is 1 and the
arithmetic multiplicity of 5 is 1.
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Rundown of Terminology in Examples

If A= <§ g) then the characteristic polynomial is

det(A—tl) = (¢t —1)(t —5)

The eigenvalues are 1 and 5. The arithmetic multiplicity of 1 is 1 and the
arithmetic multiplicity of 5 is 1. The eigenspaces are

s {[ ]} & =om ([}
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Rundown of Terminology in Examples

If A= (2 g) then the characteristic polynomial is

det(A—tl) = (¢t —1)(t —5)

The eigenvalues are 1 and 5. The arithmetic multiplicity of 1 is 1 and the
arithmetic multiplicity of 5 is 1. The eigenspaces are

(&;\J\(\;ﬂrf\ E, — span { [_11] } Es — span { [ﬂ } i [%) =

so the geometric multiplicity of 1 is 1 and the geometric multiplicity of 5 is
1.
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Rundown of Terminology in Examples

If A= (2 g) then the characteristic polynomial is

det(A—tl) = (¢t —1)(t —5)

The eigenvalues are 1 and 5. The arithmetic multiplicity of 1 is 1 and the
arithmetic multiplicity of 5 is 1. The eigenspaces are

s {[ ]} & =om ([}

so the geometric multiplicity of 1 is 1 and the geometric multiplicity of 5 is
1. And we can see that A is diagonalizable for three reason
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Rundown of Terminology in Examples

If A= (2 g) then the characteristic polynomial is

det(A—tl) = (¢t —1)(t —5)

The eigenvalues are 1 and 5. The arithmetic multiplicity of 1 is 1 and the
arithmetic multiplicity of 5 is 1. The eigenspaces are

s {[ ]} & =om ([}

so the geometric multiplicity of 1 is 1 and the geometric multiplicity of 5 is
1. And we can see that A is diagonalizable for three reason

@ It has a set of 2 linearly independent eigenvectors
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Rundown of Terminology in Examples

If A= (2 g) then the characteristic polynomial is

det(A—tl) = (¢t —1)(t —5)

The eigenvalues are 1 and 5. The arithmetic multiplicity of 1 is 1 and the
arithmetic multiplicity of 5 is 1. The eigenspaces are

s {[ ]} & =om ([}

so the geometric multiplicity of 1 is 1 and the geometric multiplicity of 5 is
1. And we can see that A is diagonalizable for three reason

@ It has a set of 2 linearly independent eigenvectors
@ It has 2 distinct eigenvalues
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If A= (2 g) then the characteristic polynomial is

det(A—tl) = (¢t —1)(t —5)

The eigenvalues are 1 and 5. The arithmetic multiplicity of 1 is 1 and the
arithmetic multiplicity of 5 is 1. The eigenspaces are

s {[ ]} & =om ([}

so the geometric multiplicity of 1 is 1 and the geometric multiplicity of 5 is
1. And we can see that A is diagonalizable for three reason

=@ It has a set of 2 linearly independent eigenvectors
> @ It has 2 distinct eigenvalues

@ All geometric multiplicities are equal to the arithmetic multiplicities.
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A has only one eigenvalue, 1, and it's arithmetic multiplicity if 2. The

eigenspaces is
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Rundown of Terminology in Examples

If A= <1 (1)> then the characteristic polynomial is

det(A—tl) = (t — 12

A has only one eigenvalue, 1, and it's arithmetic multiplicity if 2. The
eigenspaces is

R

so the geometric multiplicity of 1 is 1.
—_—
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If A= <1 (1)> then the characteristic polynomial is

det(A — tl) = (t — 1)?

A has only one eigenvalue, 1, and it's arithmetic multiplicity if 2. The

eigenspaces is
0
E; = span { [1] }

so the geometric multiplicity of 1 is 1.And we can see that A is not
diagonalizable for two reasons =
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A has only one eigenvalue, 1, and it's arithmetic multiplicity if 2. The

eigenspaces is
0
E; = span { [1] }

so the geometric multiplicity of 1 is 1.And we can see that A is not
diagonalizable for two reasons

© It only has a set of 1 linearly independent eigenvectors
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Rundown of Terminology in Examples

If A= <1 (1)> then the characteristic polynomial is

det(A — tl) = (t — 1)?

A has only one eigenvalue, 1, and it's arithmetic multiplicity if 2. The

eigenspaces is
0
E; = span { [1] }

so the geometri Itiplicity of 1 is 1.A hat A i
: g. Ic multiplicity of 1 1s nd we can see that A is not
diagonalizable for two reasons

© It only has a set of 1 linearly independent eigenvectors
© There is an eigenvalue whose geometric multiplicity is not the same
as it's arithmetic multiplicity. - -
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Rundown of Terminology in Examples

If
12 -1 1/2 110\ /10 0\ /110"

A= 0o 1 o|=foo0o1]{0o20]|0o01
—3/2 -3 52 132/ \001/\132

then the characteristic polynomial is det(A — th) = (t — 1@1? - 2){L
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Rundown of Terminology in Examples

If
12 -1 1/2 110\ /10 0\ /110"
A= 0o 1 o|=foo0o1]{0o20]|0o01
—3/2 -3 52 132/ \001/\132

then the characteristic polynomial is det(A — th3) = (t — 1)?(t — 2) and so
we see that the eigenvalues are 1 and 2.
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Rundown of Terminology in Examples

If
12 -1 1/2 110\ /10 0\ /110"
A= 0o 1 o|=foo0o1]{0o20]|0o01
—3/2 -3 52 132/ \001/\132

then the characteristic polynomial is det(A — th) = (t — 1@1? —2)and so
we see that the eigenvalues are 1 and 2. The arithmetic multiplicity of 1 is

2 and the arithmetic multiplicity of 2 is 1. -
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Rundown of Terminology in Examples

If
1/2 —1 1/2 11 0\ "
A=| o 001
~3/2 —3 5/2 0 13 2

then the characteristic polynomial is det(A — th3) = (t — 1)?(t — 2) and so
we see that the eigenvalues are 1 and 2. The arlthmet|c multiplicity of 1 is
2 and the arithmetic multiplicity of 2 is 1. The eigenspaces are

E; = span{(1,0,1),(0,1,2)}, Ex = span{(1,0,3)}.

Patrick Meisner (KTH) Lecture 17 27 /27
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If
12 -1 1/2 110\ /10 0\ /110"
A= 0o 1 o|=foo0o1]{0o20]|0o01
—3/2 -3 52 132/ \001/\132

then the characteristic polynomial is det(A — th3) = (t — 1)?(t — 2) and so
we see that the eigenvalues are 1 and 2. The arithmetic multiplicity of 1 is
2 and the arithmetic multiplicity of 2 is 1. The eigenspaces are
E; =span{(1,0,1),(0,1,2)}, Ex = span{(1,0,3)}. The geometric
multiplicity of 1 is 2 and the geometric multiplicity of 1 is 1.
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If
12 -1 1/2 110\ /10 0\ /110"
A= 0o 1 o|=foo0o1]{0o20]|0o01
—3/2 -3 52 132/ \001/\132

then the characteristic polynomial is det(A — th3) = (t — 1)?(t — 2) and so
we see that the eigenvalues are 1 and 2. The arithmetic multiplicity of 1 is
2 and the arithmetic multiplicity of 2 is 1. The eigenspaces are

E; =span{(1,0,1),(0,1,2)}, Ex = span{(1,0,3)}. The geometric
multiplicity of 1 is 2 and the geometric multiplicity of 1 is 1. And, we can
see that A is diagonalizable for three reason:
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2 and the arithmetic multiplicity of 2 is 1. The eigenspaces are

E; =span{(1,0,1),(0,1,2)}, Ex = span{(1,0,3)}. The geometric
multiplicity of 1 is 2 and the geometric multiplicity of 1 is 1. And, we can
see that A is diagonalizable for three reason:

@ It has a set of 3 linearly independent eigenvectors
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Rundown of Terminology in Examples

If
12 -1 1/2 110\ /10 0\ /110"
A= 0o 1 o|=foo0o1]{0o20]|0o01
—3/2 -3 52 132/ \001/\132

then the characteristic polynomial is det(A — th3) = (t — 1)?(t — 2) and so
we see that the eigenvalues are 1 and 2. The arithmetic multiplicity of 1 is
2 and the arithmetic multiplicity of 2 is 1. The eigenspaces are
E; =span{(1,0,1),(0,1,2)}, Ex = span{(1,0,3)}. The geometric
multiplicity of 1 is 2 and the geometric multiplicity of 1 is 1. And, we can
see that A is diagonalizable for three reason:

@ It has a set of 3 linearly independent eigenvectors

@ All geometric multiplicities are equal to the arithmetic multiplicities.
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Rundown of Terminology in Examples

If
12 -1 1/2 110\ /10 0\ /110"
A= 0o 1 o|=foo0o1]{0o20]|0o01
—3/2 -3 52 132/ \001/\132

then the characteristic polynomial is det(A — th3) = (t — 1)?(t — 2) and so
we see that the eigenvalues are 1 and 2. The arithmetic multiplicity of 1 is
2 and the arithmetic multiplicity of 2 is 1. The eigenspaces are
E; =span{(1,0,1),(0,1,2)}, Ex = span{(1,0,3)}. The geometric
multiplicity of 1 is 2 and the geometric multiplicity of 1 is 1. And, we can
see that A is diagonalizable for three reason:

@ It has a set of 3 linearly independent eigenvectors

@ All geometric multiplicities are equal to the arithmetic multiplicities.

© We were already given it in the form PDP~!
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