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Topics for Today

1 Similar Matrices

2 Diagonalization

3 Eigenvalues and Diagonalizability
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Similar Matrices

We have seen that if T : Rn → Rn is a linear transformation and B and B ′

are two different bases for Rn, then we get two different matrices that
define T in each of the bases

, namely:

[T ]B and [T ]B′

Further, we know that we can relate these two matrices through the
change of basis matrix. That is,

[T ]B′ = PB→B′ [T ]BP
−1
B→B′

Definition

If A and C are square matrices of the same size, then we say that C is
similar to A if there is an invertible matrix P such that C = P−1AP.
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First Properties of Similar Matrices

Theorem
1 Two square matrices are similar if and only if there exists bases with

respect to which the matrices represent the same linear transformation

2 Similar matrices have the same determinant

3 Similar matrices have the same trace

4 Similar matrices have the same nullity

5 Similar matrices have the same rank
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Diagonalization

We saw in the previous slides that the matrices

A =

(
3 2
2 3

)
and C =

(
1 0
0 5

)
are similar

using the invertible matrix

P =

(
1√
2

1√
2

− 1√
2

1√
2

)
that is, we showed C = PAP−1

We were then able to use the fact that C was diagonal to easily interpret
the linear transformations geometrically.

Question (The Diagonalization Problem)

Given a square matrix A, does there exist an invertible matrix P for which
P−1AP is a diagonal matrix, and if so, how does one find such a P? If
such a P exists, then A is said to be diagonalizable and P is said to
diagonalize A.
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Eigenvalues and Diagonalization

Recall, that we say that λ is an eigenvalue of a square matric A, if there
exists a vector ~v such that A~v = λ~v .

Theorem

If A is similar to the diagonal matrix

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn


then d1, d2, . . . , dn are eigenvalues of A.

Remark

Note that saying A is similar to a diagonal matrix is equivalent to saying
that A is diagonalizable.
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Proof
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Eigenvectors and Diagonalization

Recall that we say ~v is an eigenvector of A if satisfies A~v = λ~v for some
eigenvalue λ.

Theorem

If a matrix A is diagonalizable and P is the invertible matrix that
diagonalizes it, then the columns of P are eigenvectors of A. Moreover, if

A = P


d1 0 . . . 0
0 d1 . . . 0
...

...
. . .

...
0 0 . . . dn

P−1

then the i th column of P is an eigenvector of the eigenvalue di .
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Proof
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Condition for Diagonalizable

Theorem

An n × n matrix A is diagonalizable if and only if it has n linearly
independent eigenvectors.
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How to Diagonalize

Corollary

If A has eigenvalues λ1, λ2, . . . , λn, and linearly independent eigenvectors
~v1, . . . , ~vn (where λi is the eigenvalue of ~vi ),

then if we set

P =
(
~v1 ~v2 . . . ~vn

)
we get

P−1AP = D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


Hence, A = PDP−1.

We may then describe the linear transformation TA geometrically by
saying that it ”stretches Rn in the direction of ~vi by a factor of λi”.
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Example

Recall that an λ is an eigenvalue if and only if det(A− λIn) = 0.

Further,
~v is an eigenvector of the eigenvalue λ if only if ~v is in the null space of
A− λIn.

Exercise

Use these ideas to diagonalize A =

(
3 2
2 3

)
.

To find λ:

det(A− λI2) = det

((
3 2
2 3

)
− λ

(
1 0
0 1

))
= det

((
3− λ 2

2 3− λ

))

= (3− λ)2 − 4 = λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0

So the eigenvalues of A are λ1 = 1 and λ2 = 5

Patrick Meisner (KTH) Lecture 17 12 / 27



Example

Recall that an λ is an eigenvalue if and only if det(A− λIn) = 0. Further,
~v is an eigenvector of the eigenvalue λ if only if ~v is in the null space of
A− λIn.

Exercise

Use these ideas to diagonalize A =

(
3 2
2 3

)
.

To find λ:

det(A− λI2) = det

((
3 2
2 3

)
− λ

(
1 0
0 1

))
= det

((
3− λ 2

2 3− λ

))

= (3− λ)2 − 4 = λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0

So the eigenvalues of A are λ1 = 1 and λ2 = 5

Patrick Meisner (KTH) Lecture 17 12 / 27



Example

Recall that an λ is an eigenvalue if and only if det(A− λIn) = 0. Further,
~v is an eigenvector of the eigenvalue λ if only if ~v is in the null space of
A− λIn.

Exercise

Use these ideas to diagonalize A =

(
3 2
2 3

)
.

To find λ:

det(A− λI2) = det

((
3 2
2 3

)
− λ

(
1 0
0 1

))
= det

((
3− λ 2

2 3− λ

))

= (3− λ)2 − 4 = λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0

So the eigenvalues of A are λ1 = 1 and λ2 = 5

Patrick Meisner (KTH) Lecture 17 12 / 27



Example

Recall that an λ is an eigenvalue if and only if det(A− λIn) = 0. Further,
~v is an eigenvector of the eigenvalue λ if only if ~v is in the null space of
A− λIn.

Exercise

Use these ideas to diagonalize A =

(
3 2
2 3

)
.

To find λ:

det(A− λI2) = det

((
3 2
2 3

)
− λ

(
1 0
0 1

))
= det

((
3− λ 2

2 3− λ

))

= (3− λ)2 − 4 = λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0

So the eigenvalues of A are λ1 = 1 and λ2 = 5

Patrick Meisner (KTH) Lecture 17 12 / 27



Example

Recall that an λ is an eigenvalue if and only if det(A− λIn) = 0. Further,
~v is an eigenvector of the eigenvalue λ if only if ~v is in the null space of
A− λIn.

Exercise

Use these ideas to diagonalize A =

(
3 2
2 3

)
.

To find λ:

det(A− λI2)

= det

((
3 2
2 3

)
− λ

(
1 0
0 1

))
= det

((
3− λ 2

2 3− λ

))

= (3− λ)2 − 4 = λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0

So the eigenvalues of A are λ1 = 1 and λ2 = 5

Patrick Meisner (KTH) Lecture 17 12 / 27



Example

Recall that an λ is an eigenvalue if and only if det(A− λIn) = 0. Further,
~v is an eigenvector of the eigenvalue λ if only if ~v is in the null space of
A− λIn.

Exercise

Use these ideas to diagonalize A =

(
3 2
2 3

)
.

To find λ:

det(A− λI2) = det

((
3 2
2 3

)
− λ

(
1 0
0 1

))

= det

((
3− λ 2

2 3− λ

))

= (3− λ)2 − 4 = λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0

So the eigenvalues of A are λ1 = 1 and λ2 = 5

Patrick Meisner (KTH) Lecture 17 12 / 27



Example

Recall that an λ is an eigenvalue if and only if det(A− λIn) = 0. Further,
~v is an eigenvector of the eigenvalue λ if only if ~v is in the null space of
A− λIn.

Exercise

Use these ideas to diagonalize A =

(
3 2
2 3

)
.

To find λ:

det(A− λI2) = det

((
3 2
2 3

)
− λ

(
1 0
0 1

))
= det

((
3− λ 2

2 3− λ

))

= (3− λ)2 − 4 = λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0

So the eigenvalues of A are λ1 = 1 and λ2 = 5

Patrick Meisner (KTH) Lecture 17 12 / 27



Example

Recall that an λ is an eigenvalue if and only if det(A− λIn) = 0. Further,
~v is an eigenvector of the eigenvalue λ if only if ~v is in the null space of
A− λIn.

Exercise

Use these ideas to diagonalize A =

(
3 2
2 3

)
.

To find λ:

det(A− λI2) = det

((
3 2
2 3

)
− λ

(
1 0
0 1

))
= det

((
3− λ 2

2 3− λ

))

= (3− λ)2 − 4

= λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0

So the eigenvalues of A are λ1 = 1 and λ2 = 5

Patrick Meisner (KTH) Lecture 17 12 / 27



Example

Recall that an λ is an eigenvalue if and only if det(A− λIn) = 0. Further,
~v is an eigenvector of the eigenvalue λ if only if ~v is in the null space of
A− λIn.

Exercise

Use these ideas to diagonalize A =

(
3 2
2 3

)
.

To find λ:

det(A− λI2) = det

((
3 2
2 3

)
− λ

(
1 0
0 1

))
= det

((
3− λ 2

2 3− λ

))

= (3− λ)2 − 4 = λ2 − 6λ+ 5

= (λ− 5)(λ− 1) = 0

So the eigenvalues of A are λ1 = 1 and λ2 = 5

Patrick Meisner (KTH) Lecture 17 12 / 27



Example

Recall that an λ is an eigenvalue if and only if det(A− λIn) = 0. Further,
~v is an eigenvector of the eigenvalue λ if only if ~v is in the null space of
A− λIn.

Exercise

Use these ideas to diagonalize A =

(
3 2
2 3

)
.

To find λ:

det(A− λI2) = det

((
3 2
2 3

)
− λ

(
1 0
0 1

))
= det

((
3− λ 2

2 3− λ

))

= (3− λ)2 − 4 = λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0

So the eigenvalues of A are λ1 = 1 and λ2 = 5

Patrick Meisner (KTH) Lecture 17 12 / 27



Example

Recall that an λ is an eigenvalue if and only if det(A− λIn) = 0. Further,
~v is an eigenvector of the eigenvalue λ if only if ~v is in the null space of
A− λIn.

Exercise

Use these ideas to diagonalize A =

(
3 2
2 3

)
.

To find λ:

det(A− λI2) = det

((
3 2
2 3

)
− λ

(
1 0
0 1

))
= det

((
3− λ 2

2 3− λ

))

= (3− λ)2 − 4 = λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0

So the eigenvalues of A are λ1 = 1 and λ2 = 5

Patrick Meisner (KTH) Lecture 17 12 / 27



Example 2

To find eigenvectors, we need to find null(A− In) and null(A− 5In)

A− In =

(
3 2
2 3

)
−
(

1 0
0 1

)
=

(
2 2
2 2

)
→
(

1 1
0 0

)

=⇒ null(A− I2) = span

{[
1
−1

]}

A− 5In =

(
3 2
2 3

)
− 5

(
1 0
0 1

)
=

(
−2 2
2 −2

)
→
(

1 −1
0 0

)

=⇒ null(A− 5I2) = span

{[
1
1

]}
Hence, we may conclude that(

3 2
2 3

)
=

(
1 1
−1 1

) (
1 0
0 5

) (
1 1
−1 1

)−1
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Permuting Eigenvalues

It is important that you are consistent with the eigenvalues and
eigenvectors!

That is, the eigenvector of the first column must correspond with the first
eigenvalue on the diagonal and so on.

However, as long as you maintain consistency, you can rearrange as you
want. That is, (

3 2
2 3

)
6=
(

1 1
−1 1

)(
5 0
0 1

)(
1 1
−1 1

)−1
but (

3 2
2 3

)
=

(
1 1
1 −1

)(
5 0
0 1

)(
1 1
1 −1

)−1
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Changing Eigenvectors

Moreover, the eigenvectors you choose have some freedom.

You may
change them as long as you make sure they remain a basis! That is, we
have previously seen that(

3 2
2 3

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)(
1 0
0 5

)( 1√
2

1√
2

− 1√
2

1√
2

)−1
This is fine since {[

1√
2

− 1√
2

]
,

[
1√
2
1√
2

]}
forms a basis for R2 where the first vector is an eigenvector of the
eigenvalue 1 and the second vector is an eigenvector of the eigenvalue 5.

One reason we may want to consider this, somewhat more complicated
basis, is that it is orthonormal whereas the one we found in the example
was only orthogonal.
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Not Diagonalizable

Exercise

Show that the matrix A =

[
1 0
1 1

]
is NOT diagonalizable.

Let’s try and diagonalize it by finding it’s eigenvalues and eigenvectors:

det(A− λI2) = det

((
1 0
1 1

)
− λ

(
1 0
0 1

))
= det

((
1− λ 0

1 1− λ

))

= (1− λ)2 − 0× 1 = (λ− 1)2 = 0

So we only get one eigenvalue: λ1 = 1.

A− In =

(
1 0
1 1

)
−
(

1 0
0 1

)
=

(
0 0
1 0

)
=⇒ null(A− I2) = span

{[
0
1

]}
Hence, we only get ONE linearly independent eigenvector instead of the
TWO we need.
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3× 3 Example

The issue in the above example is NOT in the fact that we had fewer
eigenvalues than we had dimensions.

For instance, the matrix

A =

 1/2 −1 1/2
0 1 0
−3/2 −3 5/2

 =

1 0 1
0 1 0
1 2 3

1 0 0
0 1 0
0 0 2

1 0 1
0 1 0
1 2 3

−1

And so we see that A is diagonalizable yet has only two eigenvalues 1 and
2. Moreover, we can read off the eigenvectors that correspond to 1 and 2
from the invertible matrix. That is, eigenvector with eigenvalues 1 and 2
are

λ = 1 =⇒ ~v =

1
0
1

 ,
0

1
2

 λ = 2 =⇒ ~v =

1
0
3


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Eigenspaces

Hence, the issue with A =

[
1 0
1 1

]
came from the fact that the eigenvalue

only corresponded to 1 linearly independent eigenvectors instead of the
two we need.

This leads us to discuss the eigenspaces.

Definition

If A is a matrix and λ is an eigenvalue of A, then we define the
eigenspace of λ, denote Eλ, to be all the vectors ~v such that ~v is an
eigenvector with eigenvalue λ.Equivalently

Eλ = {~v : A~v = λ~v}

or
Eλ = null(A− λIn).

Patrick Meisner (KTH) Lecture 17 18 / 27



Eigenspaces

Hence, the issue with A =

[
1 0
1 1

]
came from the fact that the eigenvalue

only corresponded to 1 linearly independent eigenvectors instead of the
two we need. This leads us to discuss the eigenspaces.

Definition

If A is a matrix and λ is an eigenvalue of A, then we define the
eigenspace of λ, denote Eλ, to be all the vectors ~v such that ~v is an
eigenvector with eigenvalue λ.Equivalently

Eλ = {~v : A~v = λ~v}

or
Eλ = null(A− λIn).

Patrick Meisner (KTH) Lecture 17 18 / 27



Eigenspaces

Hence, the issue with A =

[
1 0
1 1

]
came from the fact that the eigenvalue

only corresponded to 1 linearly independent eigenvectors instead of the
two we need. This leads us to discuss the eigenspaces.

Definition

If A is a matrix and λ is an eigenvalue of A, then we define the
eigenspace of λ, denote Eλ, to be all the vectors ~v such that ~v is an
eigenvector with eigenvalue λ.

Equivalently

Eλ = {~v : A~v = λ~v}

or
Eλ = null(A− λIn).

Patrick Meisner (KTH) Lecture 17 18 / 27



Eigenspaces

Hence, the issue with A =

[
1 0
1 1

]
came from the fact that the eigenvalue

only corresponded to 1 linearly independent eigenvectors instead of the
two we need. This leads us to discuss the eigenspaces.

Definition

If A is a matrix and λ is an eigenvalue of A, then we define the
eigenspace of λ, denote Eλ, to be all the vectors ~v such that ~v is an
eigenvector with eigenvalue λ.Equivalently

Eλ = {~v : A~v = λ~v}

or
Eλ = null(A− λIn).

Patrick Meisner (KTH) Lecture 17 18 / 27



Eigenspaces

Hence, the issue with A =

[
1 0
1 1

]
came from the fact that the eigenvalue

only corresponded to 1 linearly independent eigenvectors instead of the
two we need. This leads us to discuss the eigenspaces.

Definition

If A is a matrix and λ is an eigenvalue of A, then we define the
eigenspace of λ, denote Eλ, to be all the vectors ~v such that ~v is an
eigenvector with eigenvalue λ.Equivalently

Eλ = {~v : A~v = λ~v}

or
Eλ = null(A− λIn).

Patrick Meisner (KTH) Lecture 17 18 / 27



Distinct Eigenspaces are Linearly Independent

Theorem

Let A be an n × n matrix and let λ1, . . . , λk be distinct eigenvalues. Then
if ~vi ∈ Eλi for i = 1, . . . , k, then the set {~v1, . . . , ~vk} is linearly
independent.

Sketch of Proof.

In the case k = 2, if ~v1 and ~v2 were linearly dependent, then ~v1 = c~v2 for
some c .Hence,

λ1~v1 = A~v1 = A(c~v2) = c(A~v2) = c(λ2~v2) = λ2(c~v2) = λ2~v1

And so, it would have to be that λ1 = λ2, which contradicts the
assumption that the λi were distinct.
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Corollary

Corollary

If an n × n matrix A has n distinct eigenvalues then it is diagonalizable.

Proof.

Let λ1, . . . , λn be the n distinct eigenvalues of A. Let ~v1, . . . , ~vn be any set
of vectors such that ~vi ∈ Eλi for i = 1, ,̇n. Then

{~v1, . . . , ~vn}

is a set of n linearly independent eigenvectors and so A is diagonalizable.
In particular:

A =
(
~v1 ~v2 . . . ~vn

)

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

(~v1 ~v2 . . . ~vn
)−1
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Geometric Multiplicity

Definition

If A is a matrix and λ is an eigenvalue, then we define the geometric
multiplicity of λ to be the dimension of its eigenspace Eλ.

Theorem

A n × n matrix A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues is n.

Sketch of Proof.

Let λ1, . . . , λk be the set of distinct eigenvalues. Let gi be the geometric
multiplicity of λi . Then we can find a basis for each eigenspace Eλi as
Eλi = span{~vi ,1, ~vi ,2, . . . , ~vi ,gi}

Then the set of vectors {~v1,1, ~v1,2, . . . , ~v1,g1 , ~v2,1, . . . , ~vk,gk} is the largest
linearly independent set of eigenvalues. Hence, A is diagonalizable if and
only if g1 + g2 + · · ·+ gk = n.
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Characteristic Polynomial

Recall that the λ is an eigenvalue of A if and only if det(A− λIn) = 0.

If we
view λ as a variable then we see that det(A− λIn) will be a polynomial of
degree n.

Definition

The polynomial given by det(A− tIn) is called the characteristic
polynomial of A. Moreover, we see that λ is an eigenvalue of A if and
only if it is a root of the characteristic polynomial of A.

We know that if r1, . . . , rn are the root of any polynomial P(t), then we
can write P(t) = (t − r1)(t − r2) · · · (t − rn)Of course, the roots
r1, r2, . . . , rn may not be distinct. Hence, for any root r , we define the
multiplicity of it to be the number of times it appears on the list of ri .
We can extend this to eigenvalues.
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Algebraic Multiplicity

Definition

Let A be a matrix and let λ be an eigenvalue of A. Then we define the
algebraic multiplicity of λ to be the multiplicity of λ as a root of the
characteristic polynomial.

Note: the algebraic multiplicity of an eigenvalue λ is not to be confused
with the geometric multiplicity of λ! While these two concepts are very
much related, they are indeed different things.

Theorem

Let A be a matrix and let λ1, . . . , λk be the set of distinct eigenvalues of
A. Let ai be the algebraic multiplicity of λi for i = 1, . . . , k. Then

a1 + a2 + · · ·+ ak = n
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Relating Algebraic and Geometric Multiplicities

Theorem

Let A be a matrix and let λ1, . . . , λk be a set of distinct eigenvalues of A.
Let a1, . . . , ak and g1, . . . , gk be the algebraic and geometric multiplicities
of A. Then

1 1 ≤ gi ≤ ai for all i = 1, . . . , k

2 A is diagonalizable if and only if ai = gi for all i = 1, . . . , k.
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Rundown of Terminology in Examples

If A =

(
3 2
2 3

)
,

then the characteristic polynomial is

det(A− tI ) = (t − 1)(t − 5)

The eigenvalues are 1 and 5. The arithmetic multiplicity of 1 is 1 and the
arithmetic multiplicity of 5 is 1. The eigenspaces are

E1 = span

{[
1
−1

]}
E5 = span

{[
1
1

]}
so the geometric multiplicity of 1 is 1 and the geometric multiplicity of 5 is
1. And we can see that A is diagonalizable for three reason

1 It has a set of 2 linearly independent eigenvectors

2 It has 2 distinct eigenvalues

3 All geometric multiplicities are equal to the arithmetic multiplicities.
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Rundown of Terminology in Examples

If A =

(
1 0
1 1

)

, then the characteristic polynomial is

det(A− tI ) = (t − 1)2

A has only one eigenvalue, 1, and it’s arithmetic multiplicity if 2. The
eigenspaces is

E1 = span

{[
0
1

]}
so the geometric multiplicity of 1 is 1.And we can see that A is not
diagonalizable for two reasons

1 It only has a set of 1 linearly independent eigenvectors

2 There is an eigenvalue whose geometric multiplicity is not the same
as it’s arithmetic multiplicity.
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Rundown of Terminology in Examples

If

A =

 1/2 −1 1/2
0 1 0
−3/2 −3 5/2



=

1 1 0
0 0 1
1 3 2

1 0 0
0 2 0
0 0 1

1 1 0
0 0 1
1 3 2

−1

then the characteristic polynomial is det(A− tI3) = (t − 1)2(t − 2) and so
we see that the eigenvalues are 1 and 2. The arithmetic multiplicity of 1 is
2 and the arithmetic multiplicity of 2 is 1. The eigenspaces are
E1 = span{(1, 0, 1), (0, 1, 2)}, E2 = span{(1, 0, 3)}. The geometric
multiplicity of 1 is 2 and the geometric multiplicity of 1 is 1. And, we can
see that A is diagonalizable for three reason:
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