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Topics for Today

@ Linear Transformations in Different Bases
@ Change of Basis for Square Linear Transformations

© Change of Basis for Non-Square Linear Transformations
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Standard Matrix of a Linear Transformation

We have seen that for any linear transformation 7 : R” — R™, we can
associate a matrix.
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Standard Matrix of a Linear Transformation

We have seen that for any linear transformation 7 : R” — R™, we can
associate a matrix. Namely,

A= (T(&) T(&) ... T(&))
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Standard Matrix of a Linear Transformation

We have seen that for any linear transformation 7 : R” — R™, we can
associate a matrix. Namely,

A= (T(&) T(&) ... T(&))

We call A the standard matrix of T. It has the property that
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Standard Matrix of a Linear Transformation

We have seen that for any linear transformation 7 : R” — R™, we can
associate a matrix. Namely,

A= (T(&) T(&) ... T(&))

We call A the standard matrix of T. It has the property that

There is another common notation for A, that is, we sometimes write
A = [T] and then write
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Standard Matrix of a Linear Transformation

We have seen that for any linear transformation 7 : R” — R™, we can
associate a matrix. Namely,

A= (T(&) T(&) ... T(&))

We call A the standard matrix of T. It has the property that

There is another common notation for A, that is, we sometimes write
A = [T] and then write

NOTE: while T is a linear transformation [T] is a matrix!

Patrick Meisner (KTH) Lecture 16 3/21



Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about
the geometry of the transformation.
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Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about
the geometry of the transformation. For example if T : R3 — R3 has

standard matrix

cosy —siny 0
[T]=|sin7 cosh O
0 0 1
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Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about

the geometry of the transformation. For example if T : R3 — R3 has
standard matrix

cos% —sin% 0
[T]=|sin7 cosh O
0 0 1

Then we can see that T fixes the z-axis
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Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about
the geometry of the transformation. For example if T : R3 — R3 has
standard matrix

cos% —sin% 0
[T]=|sin7 cosh O
0 0 1

Then we can see that T fixes the z-axis while it rotates the x, y-plane
about an angle of 7/4
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Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about
the geometry of the transformation. For example if T : R3 — R3 has
standard matrix

cos% —sin% 0
[T]=|sin7 cosh O
0 0 1

Then we can see that T fixes the z-axis while it rotates the x, y-plane
about an angle of /4.

However, sometimes it is not so obvious what the geometry is by looking
at the standard matrix.
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Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about
the geometry of the transformation. For example if T : R3 — R3 has
standard matrix

cos% —sin% 0
[T]=|sin7 cosh O
0 0 1

Then we can see that T fixes the z-axis while it rotates the x, y-plane
about an angle of /4.

However, sometimes it is not so obvious what the geometry is by looking
at the standard matrix. For example, if T : R? — R? has standard matrix

n-(22)
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Geometric Interpretation of Linear Transformations

Looking at the standard matrix can sometimes give us information about
the geometry of the transformation. For example if T : R3 — R3 has
standard matrix

cos% —sin% 0
[T]=|sin7 cosh O
0 0 1

Then we can see that T fixes the z-axis while it rotates the x, y-plane
about an angle of /4.

However, sometimes it is not so obvious what the geometry is by looking
at the standard matrix. For example, if T : R? — R? has standard matrix

n-(22)

Can we describe this geometrically? If so, how?
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Linear Transformation Not Under the Standard Basis

If T:R"” — R", [T]is called the standard matrix because we are using the
standard basis €1, &, ..., &, to define it.

()= ( We) Tl - Tal)
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Linear Transformation Not Under the Standard Basis

If T:R"” — R", [T]is called the standard matrix because we are using the

standard basis €1, &, ..., &, to define it. However, we know that there are

many different bases for R”. So why can't we use one of the other ones?
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Linear Transformation Not Under the Standard Basis

If T:R"” — R", [T]is called the standard matrix because we are using the
standard basis €1, &, ..., &, to define it. However, we know that there are
many different bases for R”. So why can't we use one of the other ones?

Theorem

Let T : KD— ®@be a linear transformation and B = {vy,%. V,,} a basis
for R" and let =

=

\ (i 2

A=(T@le [T@e - [T(@)le)

Commiek 3y @F § &, O N A stedod wietiyg
0‘{’P]\,
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Linear Transformation Not Under the Standard Basis

If T:R"” — R", [T]is called the standard matrix because we are using the
standard basis €1, &, ..., &, to define it. However, we know that there are
many different bases for R”. So why can't we use one of the other ones?

Theorem
Let T : R" — R" be a linear transformation and B = {4, ..., V,} a basis
for R" and let
A=([T(A)ls [T(R)s --- [T(va)ls)
A M 4
Then

[T(X)]s = AlX]s

for every vector in X € R".
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Linear Transformation Not Under the Standard Basis

If T:R"” — R", [T]is called the standard matrix because we are using the
standard basis €1, &, ..., &, to define it. However, we know that there are
many different bases for R”. So why can't we use one of the other ones?

Let T : R" — R" be a linear transformation and B = {4, ..., V,} a basis
for R" and let

A= (T [T(B)s .. [T(V)s)
Then
[T(%)]s = Alxls

for every vector in X € R". Moreover, A is the unique matrix with this
property and we commonly denote A = [T|g and call it the matrix of T
with respect to the basis B. B

Patrick Meisner (KTH) Lecture 16 5/21



Work o s K0T - (T(w)], ) They (), > A (7)),
L (&

|
()

e (W) KT(QU( For cﬂ;}]; G r(v?)]p

= @ Ty vy 6 O],

@
Lhs,  ALE)e (@), - @\(@ﬁ)[;

Cn

] - frt) v i)
2

e < Ly,




Example

Exercise

Let T : R?2 — R2 be the linear transformation with standard matrix

-

Find [T]g, the matrix of T with respect to the basis B = {v}, b} where

Use it to describe T geometrically and calculate €].
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Example

Exercise

Let T : R?2 — R2 be the linear transformation with standard matrix

-

Find [T]g, the matrix of T with respect to the basis B = {v}, b} where

Use it to describe T geometrically and calculate €].

By the theorem, we know that

[Tls = ([T(A)ls [T(v2)]s)
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Example

Exercise

Let T : R?2 — R2 be the linear transformation with standard matrix

-

Find [T]g, the matrix of T with respect to the basis B = {v}, b} where

Use it to describe T geometrically and calculate €].

By the theorem, we know that

[Tls = ([T(A)ls [T(v2)]s)

Hence, we need to find the coordinates of T(v4) and T(V,) with respect
o B
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Example Continued
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Example Continued
- (3 3) |2
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Example Continued
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Example Continued
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Example Continued
T(%) = G g) [_ ] _

SIS

Patrick Meisner (KTH) Lecture 16 8/21



Example Continued
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Example Continued

T(%) = G g) [%] _ [%] U= 17 400 — [T(7)]s = H
€ Y-8
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Example Continued
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Example Continued
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Example Continued

T(n) = G g) [\}?] = [@] =W =14+0h = [T(A)]s = [

() = (g §> [i] - [%] 50, — OV +50, —> [T()]s = m

Hence we see that

[Tls = (IT(Als  [T(%)]s)
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Example Continued

T(n) = G g) [\}?] = [@] =W =14+0h = [T(A)]s = [

T() = (g ;) [i] = [%] =50 = 0%+ 5% = [T(%)]s = m

Hence we see that

[T = (T()e [T@)e) = (g )
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Example Continued

Hence we see that
(7le = (T@le (T@e) = (5 9)

In particular, [T]g is diagonal!
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Example Continued
- 9[-
2 3 7

o= (3 3) 8] - |

Hence we see that

(7le = (T@le (T@e) = (5 9)

] =7 =14 +0h = [T(4)]s = H

SIS

5 S 5 5 0
] =5wv =0v; +H5v, — [T(VZ)]B = |:5:|

Sl

In particular, [T]g is diagonal! We've seen that transformations whose
standard matrices are diagonal correspond to stretching the axes (i.e.
stretching the standard basis €;).
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Example Continued

_ [_1%] = A =17 +00h = [T(A)]s= H

T(%) = (g §> [i] _ [%] — 50y = 0% + 51 — [T(%)]s = m

Hence we see that

(7le = (T@le (T@e) = (5 9)

In particular, [T]g is diagonal! We've seen that transformations whose
standard matrices are diagonal correspond to stretching the axes (i.e.
stretching the standard basis €;).

Likewise, [T]g being diagonal corresponds to stretching along the basis

vectors B.
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Example Continued

That is, we may conclude that T acts by stretching along the direction of
Vi by a factor of 1 and stretching along the direction of V» by a factor of 5.

C,QN\M(/\* 3 "Y{/L(S @_OLQ?— ?Q omef e ‘f‘/\J(‘QV @\VQJF A7 9
oy Onlly Ve couy Zﬂu wes dragoas] !
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Example Continued

That is, we may conclude that T acts by stretching along the direction of
Vi by a factor of 1 and stretching along the direction of V» by a factor of 5.

Now, to use this to calculate T(€1), we need to write € in the basis B.

(tlen ]~ T70p @0
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Example Continued

That is, we may conclude that T acts by stretching along the direction of
Vi by a factor of 1 and stretching along the direction of V» by a factor of 5.

Now, to use this to calculate T(€1), we need to write € in the basis B.
Indeed,
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Example Continued

That is, we may conclude that T acts by stretching along the direction of
Vi by a factor of 1 and stretching along the direction of V» by a factor of 5.

Now, to use this to calculate T(€1), we need to write € in the basis B.
Indeed,

1 1[5 1 |5
' [0] V2|5 V2 }]
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Example Continued

That is, we may conclude that T acts by stretching along the direction of
Vi by a factor of 1 and stretching along the direction of V» by a factor of 5.

Now, to use this to calculate T(€1), we need to write € in the basis B.
Indeed,
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Example Continued

That is, we may conclude that T acts by stretching along the direction of
Vi by a factor of 1 and stretching along the direction of V» by a factor of 5.

Now, to use this to calculate T(€1), we need to write € in the basis B.

Indeed,
1 1 1
s - =Lt ﬁ] - 72
eFHZ = [éils = | ¥
o Ve2[Zl veln 73
And so

[T(e1)ls = [T]slélls
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Example Continued

That is, we may conclude that T acts by stretching along the direction of
Vi by a factor of 1 and stretching along the direction of V» by a factor of 5.

Now, to use this to calculate T(€1), we need to write € in the basis B.

Indeed,
1 1 1
s - =Lt ﬁ] - 72
eFHZ = [éils = | ¥
o Ve2[Zl veln 73
And so

T(@)le = [Tlaléla = (o ) [

SISl

|
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Example Continued

That is, we may conclude that T acts by stretching along the direction of
Vi by a factor of 1 and stretching along the direction of V» by a factor of 5.

Now, to use this to calculate T(€1), we need to write € in the basis B.
Indeed,

S Y O -1 A R - R
e1—[0]—ﬂ \_7% +\@ \k] :[91]8—[}5]
And so 1 1
[T(é)]s = [T]slé]s = ((1, ;’) [ﬁ] = [ﬁ]
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Example Continued

That is, we may conclude that T acts by stretching along the direction of
Vi by a factor of 1 and stretching along the direction of V» by a factor of 5.

Now, to use this to calculate T(€1), we need to write € in the basis B.
Indeed,

ﬂ_H_lé R ] R

€ = 0 _\ﬁ % +\@ % €1lB = %

And so >
7@y = [Tlsléls = (o ) H %
oLl 5

:>T(e1)—£51+\@2

Patrick Meisner (KTH) Lecture 16

9/21



Example Continued

That is, we may conclude that T acts by stretching along the direction of
Vi by a factor of 1 and stretching along the direction of V» by a factor of 5.

Now, to use this to calculate T(€1), we need to write € in the basis B.
Indeed,

1 1[5 1[5 v
SR R
o v2lnl v2lvs Vi
And so
1 0\ [ >
Tle = Tleleile = (5 ) || = |2
V2 NG
1 5 1[5l 5[5
:}T_‘ :7_‘—’—7_‘:7 ﬁ + — \/§
(&) =71+ 5% V2 |5 V2|5
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Example Continued

That is, we may conclude that T acts by stretching along the direction of
Vi by a factor of 1 and stretching along the direction of V» by a factor of 5.

Now, to use this to calculate T(€1), we need to write € in the basis B.
Indeed,

11 15|, 1|5 75
512[]2 Vil + = 12] :>[51]B:[12]
o Vv2lzl valn %
And so
1 0 1 1
Tle = Tleleile = (5 ) || = |2
V2 V2
1 5 1 [l s [ 3
(é1) NG 1 > 2 NG 7% A % 5
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Comments on Example

Of course, this was a round about way of calculating T(é}).

Patrick Meisner (KTH) Lecture 16 10/21



Comments on Example

Of course, this was a round about way of calculating T(€1). A much
easier way would be to just use the standard matrix.
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Comments on Example

Of course, this was a round about way of calculating T(€1). A much
easier way would be to just use the standard matrix. That is:

T(&) = (2 §> B] - B]
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Comments on Example

Of course, this was a round about way of calculating T(€1). A much
easier way would be to just use the standard matrix. That is:

T(&) = (2 §> B] - B]

However, this becomes useful when if we need to compute T(X) with

5
V2
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Comments on Example

Of course, this was a round about way of calculating T(€1). A much
easier way would be to just use the standard matrix. That is:

T(&) = (2 §> B] - B]

However, this becomes useful when if we need to compute T(X) with

5 1 1
z:[\?] =2|Y3|+3 ?]
V2 V2 V2
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Comments on Example

Of course, this was a round about way of calculating T(€1). A much
easier way would be to just use the standard matrix. That is:

T(&) = (2 §> B] - B]

However, this becomes useful when if we need to compute T(X) with

5 1 1
R 7 7 7 2
%= M =21 +3,?] = [>?]B=@
V2 V2 V2
\Y/ ‘/1/
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Comments on Example

Of course, this was a round about way of calculating T(€;). A much
easier way would be to just use the standard matrix. That is:

T(&) = (2 §> B] - B]

However, this becomes useful when if we need to compute T(X) with

1

1

5 1
(3] (4] = [3] - -
V2 V2 V2

and so
[T(X)]s = [T]slX]s
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Comments on Example

Of course, this was a round about way of calculating T(€;). A much
easier way would be to just use the standard matrix. That is:

T(&) = (2 §> B] - B]

However, this becomes useful when if we need to compute T(X) with

1

1

5 1
(3] (4] = [3] - -
V2 V2 V2

and so

7(le = 7leldla =[5 9] [3]
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Comments on Example

Of course, this was a round about way of calculating T(€;). A much
easier way would be to just use the standard matrix. That is:

r@=(z5)lol=l2
However, this becomes useful when if we need to compute T(X) with
- H >
V2
760 = [Meldle = |g o] [3] = | * TCF)

T{K) a \/\\ (s (/v
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Change of Basis of Linear Transformation

If T:R" — R"” and B, B’ are two bases for R", how are [T]g and [T]g
related?
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Change of Basis of Linear Transformation

If T:R" — R"” and B, B’ are two bases for R", how are [T]g and [T]g
related?

Theorem
If T:R" - R" and B={V,...,V,} and B' = {V,...,V]} are two bases

e L 1\ 1 n
for R", then

[Tler = P[T]gP "
where

P="Pep= (vl [2ls ... [Vis)
- -

N
is the transition matrix from B — B’.
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Sketch of Proof
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Sketch of Proof

If P= Pg_p, then Pl = Pgi_.p.
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Sketch of Proof

If P= Pg_p, then Pl = Pg/_g. So
P[T]gP™*

can be thought of doing three things to a vector in base B’
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Sketch of Proof

If P= Pg_p, then Pl = Pg/_g. So
P[T]gP™*
——

can be thought of doing three things to a vector in base B’
© Changes the vector X from base B’ to B — P~\
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Sketch of Proof

If P= Pg_p, then Pl = Pg/_g. So
P[T]gP™*

can be thought of doing three things to a vector in base B’
@ Changes the vector X from base B’ to B — Fﬂ
@ Performs the operation of T is base B /—— CT]

0
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Sketch of Proof

If P= Pg_p, then Pl = Pg/_g. So

P[T]gP™! —
can be thought of doing three things to a vector in base B’
© Changes the vector x from base B’ to B e p
@ Performs the operation of T is base B & CT)y

© Changes the resulting vector back from base B to B < p
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Sketch of Proof

If P= Pg_p, then Pl = Pg/_g. So
P[T]gP™*

can be thought of doing three things to a vector in base B’
© Changes the vector x from base B’ to B
@ Performs the operation of T is base B
© Changes the resulting vector back from base B to B’

So it makes sense that this would be the same as just applying T in base
B’
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Transition Between Orthonormal Bases

Corollary
If T:R" - R" and B={W,...,V,} and B' ={V;,...,V,} are two
orthonormal bases for R", then

(Tl = P[T]sPT

where P = Pg_.p' is the transition matrix from B — B’.

|

W@V@V"l g”l%j P

~(
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Transition Between Orthonormal Bases

Corollary
If T:R" - R" and B={W,...,V,} and B' ={V;,...,V,} are two
orthonormal bases for R", then

[Tle = P[T]sP"

where P = Pg_.p' is the transition matrix from B — B’.
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Transition Between Orthonormal Bases

Corollary

If T:R" - R" and B={W,...,V,} and B' ={V;,...,V,} are two
orthonormal bases for R", then

[Tle = P[T]sP"

where P = Pg_.p' is the transition matrix from B — B’.

If B and B’ are orthonormal bases then Pg_,g/ is an orthogonal matrix.
(Exercise: show this)
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Transition Between Orthonormal Bases

Corollary

If T:R" - R" and B={W,...,V,} and B' ={V;,...,V,} are two
orthonormal bases for R", then

[Tle = P[T]sP"

where P = Pg_.p' is the transition matrix from B — B’.

If B and B’ are orthonormal bases then Pg_,g/ is an orthogonal matrix.

(Exercise: show this)

T(AQWW'»

Hence PTP =1, and so P~1 = PT. CT)Q( = F CTJO pﬁ\

o =7 1 -
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Transition to and from Standard Basis

Corollary

If T:R" —R" and B = {Wi,...,Vp} is a basis for R" and S is the
standard basis, then

[Tls = [T]=P[T]aP"

where g: Yc/ an

P=Pg.,s= ([\71]5 [%]s ... [\7,,]5)
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Transition to and from Standard Basis

Corollary

If T:R" —R" and B = {Wi,...,Vp} is a basis for R" and S is the
standard basis, then

[Tls = [T]=P[T]aP"

where
P="Pg,s=(]s [ls ... [Vls) =" W% V)
™ N

is the transition matrix from B — S.
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Transition to and from Standard Basis

Corollary
If T:R" —R" and B = {Wi,...,Vp} is a basis for R" and S is the
standard basis, then

[Tls = [T]=P[T]aP"

where

P=Pg_s= ([\71]5 [\72]5 [\7,,]5) = (\71 Vo oo \7,,)

is the transition matrix from B — S.

Moreover, if B is an orthonormal basis, then

[T] = P[T]sP”
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Let T : R? — R2 be the transformation with standard matrix <g §>
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Let T : R? — R2 be the transformation with standard matrix <g §>
Then we saw if B = {V4, b} with

1
V2

then [T]s = <(1) g)
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Let T : R? — R2 be the transformation with standard matrix <g §>

Then we saw if B = {V4, b} with

0 5
(Exercise: check this), and so

then [T]g = <1 0). Now, we see that B is an orthonormal basis
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Let T : R? — R2 be the transformation with standard matrix <g §>

Then we saw if B = {V4, b} with

0 5
(Exercise: check this), and so

then [T]g = <1 0). Now, we see that B is an orthonormal basis

1

1
P=Pg,s=[h w|= [\—/% \{i]
V2

V2
_s
S ' \(\uj g(\\&of\c}(\f"\rxl
r YW
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Let T : R? — R2 be the transformation with standard matrix <g §>

Then we saw if B = {V4, b} with

then [T]B: 05

(Exercise: check this), and so

P= PB_>5—\7 Vg@ﬂ

Patrick Meisner (KTH) Lecture 16 15/21
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). Now, we see that B is an orthonormal basis
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Let T : R? — R2 be the transformation with standard matrix <g §>

Then we saw if B = {V4, b} with
S < stendard
1 1
V2 V2 = 19 ¢,
then [T]g = <é g) Now, we see that B is an orthonormal basis
(Exercise: check this), and so
11 1 =1
P=Pp,s=[n \72]2[\_/% ‘{i] and Pt=pPT =¥ \?]
V2 V2 V2 V2

And a quick calculation confirms that

& 2>_[J5 f]<1 o>[ ]
- | =1 1
23 % B\ S
O 2 iiﬂi &
Patrick Meisner (KTH) Lecture 16 15/21

Sl
S



Issue with Non-Square Transformations

Up until now, we have been only discussing transformations from

RO RO
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Issue with Non-Square Transformations

Up until now, we have been only discussing transformations from

R™ — R". This was necessary as if we if T : RY — R@ then X € R” but
T(X) € R™ and if we have a basis for R then

[TRs  fecan () =@

would make no sense.

& TR
Cﬁﬂj& = LRy

’_i
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Issue with Non-Square Transformations

Up until now, we have been only discussing transformations from
RD— R™) This was necessary as if we if T : R" — R™, then X € R" but
T(X) € R™ and if we have a basis for R”, then

[T(X)]s

would make no sense. Whereas if we tried to use a basis B’ of R™ so that
[T(X)]g makes sense, we would now have that
%

[)?]B’ K& @"1 ié (Qm

makes no sense.

v bzﬂgt L) 1R,
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Issue with Non-Square Transformations

Up until now, we have been only discussing transformations from
R"” — R". This was necessary as if we if T : R” — R™, then X € R" but
T(X) € R™ and if we have a basis for R”, then

[T(X)]s

would make no sense. Whereas if we tried to use a basis B’ of R™ so that
[T(X)]g makes sense, we would now have that

Xl

makes no sense.

Conclusion: using only one basis there is no way to make sense of the
statement

(T(®)s = [TIslKls
if T:R"™ — R™ for n# m.
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Non-Square Linear Transformation With Respect to Two

Bases

Theorem

Let T : KD— RVand let B = {W, ..., V,} be a basis for R" and
B' = {¥,...,V.} be a basis for R" =
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Non-Square Linear Transformation With Respect to Two
Bases

Theorem
Let T :R" — R™ and let B = {V4,...,V,} be a basis for R" and
B' ={vj,...,V],} be a basis for R™ then we define
=
A= (TWe [T ... [TW)ls)
S S rt
and get that
(TG)ar = Al

A~ Q
for every vector X € R". L -

%
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Non-Square Linear Transformation With Respect to Two
Bases

Theorem
Let T:R" — R™ and let B={W,...,V,} be a basis for R" and
B ={vj,...,V],} be a basis for R™ then we define

A= (TWe [T ... [TW)ls)

and get that
[T(?)]er = Alle

for every vector X € R". We denote the matrix A= [T)g/ g ad call it the
matrix for T with respect to the bases B and B’.
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Non-Square Linear Transformation With Respect to Two
Bases

Theorem
Let T:R" — R™ and let B = {w,...,V,} be a basis for R" and
B ={vj,...,V],} be a basis for R™ then we define e Ak
= = . N<e
A = ([T(Vl)]B’ [T(V2)]B/ e [T(Vn)]B’) 7;)-4

and get that
[Tl = Al¥le

for every vector X € R". We denote the matrix A= [T|g g ad call it the
matrix for T with respect to the bases B and B’.

RENEILS

If T:R"” — R"” and B is a basis for R”, then this new notation is
consistent with our old notation in that [T]g = [T]g 5.

| \

Patrick Meisner (KTH) Lecture 16 17 /21



Example

Exercise

Let T : R?2 — RR3 be the linear transformation define by
X x2
T ([;D = |-5x1 + 13%
2 —7x1 + 16x,
Let B = {4, »} be a basis for R? and B’ = {V], 4, 4} be a basis for R3
where ga—am = S
1 —1 0
% = m,@: [g]v'l= ol,=|2|,%=1]0
1 2 2
Find [T]BI’B.
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We know that

[Tl = ([T(g)]/:{' [T(%)]s)
)

K
Q= Ty
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We know that
[Tlers = ([T(A)s [T(%)]s)
and can calculate

@ =7([])

L(\
o
W
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We know that
[Tlers = ([T(A)s [T(%)]s)
and can calculate

LR
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We know that
[Tlers = ([T(A)s [T(%)]s)
and can calculate

1 1
3 \ {
T(h)=T = |-53)+13(1)| = |-2| =~ WV £, Gyl
0=(R]) {7<3>+16(1)] H e
/(\
Uik~ bay R
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We know that

[Tee = ([T(W)]e [T(%)]e)

and can calculate

o=r({) - [}
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We know that
[Tlers = ([T(A)s [T(%)]s)
and can calculate

1 1 -1 0
3 5
T(A)=T = |-53)+13(1)| =|-2| =-]2]-2]0

\ 5 0
= 2
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We know that
[Tlers = ([T(A)s [T(%)]s)
and can calculate

1 -1 0
3 5
T(A)=T = |-53)+13(1)| =|-2| =-]2]-2]0

:_%_2‘7; = [T(v)]p = |:1]




We know that
[Tlers = ([T(A)s [T(%)]s)
and can calculate

1 1 -1 0
Ly 31 _ | I N o
o= () L -3 2] 38

5 0
=—\7ﬁ—§\7§ = [T(A)]s = |1

—~ A~

_5
2
2 1 1 0
1
T(Vz):T(BD: 1l =2lol+2]2|-2lo
_3 1 2 2
) w (!
5, 1., 3, Vi 0
:§V1+§V2—ZV3
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We know that
[Tler s = ([T(W)le [T(%)]s)

and can calculate

1 —1 0

3 5
T(A)=T = |-5(3)+131)| =|-2| =-|2]|-2 |0
. dlD {7<3>+16(1)] H H 2 u




Thus we conclude that

[Tlere = ([T(W)]e [T(%)]e)
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Thus we conclude that

0 5
[Tlers = (IT()le [T(Vz)]Bf)(l §)
TN
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Thus we conclude that

NN 01

[Tles = ([T(W)]le [T(R)]ls) = | -1

Bl

Therefore, since

.-
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Thus we conclude that

NN 01

[Tles = ([T(W)]le [T(R)]ls) = | -1

Bl

Therefore, since

<ofj -] s
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Thus we conclude that
5
Mo = ((T(le [T)e) = -1 1

Therefore, since

& = [é] =2 m - [g] =201 — v = [é]s = [:2-‘1]
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Thus we conclude that

5
Mo = ((T(le [T)e) = -1 1

Therefore, since

o] ][0 — -3

and so

[T(e1)ls
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Thus we conclude that

0 5
(Tles = ([T [T(%)e) = | -1 i
2 T4

Therefore, since

ol e 3

and so

[T(e1)le = [T]B’,B[‘ilg
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Thus we conclude that
5
Mo = ((T(le [T)e) = -1 1

Therefore, since

=[] =of] [ = e [3

and so
5
. . 0 ? 2
T(@le = [Mevalala= -1 1|2
_3 _3 -
2 1
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Thus we conclude that

5
[Tlere = ([TW)ls [T(R)]e) = (1 i)
2

Therefore, since

ol e

and so
0 3\, -5 A
[T(&))e = [Tlesléls = (% %3> [—1} B [él
2 T3 2

S \
SN~ TS\ - 2 \ —_ g; \} A
'\{Q( = 7 2 U q < Chaolt: ot K \'“(Y‘\ il e
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Changing Two Bases for Non-Square Linear

Transformations

Let T : R" — R™ be a linear transformation. Let 81 and Bg be bases for
R" and Bl, B), be bases for R™. Then

[T]B{JZ} = PB§—>B/[T]B' le—>31
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Changing Two Bases for Non-Square Linear

Transformations

Let T : R" — R™ be a linear transformation. Let By and B, be bases for
R" and Bj, B be bases for R™. Then

—il
[T1e;.8, = Psy—5;[TlB;.8,P5, 5,
(\ /7
=g et ot
Since PEZLBI = Pp,_sB,, the right hand side can be thought of as three
different operations:
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Changing Two Bases for Non-Square Linear

Transformations

Let T : R" — R™ be a linear transformation. Let By and B, be bases for
R" and Bj, B be bases for R™. Then

[T)a;6, = Pai—s;[Tle;6,P5, 5,

Since PEZLBI = Pp,_sB,, the right hand side can be thought of as three
different operations:

—\
@ Changing the R” basis from By to B, &— \?Eg\ ﬁ&/
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Changing Two Bases for Non-Square Linear

Transformations

Let T : R" — R™ be a linear transformation. Let By and B, be bases for
R" and Bj, B be bases for R™. Then

[T)a;6, = Pai—s;[Tle;6,P5, 5,

Since PEZLBI = Pp,_sB,, the right hand side can be thought of as three
different operations: ~t

© Changing the R" basis from By to B, & ‘4,~=20
@ Applying T from basis B, into basis B} & {Tj% .
s Ly
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Changing Two Bases for Non-Square Linear

Transformations

Let T : R" — R™ be a linear transformation. Let By and B, be bases for
R" and Bj, B be bases for R™. Then

[T)a;6, = Pai—s;[Tle;6,P5, 5,

Since P‘,;LBI = Pp,_sB,, the right hand side can be thought of as three
different operations:

@ Changing the R" basis from By to B, == %iv—?@
@ Applying T from basis B, into basis B = CT7 50,
© Changing the R™ from basis B} to Bj Y PB; N

Patrick Meisner (KTH) Lecture 16 21/21



Changing Two Bases for Non-Square Linear

Transformations

Let T : R" — R™ be a linear transformation. Let By and B, be bases for
R" and Bj, B be bases for R™. Then

[T)a;6, = Pai—s;[Tle;6,P5, 5,

Since PEZLBI = Pp,_sB,, the right hand side can be thought of as three
different operations:

@ Changing the R" basis from By to B,
@ Applying T from basis B, into basis B
© Changing the R™ from basis B} to Bj

Hence, it makes sense this should be applying T from basis B; to Bj.

Patrick Meisner (KTH) Lecture 16 21/21



