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Topics for Today

1 Least Squares Process

2 Change of Basis

3 Gram-Schmidt Process
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Approximate Solutions to Matrix Equations

For a given m × n matrix A, and a vector ~b in Rm we are interested in
finding solutions to ~x in Rn such that A~x = ~b.

As we have seen, there is
not always a solution. Hence, we sometimes have to settle for a best
approximate solution.

Definition

If A is an m × n matrix and ~b is a vector in Rm, then a vector ~x in Rn is
called a best approximate solution or a least squares solution to
A~x = ~b if ∥∥∥~b − A~x

∥∥∥ ≤ ∥∥∥~b − A~y
∥∥∥

for all ~y in Rn . The vector ~b − A~x is called the least squares error

vector, and the scalar
∥∥∥~b − A~x

∥∥∥ is called the least squares error.

Patrick Meisner (KTH) Lecture 15 3 / 26



Approximate Solutions to Matrix Equations

For a given m × n matrix A, and a vector ~b in Rm we are interested in
finding solutions to ~x in Rn such that A~x = ~b. As we have seen, there is
not always a solution. Hence, we sometimes have to settle for a best
approximate solution.

Definition

If A is an m × n matrix and ~b is a vector in Rm, then a vector ~x in Rn is
called a best approximate solution or a least squares solution to
A~x = ~b if ∥∥∥~b − A~x

∥∥∥ ≤ ∥∥∥~b − A~y
∥∥∥

for all ~y in Rn . The vector ~b − A~x is called the least squares error

vector, and the scalar
∥∥∥~b − A~x

∥∥∥ is called the least squares error.

Patrick Meisner (KTH) Lecture 15 3 / 26



Approximate Solutions to Matrix Equations

For a given m × n matrix A, and a vector ~b in Rm we are interested in
finding solutions to ~x in Rn such that A~x = ~b. As we have seen, there is
not always a solution. Hence, we sometimes have to settle for a best
approximate solution.

Definition

If A is an m × n matrix and ~b is a vector in Rm, then a vector ~x in Rn is
called a best approximate solution or a least squares solution to
A~x = ~b if ∥∥∥~b − A~x

∥∥∥ ≤ ∥∥∥~b − A~y
∥∥∥

for all ~y in Rn

. The vector ~b − A~x is called the least squares error

vector, and the scalar
∥∥∥~b − A~x

∥∥∥ is called the least squares error.

Patrick Meisner (KTH) Lecture 15 3 / 26



Approximate Solutions to Matrix Equations

For a given m × n matrix A, and a vector ~b in Rm we are interested in
finding solutions to ~x in Rn such that A~x = ~b. As we have seen, there is
not always a solution. Hence, we sometimes have to settle for a best
approximate solution.

Definition

If A is an m × n matrix and ~b is a vector in Rm, then a vector ~x in Rn is
called a best approximate solution or a least squares solution to
A~x = ~b if ∥∥∥~b − A~x

∥∥∥ ≤ ∥∥∥~b − A~y
∥∥∥

for all ~y in Rn . The vector ~b − A~x is called the least squares error

vector

, and the scalar
∥∥∥~b − A~x

∥∥∥ is called the least squares error.

Patrick Meisner (KTH) Lecture 15 3 / 26



Approximate Solutions to Matrix Equations

For a given m × n matrix A, and a vector ~b in Rm we are interested in
finding solutions to ~x in Rn such that A~x = ~b. As we have seen, there is
not always a solution. Hence, we sometimes have to settle for a best
approximate solution.

Definition

If A is an m × n matrix and ~b is a vector in Rm, then a vector ~x in Rn is
called a best approximate solution or a least squares solution to
A~x = ~b if ∥∥∥~b − A~x

∥∥∥ ≤ ∥∥∥~b − A~y
∥∥∥

for all ~y in Rn . The vector ~b − A~x is called the least squares error

vector, and the scalar
∥∥∥~b − A~x

∥∥∥ is called the least squares error.

Patrick Meisner (KTH) Lecture 15 3 / 26



Why “least squares”?

Note that if we write

~b − A~x =


c1
c2
...
cm



then we get ∥∥∥~b − A~x
∥∥∥ =

√
c21 + c22 + · · ·+ c2m

And we are wishing to minimize this value.

Note that the set {A~x : ~x ∈ Rn} is the column space of A. Hence, we are
really looking for the “minimal distance between the vector ~x and the
subspace col(A)”
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Distance to a Subspace

Question (Minimal Distance to a Subspace)

Given a subspace W of Rn and a vector ~b ∈ Rn, can we find a vector ~w in
W that is closest to ~b in the sense that∥∥∥~w − ~b

∥∥∥ ≤ ∥∥∥~v − ~b
∥∥∥

for all ~v in W ?

Such a vector ~w is called a best approximation to ~b
from W .

Theorem (Best Approximation Theorem)

If W is a subspace of Rn and ~b is a vector in Rn, then there is a unique
best approximation to ~b from W , namely ~w = projW ~b.
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Solving Least Squares

So, given an m × n matrix A and a vector ~b in Rm, we want to find a
vector ~x in Rn such that A~x is “closest” to ~b.

Setting ~y = A~x , we see that
~y ∈ col(A) and so ~y would be the best approximation to ~b from col(A).
That is:

~y = projcol(A)
~b

Hence, to solve our original problem of finding ~x , it remains to solve

A~x = projcol(A)
~b

CAUTION!!!!!

It is NOT the case that projcol(A)
~b = A(ATA)−1AT~b. Recall that the

matrix we use to describe the projection onto W must be one whose
columns form a basis for W . While the columns of A do form a spanning
set for col(A), they may not be linearly independent and so would not
form a basis!
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Least Squares Theorem

Theorem

The least squares solutions of a linear system A~x = ~b are the exact
solutions to the equation

ATA~x = AT~b

Proof.

We have seen that it is enough to solveA~x = projcol(A)
~b. Moreover, we

know that we can write

~b = projcol(A)
~b + projcol(A)⊥

~b = projcol(A)
~b + projnull(AT )

~b

Hence, multiplying the first equation on both sides by AT , we find

ATA~x = ATprojcol(A)
~b = AT (~b − projnull(AT )

~b) = AT~b
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Example

Find the least squares solution and least squares error for the linear system

3x1 + 2x2 − x3 = 2

x1 − 4x2 + 3x3 = −2

x1 + 10x2 − 7x3 = 1

So, we set up A,~b,ATA and ATA:

A =

3 2 −1
−4 3

1 10 −7

 ~b =

 2
−2
1

 A =

 3 1 1
2 −4 10
−1 3 −7



ATA = A =

11 12 −7
12 120 −84
−7 −84 59

 AT~b =

 5
22
−15


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Example continued

Hence we need to solve ATA = AT~b and so putting it in an augmented
matrix we get

(ATA|AT~b)

=

11 12 −7 5
12 120 −84 22
−7 −84 59 −15

 =⇒

1 0 1/7 2/7
0 1 −57 13/84
0 0 0 0


And we see that

~x =

 2/7− t/7
13/84 + 5t/7

t

 =

 2/7
13/84

0

+

1/7
5/7

1

 t

is a least squares solution for any t.
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Example Continued

To find the least squares error, it is enough now to find
∥∥∥~b − A~x

∥∥∥ for any

of the ~x we found above. (Exercise: Why does it not matter which ~x we
take?)

So, setting t = 0, we get

∥∥∥~b − A~x
∥∥∥ =

∥∥∥∥∥∥
 2
−2
1

−
3 2 −1

1 −4 3
1 10 −7

 2/7
13/84

0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 5/6
−5/3
−5/6

∥∥∥∥∥∥ =
√

(5/6)2 + (−5/3)2 + (−5/6)2 =
5

6

√
6

Remark

The least squares error of a linear system will be 0 if and only if there is a
solution to A~x = ~b
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Coordinates of Vectors in Other Basis

We know that a basis for R3 is given by ~e1, ~e2, ~e3.

And so any ~x ∈ R3 can
be written as ~x = x1~e1 + x2~e2 + x3~e3. We commonly condense this
notation to just write

~x =

x1x2
x3


However, we know that there are many other bases for R3. In particular

if B =


1

0
1

 ,

0
1
2

 ,

1
2
3

 then

1
0
3

 = 2

1
0
1

+ 2

0
1
2

−
1

2
3


So, what to do with these new numbers 2, 2,−1?
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Coordinates with Respect to a Basis

Definition

If B = {~v1, . . . , ~vk} is an ordered basis for a subspace W of Rn

and if

~w = a1~v1 + a2~v2 + · · ·+ ak~vk

is the expression for a vector ~w in W ,then we call a1, a2, . . . , ak the
coordinates of ~w with respect to B.More specifically, we call aj the
~vj -coordinate of ~w .We denote this as either

(~w)B = (a1, a2, . . . , ak) or [~w ]B =


a1
a2
...
ak


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Example

If we define the two bases we had above as

S =


1

0
0

 ,

0
1
0

 ,

0
0
1

 and B =


1

0
1

 ,

0
1
2

 ,

1
2
3



Then we can write our vector ~v = (1, 0, 3) as

[~v ]S =

1
0
3

 since ~v = 1

1
0
0

+ 0

0
1
0

+ 3

0
0
1


but

[~v ]B =

 2
2
−1

 since ~v = 2

1
0
1

+ 2

0
1
2

+ (−1)

1
2
3


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+ 0

0
1
0
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Remarks

If B = {~v1, . . . , ~vk}, then

[~w ]B =


a1
a2
...
an

 ⇐⇒ ~w = a1~v1 + a2~v2 + · · ·+ ak~vk

Hence, for any of the ~vi , we get

[~vi ]B =


0
...
1
...
0

 = ~ei since ~vi = 0~v1 + 0~v2 + · · ·+ 1~vi + · · ·+ 0~vk

That is, looking at vectors with respect to a certain basis can simplify
matters.
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Change of Basis Problem

Question

If ~w is a vector in Rn, and if we change the basis for Rn from a basis B to
a basis B ′, how are [~w ]B and [~w ]′B related?

In the case that n = 2, we would have B = {~v1, ~v2} and B ′ = {~v ′1, ~v ′2}.
Now, by definition

[~v1]B′ =

[
a
b

]
⇐⇒ ~v1 = a~v ′1 + b~v ′2

[~v2]B′ =

[
c
d

]
⇐⇒ ~v2 = c~v ′1 + d~v ′2

Now, let ~w be any vector, then we have

[~w ]B =

[
k1
k2

]
⇐⇒ ~w = k1~v1 + k2~v2 = k1(a~v ′1 + b~v ′2) + k2(c~v ′1 + d~v ′2)
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Change of Basis Problem 2

Expanding and collecting like terms we see that

[~w ]B =

[
k1
k2

]
⇐⇒ ~w = (ak1 + ck2)~v ′1 + (bk1 + dk2)~v ′2

⇐⇒ [~w ]B′ =

[
ak1 + ck2
bk1 + dk2

]
So the question becomes: how are

[
k1
k2

]
and

[
ak1 + ck2
bk1 + dk2

]
related?

[
ak1 + ck2
bk1 + dk2

]
=

(
a c
b d

)[
k1
k2

]
And we see that the columns of our matrices are exactly [~v1]B′ and [~v2]B′

Patrick Meisner (KTH) Lecture 15 16 / 26



Change of Basis Problem 2

Expanding and collecting like terms we see that

[~w ]B =

[
k1
k2

]
⇐⇒ ~w = (ak1 + ck2)~v ′1 + (bk1 + dk2)~v ′2

⇐⇒ [~w ]B′ =

[
ak1 + ck2
bk1 + dk2

]

So the question becomes: how are

[
k1
k2

]
and

[
ak1 + ck2
bk1 + dk2

]
related?

[
ak1 + ck2
bk1 + dk2

]
=

(
a c
b d

)[
k1
k2

]
And we see that the columns of our matrices are exactly [~v1]B′ and [~v2]B′

Patrick Meisner (KTH) Lecture 15 16 / 26



Change of Basis Problem 2

Expanding and collecting like terms we see that

[~w ]B =

[
k1
k2

]
⇐⇒ ~w = (ak1 + ck2)~v ′1 + (bk1 + dk2)~v ′2

⇐⇒ [~w ]B′ =

[
ak1 + ck2
bk1 + dk2

]
So the question becomes: how are

[
k1
k2

]
and

[
ak1 + ck2
bk1 + dk2

]
related?

[
ak1 + ck2
bk1 + dk2

]
=

(
a c
b d

)[
k1
k2

]
And we see that the columns of our matrices are exactly [~v1]B′ and [~v2]B′

Patrick Meisner (KTH) Lecture 15 16 / 26



Change of Basis Problem 2

Expanding and collecting like terms we see that

[~w ]B =

[
k1
k2

]
⇐⇒ ~w = (ak1 + ck2)~v ′1 + (bk1 + dk2)~v ′2

⇐⇒ [~w ]B′ =

[
ak1 + ck2
bk1 + dk2

]
So the question becomes: how are

[
k1
k2

]
and

[
ak1 + ck2
bk1 + dk2

]
related?

[
ak1 + ck2
bk1 + dk2

]
=

(
a c
b d

)[
k1
k2

]

And we see that the columns of our matrices are exactly [~v1]B′ and [~v2]B′

Patrick Meisner (KTH) Lecture 15 16 / 26



Change of Basis Problem 2

Expanding and collecting like terms we see that

[~w ]B =

[
k1
k2

]
⇐⇒ ~w = (ak1 + ck2)~v ′1 + (bk1 + dk2)~v ′2

⇐⇒ [~w ]B′ =

[
ak1 + ck2
bk1 + dk2

]
So the question becomes: how are

[
k1
k2

]
and

[
ak1 + ck2
bk1 + dk2

]
related?

[
ak1 + ck2
bk1 + dk2

]
=

(
a c
b d

)[
k1
k2

]
And we see that the columns of our matrices are exactly [~v1]B′ and [~v2]B′

Patrick Meisner (KTH) Lecture 15 16 / 26



Change of Basis Theorem

Theorem (Change of Basis Theorem)

If ~w is a vector in Rn and if B = {~v1, . . . , ~vn} and B ′ = {~v ′1, . . . , ~v ′n} are
bases for Rn, then

[~w ]B′ = PB→B′ [~w ]B

where PB→B′ is a matrix whose columns are the vectors of B in the bassi
B ′:

PB→B′ =
(
[~v1]B′ [~v2]B′ . . . [~vn]B′

)

The matrix PB→B′ is called the transition matrix (or the change of
coordinates matrix) from B to B ′.
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Example

Find the change of coordinate matrix PB→B′ and PB′→B

B =

{[
1
0

]
,

[
0
1

]}
to B ′ =

{[
1
1

]
,

[
2
1

]}

Now, we know that

PB→B′ =

([
1
0

]
B′

[
0
1

]
B′

)
Further, we see that[

1
0

]
= (−1)

[
1
1

]
+ 1

[
2
1

]
=⇒

[
1
0

]
B′

=

[
−1
1

]
[

0
1

]
= 2

[
1
1

]
+ (−1)

[
2
1

]
=⇒

[
0
1

]
B′

=

[
2
−1

]
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Example continued

And so, we conclude that

PB→B′ =

(
−1 2
1 −1

)

Similarly, we see that[
1
1

]
= 1

[
1
0

]
+ 1

[
0
1

]
=⇒

[
1
1

]
B

=

[
1
1

]
[

2
1

]
= 2

[
1
0

]
+ 1

[
0
1

]
=⇒

[
2
1

]
B

=

[
2
1

]
and so

PB→B′ =

(
1 2
1 1

)
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Invertible Change of Basis

Theorem

If B and B ′ are two basis, then the change of basis matrices PB→B′ and
PB′→B are invertible and each other’s inverse.

That is:

P−1B→B′ = PB′→B and P−1B′→B = PB→B′

Exercise

Show that the two matrices we found from the previous example(
−1 2
1 −1

)
and

(
1 2
1 1

)
are inverses of each other.
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Algorithm for Computing PB→B ′

Let B and B ′ be two bases.

1 Form the matrix (B|B ′) where the columns of B are the vectors in
basis B and the columns of B ′ are the vectors in B ′

2 Use elementary row operations to reduce B to the identity matrix

3 The resulting matrix will be (I |PB→B′)
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Orthogonal and Orthonormal Basis

As we have seen, working with some basis gives us an advantage.

Definition

We say a basis B = {~v1, . . . , ~vk} is orthogonal if

~vi · ~vj = 0 for all i 6= j .

We say the basis is orthonormal if it is orthogonal plus

‖~vi , ~vi‖ = 1 for all i .
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Properties of Orthogonal and Orthonormal Basis

Theorem
1 If {~v1, . . . , ~vk} is an orthonormal basis for a subspace W and ~w ∈W

then
projW ~x = (~x · ~v1)~v1 + · · ·+ (~x · ~vk)~vk

~w = projW ~w = (~w · ~v1)~v1 + · · ·+ (~w · ~vk)~vk

2 If {~v1, . . . , ~vk} is an orthogonal basis for a subspace W , and ~w ∈W
then

projW ~x =
~x · ~v1
‖~v1‖2

~v1 + · · ·+
~x · ~vk
‖~vk‖2

~vk

~w = projW ~w =
~w · ~v1
‖~v1‖2

~v1 + · · ·+
~w · ~vk
‖~vk‖2

~vk
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Niceness of Orthonormal Basis

In particular, this theorem states that if B = {~v1, . . . , ~vn} is an
orthonormal basis for ~w ∈ Rn, then,

[~w ]B

=


~w · ~v1
~w · ~v2

...
~w · ~vn


and hence if B ′ = {~v ′1, . . . , ~v ′n} is another basis, then finding the transition

matrix PB′→B is easy:

PB′→B =
(
[~v ′1]B . . . [~v ′n]B

)
=

~v ′1 · ~v1 . . . ~v ′n · ~v1
...

. . .
...

~v ′1 · ~vn . . . ~v ′n · ~vn


NOTE: it was imperative that we took B to be an orthonormal basis. This
does NOT hold in general!
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Gram-Schmidt Process

So we see that orthonormal bases are quite nice. Thus we want to work
them as much as possible.

Luckily, there is a process that will take any
basis and create an orthonormal basis out of it. This is called the
Gram-Schmidt process.

Suppose we have a basis B = {~v1, . . . , ~vk} of a subspace W of Rn the
algorithm on the next slide creates a new set of vectors {~w1, . . . , ~wk} that
is an orthogonal basis for W as well as a set of vectors {~u1, . . . , ~uk} that is
an orthonormal basis for W
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Gram-Schmidt Algorithm

1 Set
~w1 = ~v1

2 Set

~w2 = ~v2 − projspan{~w1}~v2 = ~v2 −
~v2 · ~w1

‖~w1‖2
~w1

3 Set

~w3 = ~v3 − projspan{~w1,~w2}~v3 = ~v3 −
~v3 · ~w1

‖~w1‖2
~w1 −

~v3 · ~w2

‖~w2‖2
~w2

4 Continue the process to get ~w1, . . . , ~wk .This will be an orthogonal
basis.

5 Set

~ui =
1

‖~wi‖
~wi

then {~u1, . . . , ~uk} will be an orthonormal basis.
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