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Topics for Today

© Least Squares Process
@ Change of Basis
© Gram-Schmidt Process
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Approximate Solutions to Matrix Equations

For a given m x n matrix A, and a vector b in R™ we are interested in
finding solutions to X in R" such that AX = b.
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Approximate Solutions to Matrix Equations

For a given m x n matrix A, and a vector b in R™ we are interested in
finding solutions to X in R” such that AxX = b. As we have seen, there is
not always a solution. Hence, we sometimes have to settle for a best
approximate solution.
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Approximate Solutions to Matrix Equations

For a given m x n matrix A, and a vector b in R™ we are interested in
finding solutions to X in R” such that AxX = b. As we have seen, there is
not always a solution. Hence, we sometimes have to settle for a best
approximate solution.

Definition
If Ais an m x n matrix and b is a vector in R™, then a vector X in R" is
called a best approximate solution or a least squares solution to
AX = b if

5% <547
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Approximate Solutions to Matrix Equations

For a given m x n matrix A, and a vector b in R™ we are interested in
finding solutions to X in R” such that AxX = b. As we have seen, there is
not always a solution. Hence, we sometimes have to settle for a best
approximate solution.

Definition
If Ais an m x n matrix and b is a vector in R™, then a vector X in R" is
called a best approximate solution or a least squares solution to
AX = b if

|52 <[54y

for all ¥ in R” . The vector b — AX is called the least squares error

vector
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Approximate Solutions to Matrix Equations

For a given m x n matrix A, and a vector b in R™ we are interested in
finding solutions to X in R” such that AxX = b. As we have seen, there is
not always a solution. Hence, we sometimes have to settle for a best
approximate solution.

Definition

1
1
a

If Ais an m X n matrix and b is a vector in R™, then a vector X in R”
called a best approximate solution or a least squares solution to
AR =b if

|5 <5~

for all ¥ in R” . The vector b — AX is called the least squares error
vector, and the scalar HE— A)'('H is called the least squares error.

QQMWW iy least Sougny  ctegre (5 O (X¥ “\'Qr‘*e & *Sgledion

Ax= L.
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Why “least squares”?

Note that if we write

a
R e
b— Ax =

Cm
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Why “least squares”?

Note that if we write

then we get

HE—A)?H:\/cf+c22+-~+c,2n
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Why “least squares”?

Note that if we write

Cm

then we get

HE—A)?H:\/cf+c22+-~+c,2n

And we are wishing to minimize this value.
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Why “least squares”?

Note that if we write

Cm

then we get

HE—A)?H:\/cf—ch—i---'%—c,zn

And we are wishing to minimize this value.

Note that the set {AX : X € R"} is the column space of A.
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Why “least squares”?
N A Ca ) Mo oldh)- gpor\(g ) < wot 3 Sl ths

\0 R s{ ZL‘,::?

Note that if we write v

c1
- %
b—AX=| .
Cm
Q
then we get ) .
HE—A)?H:\/cf—ch—i---'%—c,zn oAty
Het o o
And we are wishing to minimize this value. shlbio o Ay

Note that the set {AX : X € R"} is the column space of A. Hence, we are
really looking for the “minimal distance between the vector # and the
subspace col(A)” v
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Distance to a Subspace

Question (Minimal Distance to a Subspace)

Given a subspace W of R"” and a vector b € R", can we find a vector W in
W that is closest to b in the sense that

w—b|| <||[v-5b
N = T
Jidoneg bt U dikonee btoven U4
L. 2
for all v in W7 o ot
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Distance to a Subspace
Question (Minimal Distance to a Subspace)

Given a subspace W of R"” and a vector b € R", can we find a vector W in
W that is closest to b in the sense that

for all v in W? Such a vector w is called a best approximation to b
from W. )
W7 e aF Bo= we A g (D)
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Distance to a Subspace

Question (Minimal Distance to a Subspace)

Given a subspace W of R"” and a vector b € R", can we find a vector W in
W that is closest to b in the sense that

for all v in W? Such a vector w is called a best approximation to b
from W.

Theorem (Best Approximation Theorem)

If W is a subspace of R" and b is a vector in R", then there is a unique
best approximation to b from W
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Distance to a Subspace

Question (Minimal Distance to a Subspace)

Given a subspace W of R"” and a vector b € R", can we find a vector W in
W that is closest to b in the sense that

for all v in W? Such a vector w is called a best approximation to b
from W.

Theorem (Best Approximation Theorem)

If W is a subspace of]R” and b is a vector in R", then there is a unique
best approximation to b from W, namely w = pI’O_jWb
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Solving Least Squares

So, given an m X n matrix A and a vector b in R™ we want to find a
vector X in R" such that AX is “closest” to b.
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Solving Least Squares

So, given an m X n matrix A and a vector b in R™ we want to find a
vector X in R"” such that Ax is “closest” to b. Setting y = AX, we see that
y € col(A) and so y would be the best approximation to b from col(A).
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Solving Least Squares

So, given an m X n matrix A and a vector b in R™ we want to find a
vector X in R"” such that Ax is “closest” to b. Setting y = AX, we see that

¥ € col(A) and so ¥ would be the best approximation to b from col(A).
That is:

/SVP Ke )7: projcoI(A)b
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Solving Least Squares

So, given an m X n matrix A and a vector b in R™ we want to find a
vector X in R"” such that Ax is “closest” to b. Setting y = AX, we see that

¥ € col(A) and so ¥ would be the best approximation to b from col(A).
That is:

Y = Projcol(a)P
Hence, to solve our original problem of finding X, it remains to solve

—

AX = projco|(A)b
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Solving Least Squares

So, given an m X n matrix A and a vector b in R™ we want to find a
vector X in R"” such that Ax is “closest” to b. Setting y = AX, we see that

¥ € col(A) and so ¥ would be the best approximation to b from col(A).
That is:

Y = Projcol(a)P
Hence, to solve our original problem of finding X, it remains to solve

—

AX = projco|(A)b
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Solving Least Squares

So, given an m X n matrix A and a vector b in R™ we want to find a
vector X in R” such that AX is “closest” to b. Setting y = AX, we see that
¥ € col(A) and so ¥ would be the best approximation to b from col(A).
That is: B

Y = Projcol(a)P
Hence, to solve our original problem of finding X, it remains to solve

—

-~ N .
/\/L R/W Hy\\ M AX = prOJCO|(A)b

It is NOT the case that projoj4)b = A(ATA) A7 b.
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Solving Least Squares

So, given an m X n matrix A and a vector b in R™ we want to find a
vector X in R"” such that Ax is “closest” to b. Setting y = AX, we see that
y € col(A) and so y would be the best approximation to b from col(A).
That is:

y= Projcol(a)b
Hence, to solve our original problem of finding X, it remains to solve

[l/L( MT /4\“{ /VLT AX = projco|(A)5

It is NOT the case that projcoj(4)b = A(ATA)*AT b. Recall that the
matrix we use to describe the projection onto W must be one whose
columns form a basis for W.
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Solving Least Squares

So, given an m X n matrix A and a vector b in R™ we want to find a
vector X in R"” such that Ax is “closest” to b. Setting y = AX, we see that
y € col(A) and so y would be the best approximation to b from col(A).
That is:

y= Projcol(a)b

Hence, to solve our original problem of finding X, it remains to solve

—

AX = projc0|(A)b

It is NOT the case that projcoj(4)b = A(ATA)*AT b. Recall that the
matrix we use to describe the projection onto W must be one whose
columns form a basis for W. While the columns of A do form a spanning
set for col(A), they may not be linearly independent and so would not

form a basis!
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Least Squares Theorem

The least squares solutions of a linear system AX = b are the exact
solutions to the equation

ATAx = ATh
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Least Squares Theorem

The least squares solutions of a linear system AX = b are the exact
solutions to the equation

ATAx = ATh

Proof.

We have seen that it is enough to solveAX = projco|(A)E.
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Least Squares Theorem

The least squares solutions of a linear system AX = b are the exact
solutions to the equation

ATAx = ATh

Proof.

We have seen that it is enough to solveAX = projco|(A)E. Moreover, we
know that we can write

—

b= projc0|(A)b S projco|(A)lb
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Least Squares Theorem

The least squares solutions of a linear system AX = b are the exact
solutions to the equation

ATAx = ATh

Proof.

We have seen that it is enough to solveAX = projco|(A)E. Moreover, we
know that we can write

b = projeoj(a) b + Projcolay b = Projcol(ayb + Proipyjiar) b
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Least Squares Theorem

The least squares solutions of a linear system AX = b are the exact
solutions to the equation
ATAX=ATh

Proof.

We have seen that it is enough to solveAX = projco|(A)E. Moreover, we
know that we can write

b = projco|(a)b + Projcol(ay £ = Projcol(ayb + Projnyliaryb
Hence, multiplying the first equation on both sides by AT, we find
b

Tac AT s
A AX=A Projcol(a)
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Least Squares Theorem

The least squares solutions of a linear system AX = b are the exact
solutions to the equation
ATAX=ATh

We have seen that it is enough to solveAX = projco|(A)E. Moreover, we
know that we can write

b = projeoj(a) b + Projcolay b = Projcol(ayb + Proipyjiar) b

in
Ai(aT)
Hence, multiplying the first equation on both sides by AT, we find _ T
A G
-~ KE - o
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ATAZ = ATprojeo)a)b = AT (b — projpnij(aryb) =




Least Squares Theorem

The least squares solutions of a linear system AX = b are the exact
solutions to the equation
ATAX=ATh

We have seen that it is enough to solveAX = projco|(A)E. Moreover, we
know that we can write

b = projco|(a)b + Projcol(ay £ = Projcol(ayb + Projnyliaryb
Hence, multiplying the first equation on both sides by AT, we find

-,

AT AR = AT projeoyayb = AT(B = projp i aryb) = AT
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Find the least squares solution and least squares error for the linear system
3x14+2x0 — x3 =2

x1 —4xo + 3x3 = —2
x1+10xo —7x3 =1
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Find the least squares solution and least squares error for the linear system
3x14+2x0 — x3 =2

x1 —4xo + 3x3 = —2
x1+10xo —7x3 =1

=3

o L
So, we set up A,b,ATA and AT A:
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Find the least squares solution and least squares error for the linear system
3x14+2x0 — x3 =2

x1 —4xo + 3x3 = —2
x1+10xo —7x3 =1

So, we set up A,b,ATA and AT A:

3 2 -1
A=|L -4 3
1 10 —7

Patrick Meisner (KTH) Lecture 15 8/26



Find the least squares solution and least squares error for the linear system
3x14+2x0 — x3 =2

x1 —4xo + 3x3 = —2
x1+10xo —7x3 =1

So, we set up A,b,ATA and AT A:

3 2 -1 2
A=|L -4 3 b= |-2
1 10 -7 1
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Find the least squares solution and least squares error for the linear system
3x14+2x0 — x3 =2

x1 —4xo + 3x3 = —2
x1+10xo —7x3 =1

So, we set up A,b,ATA and AT A:

3 2 -1\  [2 - (3 1 1
A=[L -4 3 b=|-2] A=|2 -4 10
1 10 -7 1 -1 3 -7

11 12 -7

ATAgpy= (12 120 -84

~7 -84 59
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Find the least squares solution and least squares error for the linear system
3x14+2x0 — x3 =2

x1 —4xo + 3x3 = —2
x1+10xo —7x3 =1

So, we set up A,b,ATA and AT A:

3 2 -1 2 3 01 1
— AY
A=Y -4 3 b=|-2] A=|2 -4 10
1 10 -7 1 -1 3 -7
11 12 -7 5
ATAdap= | 12 120 -84 ATh=| 22
~7 -84 59 ~15
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Example continued

Hence we need to solve AT A= ATb and so putting it in an augmented
matrix we get

(ATA|AT b)
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Example continued

Hence we need to solve ATA = ATb and so putting it in an augmented
matrix we get

11 12 -7 5
(ATAIATh) = | 12 120 —84| 22
~7 -84 59 | -15
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Example continued

Hence we need to solve ATA = ATb and so putting it in an augmented
matrix we get
1 12 -7 5 1 0 1/7| 2/7
(ATAIATh)= (12 120 -84| 22 | = [0 1 -57|13/84
-7 —84 59 | -15 00 O 0
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Example continued

Hence we need to solve ATA = ATb and so putting it in an augmented
matrix we get
1 12 -7 5 1 0 1/7| 2/7
(ATAIATh)= (12 120 -84| 22 | = [0 1 -57|13/84
-7 —84 59 | -15 00 O 0

And we see that

2/7—t]7
X = |13/84 +5t/7
t
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Example continued

Hence we need to solve ATA = ATb and so putting it in an augmented
matrix we get
1 12 -7 5 1 0 1/7| 2/7
(ATAIATh)= |12 120 -84 | 22 | = (0 1 —57|13/84
-7 —84 59 | -15 00 O 0

And we see that

2/7T—t/7 2/7 1/7
X=|13/84+5t/7| = |(13/84| + |5/7| t
t 0 1
is a least squares solution for any t. Y/ —
2, ]~ ¢ h
03y - \L R ( 0 e
Chee bt A A s (b ok

Were e cop saldion
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Example continued

Hence we need to solve ATA = ATb and so putting it in an augmented
matrix we get
1 12 -7 5 1 0 1/7| 2/7
(ATAIATh)= (12 120 -84| 22 | = [0 1 -57|13/84
-7 —84 59 | -15 00 O 0

And we see that

2/7— t)7 2/7 1/7
%= |13/84+5t/7| = |13/84| + |5/7] t
t 0 1

is a least squares solution for any t.
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Example Continued

To find the least squares error, it is enough now to find HE— A)‘(’H for any

of the X we found above. (Exercise: Why does it not matter which X we
take?)
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Example Continued

To find the least squares error, it is enough now to find HE— A)‘(’H for any

of the X we found above. (Exercise: Why does it not matter which X we
take?) So, setting t = 0, we get

|-~
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Example Continued

To find the least squares error, it is enough now to find HE— A)‘(’H for any

of the X we found above. (Exercise: Why does it not matter which X we
take?) So, setting t = 0, we get

2 3 2 -1\ [2/7
Hb—A)?H —[{-2] =1 -4 3| |13/84
1 1 10 -7/ | 0
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Example Continued

To find the least squares error, it is enough now to find HE— A)‘(’H for any

of the X we found above. (Exercise: Why does it not matter which X we
take?) So, setting t = 0, we get

2 3 2 -1\ [2/7

‘E—A)?H: 2| — 1 -4 3] |13/84

1 1 10 -7/ | 0
5/6
_||=5/3
5/6
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Example Continued

To find the least squares error, it is enough now to find HE— A)‘(’H for any

of the X we found above. (Exercise: Why does it not matter which X we
take?) So, setting t = 0, we get

2 3 2 -1\ [2/7
‘b—A)?H —[{-2] =1 -4 3| |13/84
1 1 10 -7/ | 0

5/6
5
= ||[-5/3||| = \/(5/6)2 + (~5/3)2 + (-5/6)2 = G
_5/6
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Example Continued

To find the least squares error, it is enough now to find HE— A)‘(’H for any

of the X we found above. (Exercise: Why does it not matter which X we
take?) So, setting t = 0, we get

2 3 2 -1\ [2/7
‘b—A)?H —[{-2] =1 -4 3| |13/84
1 1 10 -7/ | 0

5/6 :
= |[|-5/3]|| = /(5/6)2 + (=5/3)2 + (-5/6)2 = 2V
—5/6

The least squares error of a linear system will be 0 if and only if there is a
solution to AX = b
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Coordinates of Vectors in Other Basis

[
€( [ %]
We know that a basis for R3 is given by &1, &, &. o
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Coordinates of Vectors in Other Basis

We know that a basis for R3 is given by €1, &, &.And so any X € R3 can
be written as X = x161 + x2& + x363.
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Coordinates of Vectors in Other Basis

We know that a basis for R3 is given by €1, &, &.And so any X € R3 can
be written as X = x161 + x2& + x363.

We commonly condense this
notation to just write

X1

X1
I

X2
X3
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Coordinates of Vectors in Other Basis

We know that a basis for R3 is given by €1, &, &.And so any X € R3 can
be written as X = x1€1 + x2& + x3€3. We commonly condense this
notation to just write
X1
X=|x
X3

However, we know that there are many other bases for R3.
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Coordinates of Vectors in Other Basis

We know that a basis for R3? is given by &1, &, €.And so any X € R3 can
be written as X = x1€1 + x2& + x3€3. We commonly condense this
notation to just write
X1
X=|x
X3

However, we know that there are many other bases for R3. In particular

1] [o] [1
ifB=1{ (0], |1],]2
1 (2] |3
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Coordinates of Vectors in Other Basis

We know that a basis for R3? is given by &1, &, €.And so any X € R3 can
be written as X = x1€1 + x2& + x3€3. We commonly condense this
notation to just write
X1
X=|x
X3

However, we know that there are many other bases for R3. In particular

1] [o] [1 1 1 0 1
ifB=2410],|1],|2| % then |O] =2 (0| +2[1] — |2
1 (2] |3 3 1 2 3
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Coordinates of Vectors in Other Basis

We know that a basis for R3? is given by &1, &, €.And so any X € R3 can
be written as X = x1€1 + x2& + x3€3. We commonly condense this
notation to just write
X1
X=|x
X3

However, we know that there are many other bases for R3. In particular

1] [o] [1 1 1 0 1
ifB=2410],|1],|2| % then |O] =2 (0| +2[1] — |2
1 (2] |3 3 1 2 3

So, what to do with these new numbers 2,2, —17
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Coordinates with Respect to a Basis

If B={w,...,Vk} is an ordered basis for a subspace W of R"
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Coordinates with Respect to a Basis

If B={vi,...,Vk} is an ordered basis for a subspace W of R" and if

W = aiVi + asVh + -+ - + ag Vi

is the expression for a vector w in W/,
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Coordinates with Respect to a Basis

Definition
If B={vi,...,Vk} is an ordered basis for a subspace W of R" and if

W = aiVi + asVh + -+ - + ag Vi

is the expression for a vector w in W ,then we call a1, ap, ..., ax the
coordinates of w with respect to B.
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Coordinates with Respect to a Basis

Definition
If B={vi,...,Vk} is an ordered basis for a subspace W of R" and if

W = aiVi + asVh + -+ - + ag Vi

is the expression for a vector w in W ,then we call a1, ap, ..., ax the
coordinates of w with respect to B.More specifically, we call a; the
vi-coordinate of w.
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Coordinates with Respect to a Basis

Definition
If B={vi,...,Vk} is an ordered basis for a subspace W of R" and if

W = aiVi + asVh + -+ - + ag Vi

is the expression for a vector w in W ,then we call a1, ap, ..., ax the
coordinates of w with respect to B.More specifically, we call a; the
vi-coordinate of w.We denote this as either

ai
(W)B:(al,QQ,...,ak) or [W]B: .
r Q‘ —7 | . Y = =l
-\ [ 2 W= =G
fwle|a ) -
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If we define the two bases we had above as

1 0 0 1 0 1
S= 0f,|1|,10 and B = 0f,]|1],]2
0 0 1 1 2 3
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If we define the two bases we had above as
@

< « 2
1 0 0 1 0 1
S= 0f,|1|,10 and B = 0f,]|1],]2
0 0 1 1 2 3
Then we can write our vector v = (1,0, 3) as
1 1 0 0
[/ls = |0| sincev=1|0|+0]1]| +3 |0
3 0 0 1
2, e, ¢
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If we define the two bases we had above as

Vi Vi v
1 0 0 1 0 1
S= 0f,|1|,10 and B = 0f,]|1],]2
0 0 1 1 2 3
Then we can write our vector v = (1,0, 3) as
1 1 0 0
[/ls = |0| sincev=1|0|+0]1]| +3 |0
3 0 0 1
but
2 1 0 1
Vlg= ]2 | sincev=2|0| +2 1| +(-1)|2
-1 1 2 3
\/‘\ V\]_ \/,Z
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If we define the two bases we had above as

HRE - B

Then we can write our vector v = (1,0, 3) as (lo] = G?
(

[V]s = H since V=1 H +0 H +3 H%“l[@w@

3 0 0

2 1 0 1]
[V]g = [2] since Vv =2 |:0] +2 |:1] (—1) |:2]
1 1 3

but

N
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If B= {\71,. . ‘7k}- then
a1
wWlg = | . < W =a1vi+axvo+ -+ akVk

dan
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If B= {\71, ey ‘7k}- then

al
az
[W]B: . <~ W =ai1vy + asxVo + -+ axVvig

dan

Hence, for any of the Vi, we get

0
i(kk ) I'y(:‘ro(’c’

_ N 7 5 o o - _
[Vilg = |1| = & since V; =04 + 0V + -+ - + 1V; + - - - 4 OV
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If B= {\71, ey ‘7k}- then
ai
Wlg =] . <<= W =a1v1 +axVo + -+ agVk
dn
Hence, for any of the Vi, we get

0
[Vi]s = |1| = & since v, =004 + 0V + - - -+ 1V; + - - - + OV

0

That is, looking at vectors with respect to a certain basis can simplify

matters.
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Change of Basis Problem

If wis a vector in R”, and if we change the basis for R” from a basis B to
a basis B’, how are [w]g and [w] related?
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Change of Basis Problem

If wis a vector in R”, and if we change the basis for R” from a basis B to
a basis B’, how are [w]g and [w] related?

/A

In the case that n = 2, we would have B = {V4, »} and B’ = {V], }}.

Patrick Meisner (KTH) Lecture 15 15 /26



Change of Basis Problem

If wis a vector in R”, and if we change the basis for R” from a basis B to
a basis B’, how are [w]g and [w] related?

In the case that n = 2, we would have B = {V4, »} and B’ = {V], }}.
Now, by definition

—

[\71]5/ = |:Z:| — Vi 3\73/_ + b\é
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Change of Basis Problem

If wis a vector in R”, and if we change the basis for R” from a basis B to
a basis B’, how are [w]g and [w] related?

/A

In the case that n = 2, we would have B = {V4, »} and B’ = {V], }}.
Now, by definition

[i]gr = [b

[%]e = [CC,]
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Change of Basis Problem

If wis a vector in R”, and if we change the basis for R” from a basis B to
a basis B’, how are [w]g and [w] related?

In the case that n = 2, we would have B = {V4, »} and B’ = {V], }}.

Now, by definition
[4]g = [Z] b, W = av| + bi}y

[\72]3/: |:C:| & \72:C\7{+d\7;

d

Now, let w be any vector, then we have

N 1
W]g = [kl] W = kivi + ko
2
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Change of Basis Problem

If wis a vector in R”, and if we change the basis for R” from a basis B to
a basis B’, how are [w]g and [w] related?

In the case that n = 2, we would have B = {V4, »} and B’ = {V], }}.
Now, by definition

[4]g = [Z] = 7 = ail| + bi}}

[\72]3/: |:§:| A \72:C\7{+d\7;

Now, let w be any vector, then we have

— kl — — — -/ =/ —*/\/—*/
[w]g = ko = W=k + kovh = ki(av] + bvy) + ko(cv] + dV;)
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Change of Basis Problem 2

Expanding and collecting like terms we see that

. k -
[W]B = |:k;:| = W= (ak1 + Ckz)\?{ + (bkl + dkg)\?é
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Change of Basis Problem 2

Expanding and collecting like terms we see that

. k -
[W]B = |:k;:| = W= (ak1 + Ckz)\?{ + (bkl + dkg)\?é

dL&J N o ak1 + Ck2
= Wls =0 1 diy
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Change of Basis Problem 2

Expanding and collecting like terms we see that

. k -
[W]B = |:k;:| = W= (ak1 + Ckz)\?{ + (bkl + dkg)\?é

- aky + ck
= [W]p = [ ! 2]

bki + dko

. . k1 ak1 + Ckg -
So the question becomes: how are [/Q] and [bkl -I—dkj related?
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Change of Basis Problem 2

Expanding and collecting like terms we see that

. k -
[W]B = |:k;:| = W= (ak1 + Ckz)\?{ + (bkl + dkg)\?é

- aky + ck
= [W]p = [ ! 2]

bki + dko

So the question becomes: how are [kl] and [akl + Ckz} related?

ko bki + dko
aki+cko|  (a c\ |k
bki +dko|  \b d ko
—_— —,
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Change of Basis Problem 2

Expanding and collecting like terms we see that

. k -
[W]B = |:k;:| = W= (ak1 + Ckg)\?{ + (bkl + dkg)\?é

- aky + ck
= [W]p = [ ! 2]

bki + dko

. . k1 ak1 + Ckg -
So the question becomes: how are [kz] and [bkl -I—dkj related?

aki+cko|  (a c\ |k
bki +dko|  \b d ko
4\
And we see that the columns of our matriceg are exactly [Vi]g and [2]p/

NSNS
O\ SR
=
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Change of Basis Theorem

Theorem (Change of Basis Theorem)

If W is a vector in R" and if B = {W,...,V,} and B' ={v],...,V,} are

bases for R", then

W]g = Pe—p/[W]B

where Pg_,p/ is a matrix whose columns are the vectors of B in the bassi

B':

Pe_pg = ([v]e [v]s

[Vn]B’)

Patrick Meisner (KTH) Lecture 15
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Change of Basis Theorem

Theorem (Change of Basis Theorem)

If W is a vector in R" and if B = {W,...,V,} and B' ={v],...,V,} are
bases for R", then

W]g = Pe—p/[W]B

where Pg_,p/ is a matrix whose columns are the vectors of B in the bassi
B':

Peog = (vle [vle ... [Vils)

The matrix Pg_,g: is called the transition matrix (or the change of
coordinates matrix) from B to B'.
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Find the change of coordinate matrix Pg_,g and Pg/_.pg

o= {o] [} o= {1}
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Find the change of coordinate matrix Pg_,g and Pg/_.pg

o= {o] [} o= {1}

Now, we know that
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Find the change of coordinate matrix Pg_,g and Pg/_.pg

o= {o] [} o= {1}

Now, we know that
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Find the change of coordinate matrix Pg_,g and Pg/_.pg

o= {o] [} o= {1}

Now, we know that

Patrick Meisner (KTH) Lecture 15 18 /26



Find the change of coordinate matrix Pg_,g and Pg/_.pg

o= {o] [} o= {1}

Now, we know that

Further, we see that

ol =0l = b, = 5]
ol =2b] v ]
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Find the change of coordinate matrix Pg_,g and Pg/_.pg

= (-0} o= {[.2)
= ([, [,) - (0 5)

{-cof] ] = {,.-[3]

g =2[]+cnf] = [1,- [
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Example continued

And so, we conclude that

-1 2
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Example continued

And so, we conclude that
-1 2

Similarly, we see that
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Example continued

And so, we conclude that
-1 2

Similarly, we see that
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Example continued

And so, we conclude that

-1 2

Similarly, we see that
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Example continued

And so, we conclude that

p (-1 2
B—B' — 1 _1 . ‘
Sote Mo U b sy

S -
Similarly, we see that /\ ! ;; XL:L:‘Z )
st~ Lo

R R R R
o =2b] 1B = B, =

and so
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Example continued

And so, we conclude that

-1 2

Similarly, we see that

and so
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Invertible Change of Basis

If B and B’ are two basis, then the change of basis matrices Pg_,g' and
Pg/_,g are invertible and each other’s inverse.
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Invertible Change of Basis

If B and B’ are two basis, then the change of basis matrices Pg_,g' and
Pg/_,g are invertible and each other’s inverse. That is:

=il -1
PB—)B’ = PB’—>B and PB’—)B = PB—>B’

Hce
(
?%—7@ gos - Lp 0 AL
e
|
%@»o 98 YTr— b e O Sen < ibia
Rren o
~ e ot Yo~ Q2o ) te & £
R YW
s \_"&_9.
Patrick Meisner (KTH) (
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Invertible Change of Basis

If B and B’ are two basis, then the change of basis matrices Pg_,g' and
Pg/_,g are invertible and each other’s inverse. That is:

=il -1
PB—)B’ = PB’—>B and PB’—)B = 'DB—>B’

Exercise
Show that the two matrices we found from the previous example

(5 ()

are inverses of each other.
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Algorithm for Computing Pg_.5

Let B and B’ be two bases.
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Algorithm for Computing Pg_.5

L (Wi V) (5\>‘Q/n('-— c/oj)

oot (5 <L)

Let B and B’ be two bases.

@ Form the matrix (B|B’) where the columns of B are the vectors in
basis B and the columns of B’ are the vectors in B’
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Algorithm for Computing Pg_.5

Let B and B’ be two bases.

@ Form the matrix (B|B’) where the columns of B are the vectors in
basis B and the columns of B’ are the vectors in B’

@ Use elementary row operations to reduce B to the identity matrix
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Algorithm for Computing Pg_.5

Let B and B’ be two bases.

@ Form the matrix (B|B’) where the columns of B are the vectors in
basis B and the columns of B’ are the vectors in B’

@ Use elementary row operations to reduce B to the identity matrix

© The resulting matrix will be (/|Pg_5)

Patrick Meisner (KTH) Lecture 15 21/26



Orthogonal and Orthonormal Basis

As we have seen, working with some basis gives us an advantage.
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Orthogonal and Orthonormal Basis

As we have seen, working with some basis gives us an advantage.

Definition

We say a basis B = {w,.

—

Vi

\/:'\/'L ~o
\/( ° \/> i
Vy V=0

, Vi } is orthogonal if

-v; =0 forall i # j.

Oll/ (/“CQ}D(’X (w
% (‘a&‘s e

orftlogonl 1,

(S

C par oin Hieulor)
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Orthogonal and Orthonormal Basis

As we have seen, working with some basis gives us an advantage.

Definition

We say a basis B = {1, ..., vk} is orthogonal if

V- v; =0 for all i # .

We say the basis is orthonormal if it is orthogonal plus

| 18 = 1 for all i.

all vecksny In H,

D an Aot |

(I' 2 /1‘4_

(e
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Orthogonal and Orthonormal Basis

As we have seen, working with some basis gives us an advantage.

Definition

We say a basis B = {w,..., vV} is orthogonal if
V- v; =0 for all i # .
We say the basis is orthonormal if it is orthogonal plus

Vi, vi|| = 1 for all i.
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Properties of Orthogonal and Orthonormal Basis

Q If{W,...,Vk} is an orthonormal basis for a subspace W and w € W
then

- -

proij(’: ()? \71)\71 —+ -+ (X . vk)vk

v
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Properties of Orthogonal and Orthonormal Basis

Q If{W,...,Vk} is an orthonormal basis for a subspace W and w € W
then

- -

proij(’: ()? \71)\71 —+ -+ (X . vk)vk

W = projyy w

v
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Properties of Orthogonal and Orthonormal Basis

Theorem

0 If{n,..

then

W Ve

u

—

projyyX = (X - vi)vi + - -+ + (X -

—

w = projyyw = (W - Vi)vi + -+ + (
A
[
V' —pedind
& T W L
\fL — o b g w o

., Vik} Is an orthonormal basis for a subspace W and w € W
_—

U ~eonf fuoke
&,x— M_; (n (9’

© (y/f V}>

v
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Properties of Orthogonal and Orthonormal Basis

Theorem

Q If{W,...,Vk} is an orthonormal basis for a subspace W and w € W
then
projyyX = (X - i)vi + -+ + (X - Vi

—

w = proijT} = (VI7 . V1)\71 4+ -+ (VV . ‘7k)‘7k
@ If{W,...,Vk} is an orthogonal basis for a subspace W, and w € W
then oL L
oL XV X Vi
projwX = =5V + -+ —— o Vi
Vil |1V

s

% CIAD oRlhononm o U\M(tl L

v
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Properties of Orthogonal and Orthonormal Basis

o If{w,...,

then

Q If{v,...,

then

Vk} is an orthonormal basis for a subspace W and w € W
projyyX = (X- i) + -+ + (X - vk

—

W:prOjWVV:(W-\71)\71+-'-+(W-Vk

Vk} is an orthogonal basis for a subspace W, and w € W

X X Vi
Vit sk

2
I 1H V|

projy X =

w - qu

2 Vi -
||Vk||

|| 1||

v

Patrick Meisner (KTH)
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Niceness of Orthonormal Basis

In particular, this theorem states that if B = {V4,...,V,} is an
orthonormal basis for w € R”, then,

W]g
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Niceness of Orthonormal Basis

In particular, this theorem states that if B = {V4,...,V,} is an
orthonormal basis for w € R”, then,

W vy
) WV
Wlg=| .
w - Vi
Lecture 15 24 /26
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Niceness of Orthonormal Basis

In particular, this theorem states that if B = {V4,...,V,} is an
orthonormal basis for w € R”, then,

N
=

W]g =

31
S

and hence if B = {V], ..., V]} is another basis, then finding the transition

matrix Pg/_,g is easy:
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Niceness of Orthonormal Basis

In particular, this theorem states that if B = {V4,...,V,} is an
orthonormal basis for w € R”, then,

N
Y

W]g =

31
S

and hence if B = {V], ..., V]} is another basis, then finding the transition

matrix Pg/_,g is easy:

Peg= ([l ... [V])
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Niceness of Orthonormal Basis

In particular, this theorem states that if B = {V4,...,V,} is an
orthonormal basis for w € R”, then,

w - Vi
. W Vo
Wlg=| .
W Vi
and hence if B = {V], ..., V]} is another basis, then finding the transition
matrix Pg/_,g is easy:
ARV V-
vl v
PB’HB = ([Vl]B e [Vn]B) =
Vi + Vn VARRYA
~
\ = ? \
an@, QQ 39
Lecture 15 24 /26
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Niceness of Orthonormal Basis

In particular, this theorem states that if B = {V4,...,V,} is an
orthonormal basis for w € R”, then,

N
!

W]g =

31
S

and hence if B = {V], ..., V]} is another basis, then finding the transition
matrix Pg/_,g is easy:
\7{\71 V, V1
Peg=(Als ... [Vils) =
Vi Vp .. V-V
NOTE: it was imperative that we took B to be an orthonormal basis. This

does NOT hold in general!

Patrick Meisner (KTH)

Lecture 15 24 /26



Gram-Schmidt Process

So we see that orthonormal bases are quite nice. Thus we want to work
them as much as possible.
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Gram-Schmidt Process

So we see that orthonormal bases are quite nice. Thus we want to work
them as much as possible. Luckily, there is a process that will take any

basis and create an orthonormal basis out of it. This is called the
Gram-Schmidt process.
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Gram-Schmidt Process

So we see that orthonormal bases are quite nice. Thus we want to work
them as much as possible. Luckily, there is a process that will take any
basis and create an orthonormal basis out of it. This is called the
Gram-Schmidt process.

Suppose we have a basis B = {v,..., vk} of a subspace W of R" the

algorithm on the next slide creates a new set of vectors {wy, ..., W} that
is an orthogonal basis for W
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Gram-Schmidt Process

So we see that orthonormal bases are quite nice. Thus we want to work
them as much as possible. Luckily, there is a process that will take any
basis and create an orthonormal basis out of it. This is called the
Gram-Schmidt process.

Suppose we have a basis B = {v,..., vk} of a subspace W of R" the
algorithm on the next slide creates a new set of vectors {wy, ..., W} that
is an orthogonal basis for Was well as a set of vectors {i, ..., Uk} that is

an orthonormal basis for W
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Gram-Schmidt Algorithm

Q@ Set
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Gram-Schmidt Algorithm

Q@ Set
Wi =W
Q Set
V|72 = \72

(e Ry, U R
Q7 I

————
to W,

N~ ?\}))\M& Vi v OPHQ@-QW\ (
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Gram-Schmidt Algorithm

Q@ Set

wi = v

Q Set

W2 = Vo — Projspan{m} V2
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Gram-Schmidt Algorithm

Q@ Set

wi = v

Q Set I
- - . L, Varw
W2 = V2 = PrOJspan{w,}V2 = V2 — WWI
1
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Gram-Schmidt Algorithm

Q@ Set
Wy =W

Q Set .

. o . N = Vo - wp

i = V2 = Prolspan( % = V2 — 1

1
@ Set
W3 = V3

; V.
\f')ﬁ/ ?\\E)\j@\lwor\\“ v PR/\SV’L (Wi 2
(e

{5 o(\%);a/\b( = L,,,Lé

5 vV ks
> P\\()} \/! ( V/") }
\J\‘} S?WQ w, g( WL
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Gram-Schmidt Algorithm

Q@ Set
Wy =W
Q Set L
. o . o = Vo - wp
W2 = V2 = PrOJspan{w,}V2 = V2 — WWI
1
@ Set

W3 = V3 — PrOJspan{w,w,} "3
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Gram-Schmidt Algorithm

Q@ Set
Wy =W
Q Set L
. o . o = Vo - wp
W2 = V2 = PrOJspan{w,}V2 = V2 — WWI
1
@ Set

L . I < I I
W3 = V3 — Projspanw,w,} V3 = V3 — A
>

~ 2
| wa |
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Gram-Schmidt Algorithm

Q Set
W =V
Q Set .
- . . . . Vo - Wy
¥ = > = projspanga Y2 = 2 — oo
1
Q Set
L - L. V3w, V3w
W3 = V3 — PrOJspan{w;,w,} V3 = V3 — ’\VV1||2 wy — HWzHQ wy
@ Continue the process to get wy, ..., wg.

L

D
wil o\ U%QI\J\ o V.. w»w

\Aj- - \)A\) B Q(\)\\ S\ W, u;)_\x \}) S gPCM %”' WJ-I)

)
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Gram-Schmidt Algorithm

Q Set
w1 = Vi
Q Set Lo
- _ . . _, Vo - wy
W2 = V2 — PrOJspan{w;}V2 = V2 — 7 —— 5 W1
[[wa |
Q Set
L - L L VW,  V3-wp
W3 = V3 — PrOJspan{w, w,}V3 = V3 — — 5 2 W1 — 5 o W2
[ | [l
@ Continue the process to get wy, ..., w,.This will be an orthogonal
basis.
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Gram-Schmidt Algorithm

Q Set
w1 = Vi
Q Set Lo
- . . . _, Vo - wy
W2 = V2 = PrOspan{w;}2 = V2 — AR Wl
1
Q Set
L - L. V3w, V3w
W3 = V3 — PrOJspan{w;,w,} V3 = V3 — ’\VV1||2 wy — ||V72H2 wy
@ Continue the process to get wy, ..., w,.This will be an orthogonal
basis.
Q Set
. 1
Ui = 5= w;
[l
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Gram-Schmidt Algorithm

Q Set
w1 = Vi
Q Set -
- . . . . Vo - Wy
Wy = v — prOJspan{Wl}VQ =Ww—- oM
[[wa |
Q Set
- - . o - V3 - Wi \73 1%}
W3 = V3 — PrOJgpan{w;,w,}V3 = V3 = 7S5 W1 — ——5W2
[ | [ |
@ Continue the process to get wy, ..., w,.This will be an orthogonal
basis.
© Set
. 1
Uj = =W
[l
then {1, ..., dx} will be an orthonormal basis.
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