SF 1684 Algebra and Geometry

Lecture 14

Patrick Meisner

KTH Royal Institute of Technology

Patrick Meisner (KTH) Lecture 14 1/24



Topics for Today

© Orthogonal Projections onto a Line
@ Orthogonal Projections onto a Subspace

© Projection Matrices
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Recall in Lecture 2 we defined the projection of a vector v onto another
vector & as the “shadow” of V on 3.
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Recall in Lecture 2 we defined the projection of a vector v onto another
vector & as the “shadow” of vV on 3. Moreover, we had the formula
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Recall in Lecture 2 we defined the projection of a vector v onto another
vector 3 as the “shadow” of V on 3. Moreover, we had the formula

- =

vV-a

[l

If 3 is a non-zero vector in R", then every vector X € R" can be expressed
in exactly one way as

-

a

<4
I

proj

Ly

X=X+ %

where Xi is a scalar multiple of & and X is orthogonal to a (and hence to
X1).
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Projections

Recall in Lecture 2 we defined the projection of a vector v onto another
vector 3 as the “shadow” of V on 3. Moreover, we had the formula

—

B vV-a
- 2
[Ell

Theorem

If 3 is a non-zero vector in R", then every vector X € R" can be expressed

in exactly one way as

where Xi is a scalar multiple of & and X is orthogonal to a (and hence to

Xi).In particular, we have

- =

> iR x-ag
X1 = Projzx1 = ——5
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Orthogonal Projections and Components

Wﬂc ; Iy« Veefor SQ%\(;) U SOLSPQ&,

If 3'is a nonzero vector in R” and if X is any vector in R”, then the
orthogonal projection of X onto span(3) is denoted proj;X and defined

to be

Ly

X -

121>

-
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projzx =
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Orthogonal Projections and Components

Definition
If 3'is a nonzero vector in R” and if X is any vector in R”, then the
orthogonal projection of X onto span(3) is denoted proj;X and defined

to be S

-

-3
projzx = X—za
4]

The vector proj;x is also called the vector component of X along a

Patrick Meisner (KTH) Lecture 14

5/24



Orthogonal Projections and Components

Definition

If 3'is a nonzero vector in R” and if X is any vector in R”, then the
orthogonal projection of X onto span(3) is denoted proj;X and defined
to be

-

-3
projzx = X—za
4]

The vector proj;X is also called the vector component of X along a and
X — projzX is called the vector component of X orthogonal to a.
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Let X =(2,—1,3) and 3= (4,—1,2). Find the vector component of X
along 3 and the vector component of X orthogonal tg &.
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Orthogonal Projections as Linear Transformations

For any vector 3 € R", we can define the map T : R” — R”

X1
L

T(X) = projsx = a

[Eilk
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Orthogonal Projections as Linear Transformations

For any vector 3 € R”, we can define the map T : R” — R"

X1
L

T(X) = projsx = a

[Eilk

Show that T is a linear transformation. I
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Orthogonal Projections as Linear Transformations

For any vector 3 € R”, we can define the map T : R” — R"

x|
L

T(X) = projsx = a

[Eilk

Show that T is a linear transformation. \

We call this map the orthogonal projection of R" onto span(3).

a

2
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Standard Matrix of Orthogonal Projection

If 3 is a nonzero vector in R", and if 3 is viewed as an n x 1 matrix, then
the standard matrix for the linear operator T (X) = projsX is

P — L— SYea AT
a'a

=T

Note: 373 € R! and so is a scalar, whereas 337 is an n x n matrix.
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More Work Space
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Find the standard matrix of the linear transformation given by projecting

onto span{(4,—1,2)}. > [Cf?
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Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by span{a}.
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Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by span{a}.
However, we can do this for an arbitrary subspace of R".
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Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by span{a}.
However, we can do this for an arbitrary subspace of R".

Let W be a subspace of R", then every vector X € R" can be expressed in
exactly one way as

- -

X=X+

where X1 € W and %5 € W,
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Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by span{a}.
However, we can do this for an arbitrary subspace of R".

Let W be a subspace of R", then every vector X € R" can be expressed in
exactly one way as

- -

X=X+

where X1 € W and %5 € W,

We call x; the orthogonal projection of X onto W

Patrick Meisner (KTH) Lecture 14



Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by span{a}.
However, we can do this for an arbitrary subspace of R".

Let W be a subspace of R", then every vector X € R" can be expressed in
exactly one way as

- -

X=X+

where X1 € W and %5 € W,

We call X; the orthogonal projection of X onto W and X the
orthogonal projection of X on W+
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Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by span{a}.
However, we can do this for an arbitrary subspace of R".

Let W be a subspace of R", then every vector X € R" can be expressed in
exactly one way as

- -

X=X+

where X1 € W and %5 € W,

We call X; the orthogonal projection of X onto W and X the
orthogonal projection of X on W and denote them

X) = projy X and Xo = projyyLx
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Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by span{a}.
However, we can do this for an arbitrary subspace of R".

Let W be a subspace of R", then every vector X € R" can be expressed in
exactly one way as

- -

X=X+

where X1 € W and %5 € W,

We call X; the orthogonal projection of X onto W and X the
orthogonal projection of X on W and denote them

X) = projy X and Xo = projyyLx

We can prove this theorem by constructing a value for projy, X that works.
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Orthogonal Projection onto W

Theorem

If W is a nonzero subspace of R", and if M is any matrix whose column
vectors form a basis for W, then setting

X = projy X = M(MTM)"*MTx

satisfies the previous theorem.

bowe s A= F /Vl(/MT/l/l)R://lt
% g (ara) «
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Orthogonal Projection onto W

If W is a nonzero subspace of R", and if M is any matrix whose column
vectors form a basis for W, then setting

X = projy X = M(MTM)"*MTx
satisfies the previous theorem. In particular,

projyy X € W and % =X — Xy = X — projyy X € W+

_
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Orthogonal Projection onto W

Theorem
If W is a nonzero subspace of R", and if M is any matrix whose column
vectors form a basis for W, then setting
X = projy X = M(MTM)"*MTx
satisfies the previous theorem. In particular,

projyy X € W and % =X — Xy = X — projyy X € W+

—— -

See page 384 of textbook. O
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Let X = (1,0,4) € R3. Find the orthogonal projection of X onto the plane
P : x —4y 4+ 2z =0 as well the orthogonal projection onto P~.
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Let X = (1,0,4) € R3. Find the orthogonal projection of X onto the plane
P : x —4y 4+ 2z =0 as well the orthogonal projection onto P~.

First, let us find a basis for P: if X = (x,y,z) € P then x = 4y # 2z
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Let X = (1,0,4) € R3. Find the orthogonal projection of X onto the plane
P : x —4y 4+ 2z =0 as well the orthogonal projection onto P~.

First, let us find a basis for P: if X = (x,y,z) € P then x = 4y 4 2z

X
I
N < X
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Let X = (1,0,4) € R3. Find the orthogonal projection of X onto the plane
P : x —4y 4+ 2z =0 as well the orthogonal projection onto P~.

First, let us find a basis for P: if X = (x, y,z) € P then x = 4y ¥ 2z
Y: S X 4s ;2t
z t
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Let X = (1,0,4) € R3. Find the orthogonal projection of X onto the plane
P : x —4y 4+ 2z =0 as well the orthogonal projection onto P~.

First, let us find a basis for P: if X = (x,y,z) € P then x =4y + 2z
X 4s 4;2t 4 2
X=|y| = s = |1|s+|0]|t
z t 0 1
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Let X = (1,0,4) € R3. Find the orthogonal projection of X onto the plane
P : x —4y 4+ 2z =0 as well the orthogonal projection onto P~.

First, let us find a basis for P: if ¥ = (x,y,z) € P then x = 4y 4 2z

X 45;2t_ 4 -2
X= |yl = s =|1|s+ |0t
z t 0 1
Thus we see a basis for P is
41 P2
11,10
0] |1
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Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see
that
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Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see
that
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Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see
that

4
B r (4 1 0 o (17 —8
M_cl)(l) M_<—20—1 MIM=1"g 4
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Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see

that
r (4 1 0 7., (17 =8
M_<—20—1 MIM=12g 4

. (5/21 821
(M7 M)~ = (8/21 17/21)

-2

<

I
O = b
= O

Patrick Meisner (KTH) Lecture 14 14 /24



Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see
that

4 -2
B r (4 1 0 o (17 —8

M=1|1 0 M_<_20_1 MIM= ("¢
01

o f«‘é

. (5/21 821
(M7 M)~ = (8/21 17/21)

Hence the standard matrix for the orthogonal projection onto P will be

A= MM MTMmT
— N

~
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Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see
that

<
I
o~ &

2
r (4 1 0 o (17 —8
(1) M_<—20—1 MIM=1"g 4

. (5/21 821
(M7 M)~ = (8/21 17/21)

Hence the standard matrix for the orthogonal projection onto P will be
20/21 4/21 -2/21
A=MMTM)IMT = | 4/21 5/21 8/21
—2/21 8/21 17/21
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Example Continued

Therefore, the orthogonal projection of X = (1,0, 4) onto the plane will be

projpX = AX
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Example Continued

Therefore, the orthogonal projection of X = (1,0, 4) onto the plane will be

20/21 4/21 —2/21\ [1
projpX = AX= | 4/21 5/21 8/21 | |0
—2/21 8/21 17/21) |4
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Example Continued

Therefore, the orthogonal projection of X = (1,0, 4) onto the plane will be

20/21 4/21 —2/21\ [1 4/7
projpX = AX= | 4/21 5/21 8/21 | |o| = |12/7
—2/21 8/21 17/21) |4 22/7

I 7 S v/‘; 7 - 14‘—}« Y

Lk/7
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Example Continued

Therefore, the orthogonal projection of X = (1,0, 4) onto the plane will be
——

20/21 4/21 —2/21\ [1 4/7
projpX = AX= | 4/21 5/21 8/21 | |o| = |12/7
—2/21 8/21 17/21) |4 22/7

=

-

Moreover, projp. X = X — X1 > &

&= @“"\PK B X, = @’\O'J@_#m
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Example Continued

Therefore, the orthogonal projection of X = (1,0, 4) onto the plane will be

projpx =

Moreover, projp. X = X — X1 and so

Patrick Meisner (KTH)

20,21
4/21
—2/21

AX =

-

projpLX =

1
0
4

4/21 —2/21\ [1 4/7
5/21 8/21 | |o| = |12/7
8/21 17/21) |4 22/7
& My rmel Pp
4/7 3/7 6J H ploy
— |12/7| = | -12/7
22/7 67
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Example Continued

Therefore, the orthogonal projection of X = (1,0, 4) onto the plane will be

projpX = AX =

20,21
4/21
—2/21

-

Moreover, projp. X = X — X1 and so

1

projp.X = |0

4

4/21 —2/21\ [1 4/7
5/21 8/21 | |o| = |12/7
8/21 17/21) |4 22/7
4/7 3/7
— |12/7] = |-12/7
22/7 6/7

Show that (3/7,—12/7,6/7) € P+.
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We can think of projy,, X as the “component of X that lies in W".
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We can think of projy,, X as the “component of X that lies in W".
Therefore, if X € W, then proj, X = X.

X = % & X “Uni gt
0 N
W wt
v e W =2 K= Xy o
f 0
Wl
S U gre P NI
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We can think of projy,, X as the “component of X that lies in W".
Therefore, if X € W, then proj, X = X.

We see that for any subspace W, we get a linear transformation

T(X) = projyy X
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We can think of proj,, X as the “component of X that lies in W".
Therefore, if X € W, then proj, X = X.

We see that for any subspace W, we get a linear transformation
T(X) = projyy X

called the orthogonal projection of R” onto W
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We can think of proj,, X as the “component of X that lies in W".
Therefore, if X € W, then proj, X = X.

We see that for any subspace W, we get a linear transformation
T(X) = projyy X

called the orthogonal projection of R” onto W and in fact, we get that
it's standard matrix will be M(MTM)~tMT.
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We can think of proj,, X as the “component of X that lies in W".
Therefore, if X € W, then proj, X = X.

We see that for any subspace W, we get a linear transformation
T(X) = projyy X

called the orthogonal projection of R” onto W and in fact, we get that
it's standard matrix will be M(MTM)~tMT.

Further, we see that the projection of R” onto W will then be

S(X) = projyy L X
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We can think of proj,, X as the “component of X that lies in W".
Therefore, if X € W, then proj, X = X.

We see that for any subspace W, we get a linear transformation
T(X) = projyy X

called the orthogonal projection of R” onto W and in fact, we get that
it's standard matrix will be M(MTM)~tMT.

Further, we see that the projection of R” onto W will then be

S(X) = projyy L X = X — projyy X
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We can think of proj,, X as the “component of X that lies in W".
Therefore, if X € W, then proj, X = X.

We see that for any subspace W, we get a linear transformation
T(X) = projyy X

called the orthogonal projection of R” onto W and in fact, we get that
it's standard matrix will be M(MTM)~tMT.

Further, we see that the projection of R” onto W will then be

S(X) = projyyLX = X — projyy X = (I, — M(MTM)TMT)x

—

Thx= X
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We can think of proj,, X as the “component of X that lies in W".
Therefore, if X € W, then proj, X = X.

We see that for any subspace W, we get a linear transformation
T(X) = projyy X

called the orthogonal projection of R” onto W and in fact, we get that
it's standard matrix will be M(MTM)~tMT.

Further, we see that the projection of R” onto W will then be
S(X) = projyyLX = X — projyy X = (I, — M(MTM)TMT)x

and so, its standard matrix will be I, — M(MTM)=1MT
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Example Redux

Back to the example before, we saw that the standard matrix for projp will
be
20/21 4/21 -2/21
A= 4/21 5/21 8/21
—-2/21 8/21 17/21
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Example Redux

Back to the example before, we saw that the standard matrix for projp will
be

20/21 4/21 -2/21
A= 4/21 5/21 8/21
—-2/21 8/21 17/21
And so the standard matrix for projp. would be
1 00 20/21 4/21 -2/21
0 0]—| 4/21 5/21 8/21
0 1 —2/21 8/21 17/21

B = 1
0
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Example Redux

Back to the example before, we saw that the standard matrix for projp will
be
20/21 4/21 -2/21
A= 4/21 5/21 8/21
—-2/21 8/21 17/21

And so the standard matrix for proij would be

20/21
@1 0 4/ 5/21 8 =
00 1 21 8/21 17/21
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Example Redux

Back to the example before, we saw that the standard matrix for projp will
be

20/21 4/21 —2/21
A= | 4/21 5/21 8/21

—-2/21 8/21 17/21
And so the standard matrix for projp. would be

100 20/21 4/21 —2/21 1/21  —4/21 2/21
B=|0 1 0|—| 4/21 5/21 8/21 | =[-4/21 16/21 -8/21
00 1 —2/21 8/21 17/21 2/21 —8/21 4/21

Confirm the previous example by showing that

S
W {7
1/21 —4/21 2/21\ [1 3/7
—4/21 16/21 -8/21| |o| = |-12/7
2/21 —8/21 4/21 ) |4 6/7

Patrick Meisner (KTH)
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Some e Remarks

In general M will not be an square matrix.
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Some More Remarks

Moyt T

In general M will not be an square matrix. Thus M~ does not make
sense.
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Some More Remarks

o (uemy” M

In general M will not be an square matrix. Thus M~ does not make
sense. However, MT M will be a square matrix
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Some More Remarks

m(pTm)t M

In general M will not be an square matrix. Thus M~ does not make
sense. However, M7 M will be a square matrix and, it turns out, always
invertible.

Patrick Meisner (KTH) Lecture 14 18 /24



Some More Remarks
(e mt

In general M will not be an square matrix. Thus M~ does not make
sense. However, M7 M will be a square matrix and, it turns out, always
invertible.However, we can not distribute the inverse
(MTM)™t = M~ (MT)~ L,
- A
[
‘)W"f aot welle  Se€1se
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Some e Remarks

In general M will not be an square matrix. Thus M~ does not make
sense. However, M7 M will be a square matrix and, it turns out, always

invertible.However, we can not distribute the inverse
(MTM)™t = M~ (MT)~ L,

In the case where M is a square n X n matrix, then we can distribute the
inverse
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Some More Remarks

In general M will not be an square matrix. Thus M~ does not make
sense. However, M7 M will be a square matrix and, it turns out, always

invertible.However, we can not distribute the inverse
(MTM)™t = M~ (MT)~ L,

In the case where M is a square n X n matrix, then we can distribute the
inverse and see that the standard matrix will then be

M(MTM)~IMT
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Some More Remarks

In general M will not be an square matrix. Thus M~ does not make
sense. However, M7 M will be a square matrix and, it turns out, always

invertible.However, we can not distribute the inverse
(MTM)™t = M~ (MT)~ L,

In the case where M is a square n X n matrix, then we can distribute the
inverse and see that the standard matrix will then be

-~

M(MTM)IMT = MM~ Y(MT)"ImT
\j/“ T

T T
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Some More Remarks

In general M will not be an square matrix. Thus M~ does not make
sense. However, M7 M will be a square matrix and, it turns out, always

invertible.However, we can not distribute the inverse
(MTM)™t = M~ (MT)~ L,

In the case where M is a square n X n matrix, then we can distribute the
inverse and see that the standard matrix will then be

M(MTM)IMT = MM~ Y(MT)IMT =1,
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Even More Remarks

Hence we see in the case where M is a square n X n matrix, we get that

projyy X = InX
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Even More Remarks

Hence we see in the case where M is a square n X n matrix, we get that
projyy X = IpX = X

This makes geometric sense as M was the matrix whose columns were
basis vectors for W.
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Even More Remarks

Hence we see in the case where M is a square n X n matrix, we get that
projyy X = IpX = X
This makes geometric sense as M was the matrix whose columns were

basis vectors for W. So M is a square n X n matrix if and only if
dim(W) =n

g we R
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Even More Remarks

Hence we see in the case where M is a square n X n matrix, we get that
projyy X = IpX = X

This makes geometric sense as M was the matrix whose columns were
basis vectors for W. So M is a square n X n matrix if and only if
dim(W) = n if and only if W = R".
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Even More Remarks

Hence we see in the case where M is a square n X n matrix, we get that
projyy X = IpX = X

This makes geometric sense as M was the matrix whose columns were
basis vectors for W. So M is a square n X n matrix if and only if
dim(W) = n if and only if W = R".

Hence, proj,y, X is the “component of X lying in W = R"",
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Even More Remarks

Hence we see in the case where M is a square n X n matrix, we get that
projyy X = IpX = X

This makes geometric sense as M was the matrix whose columns were
basis vectors for W. So M is a square n X n matrix if and only if
dim(W) = n if and only if W = R".

Hence, proj,, X is the “component of X lying in W = R™, which would be
just X itself.
J 0= N
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Double Perp Theorem

We can use this notion to prove the double perp theorem.
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Double Perp Theorem

We can use this notion to prove the double perp theorem.

Theorem (Double Perp Theorem)
If W is a subspace of R" then (W+)t = W
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Double Perp Theorem

We can use this notion to prove the double perp theorem.

Theorem (Double Perp Theorem)

If W is a subspace of R" then (W+)L = W, i.e. “the perp space of the
perp space is the original space.”
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Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to
a subspace map?
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Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to
a subspace map? We know that they will be of the form

A=MMTM)IMT

for some matrix M.
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Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to
a subspace map? We know that they will be of the form

A= M(MTM)—IMT
for some matrix M. Thus, if we look at the transpose of this matrix, we

get
AT — (M(MTM)—IMT)T
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Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to
a subspace map? We know that they will be of the form

A=MMTM)IMT

for some matrix M. Thus, if we look at the transpose of this matrix, we
get //——\/f_x

AT — (M(MTM)—IMT)T — (M )T(MT(MT)T)—IMT

—_— 7
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Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to
a subspace map? We know that they will be of the form

A=MMTM)TTMT

for some matrix M. Thus, if we look at the transpose of this matrix, we
get

AT — (M(MTM)—IMT)T — (MT)T(MTMT)_IMT

=MMTM)ImT
—_—

Patrick Meisner (KTH) Lecture 14 21/24



Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to
a subspace map? We know that they will be of the form

A= M(MTM)—IMT
for some matrix M. Thus, if we look at the transpose of this matrix, we

et
g AT — (M(MTM)—IMT)T — (MT)T(MT(MT)T)—IMT

=MMTM)IMT = A
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Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to
a subspace map? We know that they will be of the form

A= M(MTM)—IMT
for some matrix M. Thus, if we look at the transpose of this matrix, we

et
g AT — (M(MTM)—IMT)T — (MT)T(MT(MT)T)—IMT

=MMTM)IMT = A

Definition

We say a matrix A is symmetric if AT = A.
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Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to
a subspace map? We know that they will be of the form

A=MMTM)IMT

for some matrix M. Thus, if we look at the transpose of this matrix, we
get

AT — (M(MTM)—IMT)T — (MT)T(MT(MT)T)—IMT

=MMTM)IMT = A

Definition

We say a matrix A is symmetric if AT = A. Equivalently, its “upper
triangle” is the same as its “lower triangle”.
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Projection Matrices are ldempotent

If W is a subspace and T is the projection of R” onto W, then we know
that T(xX) =x1 € W.
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Projection Matrices are ldempotent

If W is a subspace and T is the projection of R” onto W, then we know
that T(X) = x1 € W. Moreover, we know that if w € W, then
T(w)=we W.
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Projection Matrices are ldempotent

If W is a subspace and T is the projection of R” onto W, then we know
that T(X) = x1 € W. Moreover, we know that if w € W, then
T(w) =w € W. Hence, if we look at T o T, then

(T o T)(X)
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Projection Matrices are ldempotent

If W is a subspace and T is the projection of R” onto W, then we know
that T(X) = x1 € W. Moreover, we know that if w € W, then
T(w) =w € W. Hence, if we look at T o T, then

(ToT)(x)=T(T(x))
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Projection Matrices are ldempotent

If W is a subspace and T is the projection of R” onto W, then we know
that T(X) = x1 € W. Moreover, we know that if w € W, then
T(w) =w € W. Hence, if we look at T o T, then

(ToT)(x)=T(T(x)) = T(x)
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Projection Matrices are ldempotent

If W is a subspace and T is the projection of R” onto W, then we know
that T(X) = x1 € W. Moreover, we know that if w € W, then
T(w) =w € W. Hence, if we look at T o T, then

(TeT)(X)=T(T(x) =T(x) =x
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Projection Matrices are ldempotent

If W is a subspace and T is the projection of R” onto W, then we know
that T(X) = x1 € W. Moreover, we know that if w € W, then
T(w) =w € W. Hence, if we look at T o T, then

(ToT)(x)=T(T(X) = T(a) =x=T(X)
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Projection Matrices are ldempotent

If W is a subspace and T is the projection of R” onto W, then we know
that T(X) = x1 € W. Moreover, we know that if w € W, then
T(w) =w € W. Hence, if we look at T o T, then

(ToT)(x)=T(T(X) = T(a) =x=T(X)

In particular, this shows that To T = T.
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Projection Matrices are ldempotent

If W is a subspace and T is the projection of R” onto W, then we know
that T(X) = x1 € W. Moreover, we know that if w € W, then
T(w) =w € W. Hence, if we look at T o T, then

(ToT)(x)=T(T(X) = T(a) =x=T(X)

In particular, this shows that T o T = T. Hence, if A is the standard
matrix of T, this corresponds to saying

ia
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Projection Matrices are ldempotent

If W is a subspace and T is the projection of R” onto W, then we know
that T(X) = x1 € W. Moreover, we know that if w € W, then
T(w) =w € W. Hence, if we look at T o T, then

(ToT)(x)=T(T(X) = T(a) =x=T(X)

In particular, this shows that T o T = T. Hence, if A is the standard
matrix of T, this corresponds to saying

A2 = A
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Projection Matrices are ldempotent

If W is a subspace and T is the projection of R” onto W, then we know
that T(X) = x1 € W. Moreover, we know that if w € W, then
T(w) =w € W. Hence, if we look at T o T, then

(ToT)(x)=T(T(X) = T(a) =x=T(X)

In particular, this shows that T o T = T. Hence, if A is the standard
matrix of T, this corresponds to saying

A2 = A

Definition

We say a matrix is idempotent if A> = A
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Exercise

Show that if A= M(MTM)~tMT for some matrix M then A2 = A.
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Exercise

Show that if A= M(MTM)~tMT for some matrix M then A2 = A.

Exercise

Show that the matrices of projp and projp. from the previous example are
idempotent and symmetric. That is, if

20/21 4/21 —2/21 1/21 —4/21 2/21
A:=| 4/21 5/21 8/21 B:=|-4/21 16/21 -8/21
—2/21 8/21 17/21 2/21 —8/21 4/21

then AT = A, BT =B, A2= A and B2 = B.
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Projection Matrices Theorem

An n X n matrix A is the standard matrix for an orthogonal projection of
R" onto a k-dimensional subspace of R" if and only if A is symmetric,
idempotent and has rank k. The subspace, W, that A projects onto is
then the column space of A.
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