SF 1684 Algebra and Geometry Lecture 14

Patrick Meisner

KTH Royal Institute of Technology

Topics for Today

- Orthogonal Projections onto a Line
- Orthogonal Projections onto a Subspace
- Projection Matrices

Recall in Lecture 2 we defined the projection of a vector \vec{v} onto another vector \vec{a} as the "shadow" of \vec{v} on \vec{a} .

Recall in Lecture 2 we defined the projection of a vector \vec{v} onto another vector \vec{a} as the "shadow" of \vec{v} on \vec{a} . Moreover, we had the formula

Recall in Lecture 2 we defined the projection of a vector \vec{v} onto another vector \vec{a} as the "shadow" of \vec{v} on \vec{a} . Moreover, we had the formula

$$\operatorname{proj}_{\vec{a}} \vec{v} = \frac{\vec{v} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$

Theorem

If \vec{a} is a non-zero vector in \mathbb{R}^n , then every vector $\vec{x} \in \mathbb{R}^n$ can be expressed in exactly one way as

$$\vec{x} = \vec{x}_1 + \vec{x}_2$$

where \vec{x}_1 is a scalar multiple of \vec{a} and \vec{x}_2 is orthogonal to \vec{a} (and hence to \vec{x}_1).

Recall in Lecture 2 we defined the projection of a vector \vec{v} onto another vector \vec{a} as the "shadow" of \vec{v} on \vec{a} . Moreover, we had the formula

$$\operatorname{proj}_{\vec{a}} \vec{v} = \frac{\vec{v} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$

Theorem

If \vec{a} is a non-zero vector in \mathbb{R}^n , then every vector $\vec{x} \in \mathbb{R}^n$ can be expressed in exactly one way as

$$\vec{x} = \vec{x}_1 + \vec{x}_2$$

where \vec{x}_1 is a scalar multiple of \vec{a} and \vec{x}_2 is orthogonal to \vec{a} (and hence to \vec{x}_1).In particular, we have

$$ec{x}_1 = proj_{ec{a}} ec{x}_1 = rac{ec{x} \cdot ec{a}}{\|ec{a}\|^2} ec{a}$$
 $ec{x}_2 = ec{x} - ec{x}_1 = ec{x} - rac{ec{x} \cdot ec{a}}{\|ec{a}\|^2} ec{a}$

Proof

$$\ddot{X}_1 = C \cdot \ddot{\alpha}$$
 $\ddot{X}_1 = \ddot{X}_1 + \ddot{X}_1 \rightarrow \ddot{X}_1 = \ddot{X}_1 - \ddot{X}_2 \times - C \cdot \ddot{c}$
We also need $\ddot{X}_1 \cdot \ddot{\alpha}_1 = C$
That is, need $\ddot{X}_1 - C \cdot \ddot{\alpha}_1 \cdot \ddot{\alpha}_1 = C$
Expand this. $\ddot{X}_1 \cdot \ddot{\alpha}_1 - C \cdot \ddot{\alpha}_1 \cdot \ddot{\alpha}_1 = C$
Rearranging, Find $C = \frac{\ddot{X}_1 \cdot \ddot{c}_1}{\ddot{\alpha}_1 \cdot \ddot{\alpha}_1} = \frac{\ddot{X}_1 \cdot \ddot{c}_1}{|\vec{\alpha}_1|^2}$
That we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can clud that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can consider that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can consider that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can consider that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can consider that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can consider that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can consider that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can consider that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can consider that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we can consider that $\ddot{X}_1 = \ddot{X}_1 \cdot \ddot{c}_1$
Then we

Orthogonal Projections and Components

Definition

If \vec{a} is a nonzero vector in \mathbb{R}^n and if \vec{x} is any vector in \mathbb{R}^n , then the **orthogonal projection of** \vec{x} **onto span**(\vec{a}) is denoted proj $_{\vec{a}}\vec{x}$ and defined to be

$$\operatorname{proj}_{\vec{a}}\vec{x} = \frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^2}\vec{a}$$

Orthogonal Projections and Components

Definition

If \vec{a} is a nonzero vector in \mathbb{R}^n and if \vec{x} is any vector in \mathbb{R}^n , then the **orthogonal projection of** \vec{x} **onto span**(\vec{a}) is denoted proj $_{\vec{a}}\vec{x}$ and defined to be

$$\operatorname{proj}_{\vec{a}}\vec{x} = \frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$

The vector proj $\vec{a}\vec{x}$ is also called the **vector component of** \vec{x} **along** \vec{a}

Orthogonal Projections and Components

Definition

If \vec{a} is a nonzero vector in \mathbb{R}^n and if \vec{x} is any vector in \mathbb{R}^n , then the **orthogonal projection of** \vec{x} **onto span**(\vec{a}) is denoted proj $_{\vec{a}}\vec{x}$ and defined to be

$$\operatorname{proj}_{\vec{a}}\vec{x} = \frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$

The vector $\operatorname{proj}_{\vec{a}}\vec{x}$ is also called the **vector component of** \vec{x} **along** \vec{a} and $\vec{x} - \operatorname{proj}_{\vec{a}}\vec{x}$ is called the **vector component of** \vec{x} **orthogonal to** \vec{a} .

Let $\vec{x} = (2, -1, 3)$ and $\vec{a} = (4, -1, 2)$. Find the vector component of \vec{x} along \vec{a} and the vector component of \vec{x} orthogonal to \vec{a} .

$$\chi_1 = \text{Prij}_{\overline{a}} \hat{x} = \frac{x \cdot c}{||g||^{\frac{1}{2}}} \cdot c_1 = \frac{13}{20} \left(\frac{4}{7}\right) = \left(\frac{1475}{-1220}\right) \leftarrow \text{vector}$$

$$\begin{array}{ccc}
\chi : & \chi - \chi \\
= \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} & \begin{pmatrix} 12/5 \\ -12/10 \\ 12/10 \end{pmatrix} \\
= \begin{pmatrix} -2/5 \\ -12/10 \\ 12/10 \end{pmatrix} \\
= \begin{pmatrix} -2/5 \\ -12/10 \\ 12/10 \end{pmatrix} \\
= \begin{pmatrix} -2/5 \\ -12/10 \\ 12/10 \end{pmatrix}$$

Orthogonal Projections as Linear Transformations

For any vector $\vec{a} \in \mathbb{R}^n$, we can define the map $T : \mathbb{R}^n \to \mathbb{R}^n$

$$T(\vec{x}) = \operatorname{proj}_{\vec{a}} \vec{x} = \frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$

Orthogonal Projections as Linear Transformations

For any vector $\vec{a} \in \mathbb{R}^n$, we can define the map $T : \mathbb{R}^n \to \mathbb{R}^n$

$$T(\vec{x}) = \operatorname{proj}_{\vec{a}} \vec{x} = \frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$

Exercise

Show that T is a linear transformation.

Orthogonal Projections as Linear Transformations

For any vector $\vec{a} \in \mathbb{R}^n$, we can define the map $T : \mathbb{R}^n \to \mathbb{R}^n$

$$T(\vec{x}) = \operatorname{proj}_{\vec{a}} \vec{x} = \frac{\vec{x} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$

Exercise

Show that T is a linear transformation.

We call this map the **orthogonal projection of** \mathbb{R}^n **onto span**(\vec{a}).

) Sulspace

Standard Matrix of Orthogonal Projection

Theorem

If \vec{a} is a nonzero vector in \mathbb{R}^n , and if \vec{a} is viewed as an $n \times 1$ matrix, then the standard matrix for the linear operator $T(\vec{x}) = \text{proj}_{\vec{a}}\vec{x}$ is

$$P = (1 - 3)^{T} - Squar \quad \text{untrip}$$

Note: $\vec{a}^T \vec{a} \in \mathbb{R}^1$ and so is a scalar, whereas $\vec{a} \vec{a}^T$ is an $n \times n$ matrix.

More Work Space

$$P = \frac{1}{\alpha_1 \alpha_2} \quad \alpha_1 \alpha_2 = \frac{1}{(|\alpha|)^2} \begin{pmatrix} \alpha_1 \alpha_1 & \cdots & \alpha_n \alpha_n \\ \alpha_1 \alpha_1 & \cdots & \alpha_n \alpha_n \\ \alpha_1 \alpha_1 & \cdots & \alpha_n \alpha_n \end{pmatrix}$$

fecal! He it (alcon at the standard metric at the will be
$$T(\vec{e}_i)$$

$$T(C_i) = \frac{\alpha \cdot c_i \cdot \overline{\alpha}}{|\alpha|^2} \cdot \overline{\alpha}$$

$$= \frac{\alpha_i}{|\alpha|^2} \cdot \overline{\alpha}$$

Find the standard matrix of the linear transformation given by projecting onto span $\{(4,-1,2)\}$. 3 = (4) T

$$\alpha G^{T} = \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \\ 4 & 4 \\ 4 & 4 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 16 \\ -4 \\ 8 \\ -2 \\ 4 \end{pmatrix}$$

Exercise: Chock that this gives the same answer as the previous method.

So far we have talked about projecting onto a line given by span $\{\vec{a}\}$.

So far we have talked about projecting onto a line given by span $\{\vec{a}\}$. However, we can do this for an arbitrary subspace of \mathbb{R}^n .

So far we have talked about projecting onto a line given by span $\{\vec{a}\}$. However, we can do this for an arbitrary subspace of \mathbb{R}^n .

Theorem

Let W be a subspace of \mathbb{R}^n , then every vector $\vec{x} \in \mathbb{R}^n$ can be expressed in exactly one way as

$$\vec{x} = \vec{x}_1 + \vec{x}_2$$

where $\vec{x_1} \in W$ and $\vec{x_2} \in W^{\perp}$.

So far we have talked about projecting onto a line given by span $\{\vec{a}\}$. However, we can do this for an arbitrary subspace of \mathbb{R}^n .

Theorem

Let W be a subspace of \mathbb{R}^n , then every vector $\vec{x} \in \mathbb{R}^n$ can be expressed in exactly one way as

$$\vec{x} = \vec{x}_1 + \vec{x}_2$$

where $\vec{x_1} \in W$ and $\vec{x_2} \in W^{\perp}$.

We call $\vec{x_1}$ the **orthogonal projection of** \vec{x} **onto** W

Patrick Meisner (KTH) Lecture 14 11/24

So far we have talked about projecting onto a line given by span $\{\vec{a}\}$. However, we can do this for an arbitrary subspace of \mathbb{R}^n .

Theorem

Let W be a subspace of \mathbb{R}^n , then every vector $\vec{x} \in \mathbb{R}^n$ can be expressed in exactly one way as

$$\vec{x} = \vec{x}_1 + \vec{x}_2$$

where $\vec{x_1} \in W$ and $\vec{x_2} \in W^{\perp}$.

We call $\vec{x_1}$ the orthogonal projection of \vec{x} onto W and $\vec{x_2}$ the orthogonal projection of \vec{x} on W^{\perp}

So far we have talked about projecting onto a line given by span $\{\vec{a}\}$. However, we can do this for an arbitrary subspace of \mathbb{R}^n .

Theorem

Let W be a subspace of \mathbb{R}^n , then every vector $\vec{x} \in \mathbb{R}^n$ can be expressed in exactly one way as

$$\vec{x} = \vec{x}_1 + \vec{x}_2$$

where $\vec{x_1} \in W$ and $\vec{x_2} \in W^{\perp}$.

We call $\vec{x_1}$ the **orthogonal projection of** \vec{x} **onto** W and $\vec{x_2}$ the **orthogonal projection of** \vec{x} **on** W^{\perp} and denote them

$$\vec{x}_1 = \text{proj}_W \vec{x}$$
 and $\vec{x}_2 = \text{proj}_{W^{\perp}} \vec{x}$

So far we have talked about projecting onto a line given by span $\{\vec{a}\}$. However, we can do this for an arbitrary subspace of \mathbb{R}^n .

Theorem

Let W be a subspace of \mathbb{R}^n , then every vector $\vec{x} \in \mathbb{R}^n$ can be expressed in exactly one way as

$$\vec{x} = \vec{x}_1 + \vec{x}_2$$

where $\vec{x_1} \in W$ and $\vec{x_2} \in W^{\perp}$.

We call $\vec{x_1}$ the **orthogonal projection of** \vec{x} **onto** W and $\vec{x_2}$ the **orthogonal projection of** \vec{x} **on** W^{\perp} and denote them

$$\vec{x}_1 = \operatorname{proj}_W \vec{x}$$
 and $\vec{x}_2 = \operatorname{proj}_{W^{\perp}} \vec{x}$

We can prove this theorem by constructing a value for $\operatorname{proj}_W \vec{x}$ that works.

Orthogonal Projection onto W

Theorem

If W is a nonzero subspace of \mathbb{R}^n , and if M is any matrix whose column vectors form a basis for W, then setting

$$\vec{x}_1 = proj_W \vec{x} = M(M^T M)^{-1} M^T \vec{x}$$

satisfies the previous theorem.

Orthogonal Projection onto W

Theorem

If W is a nonzero subspace of \mathbb{R}^n , and if M is any matrix whose column vectors form a basis for W, then setting

$$\vec{x}_1 = proj_W \vec{x} = M(M^T M)^{-1} M^T \vec{x}$$

satisfies the previous theorem. In particular,

$$proj_W \vec{x} \in W$$
 and $\vec{x}_2 = \vec{x} - \vec{x}_1 = \vec{x} - proj_W \vec{x} \in W^{\perp}$

Proof.

Orthogonal Projection onto W

Theorem

If W is a nonzero subspace of \mathbb{R}^n , and if M is any matrix whose column vectors form a basis for W, then setting

$$\vec{x}_1 = proj_W \vec{x} = M(M^T M)^{-1} M^T \vec{x}$$

satisfies the previous theorem. In particular,

$$proj_W \vec{x} \in W$$
 and $\vec{x}_2 = \vec{x} - \vec{x}_1 = \vec{x} - proj_W \vec{x} \in W^{\perp}$

Proof.

See page 384 of textbook.

(x-Projux).V=O

Patrick Meisner (KTH) Lecture 14 12 / 24

Let $\vec{x} = (1, 0, 4) \in \mathbb{R}^3$. Find the orthogonal projection of \vec{x} onto the plane P: x - 4y + 2z = 0 as well the orthogonal projection onto P^{\perp} .

Let $\vec{x} = (1, 0, 4) \in \mathbb{R}^3$. Find the orthogonal projection of \vec{x} onto the plane P: x - 4y + 2z = 0 as well the orthogonal projection onto P^{\perp} .

First, let us find a basis for P: if $\vec{x} = (x, y, z) \in P$ then x = 4y / 2z

Let $\vec{x} = (1, 0, 4) \in \mathbb{R}^3$. Find the orthogonal projection of \vec{x} onto the plane P: x - 4y + 2z = 0 as well the orthogonal projection onto P^{\perp} .

First, let us find a basis for P: if $\vec{x} = (x, y, z) \in P$ then x = 4y + 2z

$$\vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Let $\vec{x} = (1, 0, 4) \in \mathbb{R}^3$. Find the orthogonal projection of \vec{x} onto the plane P: x - 4y + 2z = 0 as well the orthogonal projection onto P^{\perp} .

First, let us find a basis for P: if $\vec{x} = (x, y, z) \in P$ then x = 4y + 2z

Let $\vec{x} = (1, 0, 4) \in \mathbb{R}^3$. Find the orthogonal projection of \vec{x} onto the plane P: x - 4y + 2z = 0 as well the orthogonal projection onto P^{\perp} .

First, let us find a basis for P: if $\vec{x} = (x, y, z) \in P$ then x = 4y + 2z

$$\vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4s & 2t \\ s \\ t \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} s + \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} t$$

Patrick Meisner (KTH) Lecture 14 13 / 24

Let $\vec{x} = (1, 0, 4) \in \mathbb{R}^3$. Find the orthogonal projection of \vec{x} onto the plane P: x - 4y + 2z = 0 as well the orthogonal projection onto P^{\perp} .

First, let us find a basis for P: if $\vec{x} = (x, y, z) \in P$ then x = 4y + 2z

$$\vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4s + 2t \\ s \\ t \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} s + \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} t$$

Thus we see a basis for P is

$$\left\{ \begin{bmatrix} 4\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix} \right\}$$

Patrick Meisner (KTH) Lecture 14 13 / 24

Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see that

$$M = \begin{pmatrix} 4 & -2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see that

$$M = \begin{pmatrix} 4 & -2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \quad M^T = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix}$$

Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see that

$$M = \begin{pmatrix} 4 & -2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \quad M^{T} = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix} \quad M^{T}M = \begin{pmatrix} 17 & -8 \\ -8 & 4 \end{pmatrix}$$

Thus, forming the matrix M whose columns are the basis for P, we see that

$$M = \begin{pmatrix} 4 & -2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \quad M^{T} = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix} \quad M^{T}M = \begin{pmatrix} 17 & -8 \\ -8 & 4 \end{pmatrix}$$
$$(M^{T}M)^{-1} = \begin{pmatrix} 5/21 & 8/21 \\ 8/21 & 17/21 \end{pmatrix}$$

Patrick Meisner (KTH) Lecture 14 14 / 24

Thus, forming the matrix M whose columns are the basis for P, we see that

$$M = \begin{pmatrix} 4 & -2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad M^{T} = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix} \qquad M^{T}M = \begin{pmatrix} 17 & -8 \\ -8 & 4 \end{pmatrix}$$
$$(M^{T}M)^{-1} = \begin{pmatrix} 5/21 & 8/21 \\ 8/21 & 17/21 \end{pmatrix}$$

Hence the standard matrix for the orthogonal projection onto P will be

$$A = M(M^TM)^{-1}M^T$$

Patrick Meisner (KTH) Lecture 14 14 / 24

Thus, forming the matrix M whose columns are the basis for P, we see that

$$M = \begin{pmatrix} 4 & -2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \quad M^{T} = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix} \quad M^{T}M = \begin{pmatrix} 17 & -8 \\ -8 & 4 \end{pmatrix}$$
$$(M^{T}M)^{-1} = \begin{pmatrix} 5/21 & 8/21 \\ 8/21 & 17/21 \end{pmatrix}$$

Hence the standard matrix for the orthogonal projection onto P will be

$$A = M(M^{T}M)^{-1}M^{T} = \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix}$$

Patrick Meisner (KTH) Lecture 14 14 / 24

Therefore, the orthogonal projection of $\vec{x} = (1, 0, 4)$ onto the plane will be

$$\operatorname{proj}_{P} \vec{x} = A \vec{x}$$

Therefore, the orthogonal projection of $\vec{x} = (1, 0, 4)$ onto the plane will be

$$\operatorname{proj}_{P} \vec{x} = A \vec{x} = \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$$

Patrick Meisner (KTH) Lecture 14 15 / 24

Therefore, the orthogonal projection of $\vec{x} = (1, 0, 4)$ onto the plane will be

$$proj_{P}\vec{x} = A\vec{x} = \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 4/7 \\ 12/7 \\ 22/7 \end{bmatrix}$$
 For each that
$$\begin{pmatrix} \sqrt{7} \\ \sqrt{27} \\ \sqrt{27}$$

Patrick Meisner (KTH) Lecture 14 15 / 24

Therefore, the orthogonal projection of $\vec{x} = (1,0,4)$ onto the plane will be

$$\operatorname{proj}_{P} \vec{x} = A \vec{x} = \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 4/7 \\ 12/7 \\ 22/7 \end{bmatrix}$$

Moreover,
$$\text{proj}_{P^{\perp}}\vec{x} = \vec{x} - \vec{x}_1$$

Therefore, the orthogonal projection of $\vec{x} = (1,0,4)$ onto the plane will be

$$\operatorname{proj}_{P} \vec{x} = A \vec{x} = \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 4/7 \\ 12/7 \\ 22/7 \end{bmatrix}$$

Moreover, proj_{P^{\perp}} $\vec{x} = \vec{x} - \vec{x_1}$ and so

Patrick Meisner (KTH) Lecture 14 15 / 24

Therefore, the orthogonal projection of $\vec{x} = (1,0,4)$ onto the plane will be

$$\operatorname{proj}_{P} \vec{x} = A \vec{x} = \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 4/7 \\ 12/7 \\ 22/7 \end{bmatrix}$$

Moreover, $\text{proj}_{P^{\perp}}\vec{x} = \vec{x} - \vec{x_1}$ and so

$$\operatorname{proj}_{P^{\perp}} \vec{x} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} - \begin{bmatrix} 4/7 \\ 12/7 \\ 22/7 \end{bmatrix} = \begin{bmatrix} 3/7 \\ -12/7 \\ 6/7 \end{bmatrix}$$

Exercise

Show that $(3/7, -12/7, 6/7) \in P^{\perp}$.

Hint: Enryl to chak it is orthogonal with the bours vector.

Patrick Meisner (KTH) Lecture 14 15/24

We can think of $\operatorname{proj}_W \vec{x}$ as the "component of \vec{x} that lies in W".

We can think of $\operatorname{proj}_W \vec{x}$ as the "component of \vec{x} that lies in W". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_W \vec{x} = \vec{x}$.

Patrick Meisner (KTH) Lecture 14 16 / 24

We can think of $\operatorname{proj}_W \vec{x}$ as the "component of \vec{x} that lies in W". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_W \vec{x} = \vec{x}$.

We see that for any subspace W, we get a linear transformation

$$T(\vec{x}) = \text{proj}_W \vec{x}$$

We can think of $\operatorname{proj}_W \vec{x}$ as the "component of \vec{x} that lies in W". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_W \vec{x} = \vec{x}$.

We see that for any subspace W, we get a linear transformation

$$T(\vec{x}) = \text{proj}_W \vec{x}$$

called the orthogonal projection of \mathbb{R}^n onto W

We can think of $\operatorname{proj}_{W}\vec{x}$ as the "component of \vec{x} that lies in W". Therefore, if $\vec{x} \in W$, then $\text{proj}_{W} \vec{x} = \vec{x}$.

We see that for any subspace W, we get a linear transformation

$$T(\vec{x}) = \operatorname{proj}_W \vec{x}$$

called the orthogonal projection of \mathbb{R}^n onto W and in fact, we get that it's standard matrix will be $M(M^TM)^{-1}M^T$.

Lecture 14 16/24

We can think of $\operatorname{proj}_W \vec{x}$ as the "component of \vec{x} that lies in W". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_W \vec{x} = \vec{x}$.

We see that for any subspace W, we get a linear transformation

$$T(\vec{x}) = \operatorname{proj}_W \vec{x}$$

called the orthogonal projection of \mathbb{R}^n onto W and in fact, we get that it's standard matrix will be $M(M^TM)^{-1}M^T$.

Further, we see that the projection of \mathbb{R}^n onto W^\perp will then be

$$S(\vec{x}) = \operatorname{proj}_{W^{\perp}} \vec{x}$$

We can think of $\operatorname{proj}_W \vec{x}$ as the "component of \vec{x} that lies in W". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_W \vec{x} = \vec{x}$.

We see that for any subspace W, we get a linear transformation

$$T(\vec{x}) = \operatorname{proj}_W \vec{x}$$

called the orthogonal projection of \mathbb{R}^n onto W and in fact, we get that it's standard matrix will be $M(M^TM)^{-1}M^T$.

Further, we see that the projection of \mathbb{R}^n onto W^{\perp} will then be

$$S(\vec{x}) = \operatorname{proj}_{W^{\perp}} \vec{x} = \vec{x} - \operatorname{proj}_{W} \vec{x}$$

We can think of $\operatorname{proj}_W \vec{x}$ as the "component of \vec{x} that lies in W". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_W \vec{x} = \vec{x}$.

We see that for any subspace W, we get a linear transformation

$$T(\vec{x}) = \text{proj}_W \vec{x}$$

called the orthogonal projection of \mathbb{R}^n onto W and in fact, we get that it's standard matrix will be $M(M^TM)^{-1}M^T$.

Further, we see that the projection of \mathbb{R}^n onto W^{\perp} will then be

$$S(\vec{x}) = \operatorname{proj}_{W^{\perp}} \vec{x} = \vec{x} - \operatorname{proj}_{W} \vec{x} = (\underline{I_n} - M(M^T M)^{-1} M^T) \vec{x}$$

$$\mathfrak{I}_{\alpha} \vec{y} = \vec{x}$$

Patrick Meisner (KTH) Lecture 14 16 / 24

We can think of $\operatorname{proj}_W \vec{x}$ as the "component of \vec{x} that lies in W". Therefore, if $\vec{x} \in W$, then $\operatorname{proj}_W \vec{x} = \vec{x}$.

We see that for any subspace W, we get a linear transformation

$$T(\vec{x}) = \operatorname{proj}_W \vec{x}$$

called the orthogonal projection of \mathbb{R}^n onto W and in fact, we get that it's standard matrix will be $M(M^TM)^{-1}M^T$.

Further, we see that the projection of \mathbb{R}^n onto W^{\perp} will then be

$$S(\vec{x}) = \operatorname{proj}_{W^{\perp}} \vec{x} = \vec{x} - \operatorname{proj}_{W} \vec{x} = (I_n - M(M^T M)^{-1} M^T) \vec{x}$$

and so, its standard matrix will be $I_n - M(M^TM)^{-1}M^T$

Patrick Meisner (KTH) Lecture 14 16/24

Back to the example before, we saw that the standard matrix for $proj_P$ will be

$$A = \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix}$$

Back to the example before, we saw that the standard matrix for $proj_P$ will be

$$A = \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix}$$

And so the standard matrix for $proj_{P^{\perp}}$ would be

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix}$$

Back to the example before, we saw that the standard matrix for $proj_P$ will be

$$A = \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix}$$

And so the standard matrix for $proj_{P^{\perp}}$ would be

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 20/21 & 4/21 & 2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix} = \begin{pmatrix} 1/21 & -4/21 & 2/21 \\ 4/21 & 16/21 & 8/21 \\ 2/21 & -8/21 & 4/21 \end{pmatrix}$$

Back to the example before, we saw that the standard matrix for proj_P will be

$$A = \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix}$$

And so the standard matrix for $proj_{P^{\perp}}$ would be

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix} = \begin{pmatrix} 1/21 & -4/21 & 2/21 \\ -4/21 & 16/21 & -8/21 \\ 2/21 & -8/21 & 4/21 \end{pmatrix}$$

Exercise

Confirm the previous example by showing that

$$\begin{pmatrix} 1/21 & -4/21 & 2/21 \\ -4/21 & 16/21 & -8/21 \\ 2/21 & -8/21 & 4/21 \end{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 3/7 \\ -12/7 \\ 6/7 \end{bmatrix}$$

Patrick Meisner (KTH) Lecture 14 17 / 24

In general M will not be an square matrix.

$$M (M^T M)^{-1} M^T$$

In general M will not be an square matrix. Thus M^{-1} does not make sense.

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, M^TM will be a square matrix

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, M^TM will be a square matrix and, it turns out, always invertible.

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, M^TM will be a square matrix and, it turns out, always invertible. However, we can not distribute the inverse

$$(M^TM)^{-1} = M^{-1}(M^T)^{-1}.$$

$$M^TM \text{ where Serse}$$

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, M^TM will be a square matrix and, it turns out, always invertible. However, we can not distribute the inverse $(M^T M)^{-1} = M^{-1} (M^T)^{-1}$.

In the case where M is a square $n \times n$ matrix, then we can distribute the inverse

Lecture 14 18 / 24

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, M^TM will be a square matrix and, it turns out, always invertible. However, we can not distribute the inverse $(M^TM)^{-1} = M^{-1}(M^T)^{-1}$.

In the case where M is a square $n \times n$ matrix, then we can distribute the inverse and see that the standard matrix will then be

$$M(M^TM)^{-1}M^T$$

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, M^TM will be a square matrix and, it turns out, always invertible. However, we can not distribute the inverse $(M^TM)^{-1} = M^{-1}(M^T)^{-1}$.

In the case where M is a square $n \times n$ matrix, then we can distribute the inverse and see that the standard matrix will then be

Patrick Meisner (KTH) Lecture 14 18 / 24

In general M will not be an square matrix. Thus M^{-1} does not make sense. However, M^TM will be a square matrix and, it turns out, always invertible. However, we can not distribute the inverse $(M^TM)^{-1} = M^{-1}(M^T)^{-1}$.

In the case where M is a square $n \times n$ matrix, then we can distribute the inverse and see that the standard matrix will then be

$$M(M^TM)^{-1}M^T = MM^{-1}(M^T)^{-1}M^T = I_n$$

Patrick Meisner (KTH) Lecture 14 18 / 24

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$\operatorname{proj}_W \vec{x} = I_n \vec{x}$$

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$\operatorname{proj}_W \vec{x} = I_n \vec{x} = \vec{x}$$

This makes geometric sense as M was the matrix whose columns were basis vectors for W.

Patrick Meisner (KTH) Lecture 14 19 / 24

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$\operatorname{proj}_W \vec{x} = I_n \vec{x} = \vec{x}$$

This makes geometric sense as M was the matrix whose columns were basis vectors for W. So M is a square $n \times n$ matrix if and only if $\dim(W) = n$

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$\operatorname{proj}_W \vec{x} = I_n \vec{x} = \vec{x}$$

This makes geometric sense as M was the matrix whose columns were basis vectors for W. So M is a square $n \times n$ matrix if and only if $\dim(W) = n$ if and only if $W = \mathbb{R}^n$.

Patrick Meisner (KTH) Lecture 14 19 / 24

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$\operatorname{proj}_W \vec{x} = I_n \vec{x} = \vec{x}$$

This makes geometric sense as M was the matrix whose columns were basis vectors for W. So M is a square $n \times n$ matrix if and only if $\dim(W) = n$ if and only if $W = \mathbb{R}^n$.

Hence, $\operatorname{proj}_W \vec{x}$ is the "component of \vec{x} lying in $W = \mathbb{R}^{n}$ ",

Even More Remarks

Hence we see in the case where M is a square $n \times n$ matrix, we get that

$$\operatorname{proj}_{W} \vec{x} = I_n \vec{x} = \vec{x}$$

This makes geometric sense as M was the matrix whose columns were basis vectors for W. So M is a square $n \times n$ matrix if and only if $\dim(W) = n$ if and only if $W = \mathbb{R}^n$.

Hence, $\operatorname{proj}_W \vec{x}$ is the "component of \vec{x} lying in $W = \mathbb{R}^{n}$ ", which would be just \vec{x} itself.

$$\chi \in \mathbb{Q}^{r}$$

Double Perp Theorem

We can use this notion to prove the **double perp theorem**.

Double Perp Theorem

We can use this notion to prove the **double perp theorem**.

Theorem (Double Perp Theorem)

If W is a subspace of \mathbb{R}^n then $(W^{\perp})^{\perp} = W$

Patrick Meisner (KTH) Lecture 14 20 / 24

Double Perp Theorem

We can use this notion to prove the **double perp theorem**.

Theorem (Double Perp Theorem)

If W is a subspace of \mathbb{R}^n then $(W^{\perp})^{\perp}=W$, i.e. "the perp space of the perp space is the original space."

projection projection
$$X = X_1 + X_2$$
 uniquely where $X \in W$ $X_1 = Proj_{W} X$ $X_2 = Proj_{W} X$

projection $X_1 = Proj_{W} X$ $X_2 = Proj_{W} X$
 $X = Y_1 + Y_2$ uniquely where $X \in W$

in particular $X_1 = Proj_{W} X$ $X_2 = Proj_{W} X$
 $X = X_1 + X_2 + X_3 = Proj_{W} X_4 + X_5 = Proj_{W} X_5 + X_6 = X_6$

Which matrices may occur as the standard matrix of a projection onto to a subspace map?

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$A = M(M^T M)^{-1} M^T$$

for some matrix M.

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$A = M(M^T M)^{-1} M^T$$

$$A^T = (M(M^T M)^{-1} M^T)^T$$

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$A = M(M^T M)^{-1} M^T$$

$$A^{T} = (M(M^{T}M)^{-1}M^{T})^{T} = (M^{T})^{T}(M^{T}(M^{T})^{T})^{-1}M^{T}$$

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$A = M(M^T M)^{-1} M^T$$

$$A^{T} = (M(M^{T}M)^{-1}M^{T})^{T} = (M^{T})^{T}(M^{T}(M^{T})^{T})^{-1}M^{T}$$
$$= M(M^{T}M)^{-1}M^{T}$$

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$A = M(M^T M)^{-1} M^T$$

$$A^{T} = (M(M^{T}M)^{-1}M^{T})^{T} = (M^{T})^{T}(M^{T}(M^{T})^{T})^{-1}M^{T}$$
$$= M(M^{T}M)^{-1}M^{T} = A$$

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$A = M(M^T M)^{-1} M^T$$

for some matrix M. Thus, if we look at the transpose of this matrix, we get

$$A^{T} = (M(M^{T}M)^{-1}M^{T})^{T} = (M^{T})^{T}(M^{T}(M^{T})^{T})^{-1}M^{T}$$
$$= M(M^{T}M)^{-1}M^{T} = A$$

Definition

We say a matrix A is **symmetric** if $A^T = A$.

Which matrices may occur as the standard matrix of a projection onto to a subspace map? We know that they will be of the form

$$A = M(M^T M)^{-1} M^T$$

for some matrix M. Thus, if we look at the transpose of this matrix, we get

$$A^{T} = (M(M^{T}M)^{-1}M^{T})^{T} = (M^{T})^{T}(M^{T}(M^{T})^{T})^{-1}M^{T}$$

Definition

We say a matrix A is symmetric if $A^T = A$. Equivalently, its "upper triangle" is the same as its "lower triangle".

If W is a subspace and T is the projection of \mathbb{R}^n onto W, then we know that $T(\vec{x}) = \vec{x}_1 \in W$.

$$(T \circ T)(\vec{x})$$

$$(T \circ T)(\vec{x}) = T(T(\vec{x}))$$

$$(T \circ T)(\vec{x}) = T(T(\vec{x})) = T(\vec{x}_1)$$

$$(T \circ T)(\vec{x}) = T(T(\vec{x})) = T(\vec{x}_1) = \vec{x}_1$$

If W is a subspace and T is the projection of \mathbb{R}^n onto W, then we know that $T(\vec{x}) = \vec{x}_1 \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w}) = \vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$(T \circ T)(\vec{x}) = T(T(\vec{x})) = T(\vec{x}_1) = \vec{x}_1 = T(\vec{x})$$

Patrick Meisner (KTH) Lecture 14 22 / 24

If W is a subspace and T is the projection of \mathbb{R}^n onto W, then we know that $T(\vec{x}) = \vec{x}_1 \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w}) = \vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$(T \circ T)(\vec{x}) = T(T(\vec{x})) = T(\vec{x}_1) = \vec{x}_1 = T(\vec{x})$$

In particular, this shows that $T \circ T = T$.

If W is a subspace and T is the projection of \mathbb{R}^n onto W, then we know that $T(\vec{x}) = \vec{x}_1 \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w}) = \vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$(T \circ T)(\vec{x}) = T(T(\vec{x})) = T(\vec{x}_1) = \vec{x}_1 = T(\vec{x})$$

In particular, this shows that $T \circ T = T$. Hence, if A is the standard matrix of T, this corresponds to saying

If W is a subspace and T is the projection of \mathbb{R}^n onto W, then we know that $T(\vec{x}) = \vec{x}_1 \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w}) = \vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$(T \circ T)(\vec{x}) = T(T(\vec{x})) = T(\vec{x}_1) = \vec{x}_1 = T(\vec{x})$$

In particular, this shows that $T \circ T = T$. Hence, if A is the standard matrix of T, this corresponds to saying

$$A^2 = A$$

If W is a subspace and T is the projection of \mathbb{R}^n onto W, then we know that $T(\vec{x}) = \vec{x}_1 \in W$. Moreover, we know that if $\vec{w} \in W$, then $T(\vec{w}) = \vec{w} \in W$. Hence, if we look at $T \circ T$, then

$$(T \circ T)(\vec{x}) = T(T(\vec{x})) = T(\vec{x}_1) = \vec{x}_1 = T(\vec{x})$$

In particular, this shows that $T \circ T = T$. Hence, if A is the standard matrix of T, this corresponds to saying

$$A^2 = A$$

Definition

We say a matrix is **idempotent** if $A^2 = A$.

Exercise

Exercise

Show that if $A = M(M^T M)^{-1} M^T$ for some matrix M then $A^2 = A$.

Exercise

Show that if $A = M(M^T M)^{-1} M^T$ for some matrix M then $A^2 = A$.

Exercise

Show that the matrices of proj_P and proj_{P^\perp} from the previous example are idempotent and symmetric. That is, if

$$A := \begin{pmatrix} 20/21 & 4/21 & -2/21 \\ 4/21 & 5/21 & 8/21 \\ -2/21 & 8/21 & 17/21 \end{pmatrix} \qquad B := \begin{pmatrix} 1/21 & -4/21 & 2/21 \\ -4/21 & 16/21 & -8/21 \\ 2/21 & -8/21 & 4/21 \end{pmatrix}$$

then $A^T = A$, $B^T = B$, $A^2 = A$ and $B^2 = B$.

Projection Matrices Theorem

Theorem

An $n \times n$ matrix A is the standard matrix for an orthogonal projection of \mathbb{R}^n onto a k-dimensional subspace of \mathbb{R}^n if and only if A is symmetric, idempotent and has rank k. The subspace, W, that A projects onto is then the column space of A.