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Topics for Today

1 Orthogonal Projections onto a Line

2 Orthogonal Projections onto a Subspace

3 Projection Matrices
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Projections

Recall in Lecture 2 we defined the projection of a vector ~v onto another
vector ~a as the “shadow” of ~v on ~a.

Moreover, we had the formula

proj~a~v =
~v · ~a
‖~a‖2

~a

Theorem

If ~a is a non-zero vector in Rn, then every vector ~x ∈ Rn can be expressed
in exactly one way as

~x = ~x1 + ~x2

where ~x1 is a scalar multiple of ~a and ~x2 is orthogonal to ~a (and hence to
~x1).In particular, we have

~x1 = proj~a~x1 =
~x · ~a
‖~a‖2

~a ~x2 = ~x − ~x1 = ~x −
~x · ~a
‖~a‖2

~a
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Proof
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Orthogonal Projections and Components

Definition

If ~a is a nonzero vector in Rn and if ~x is any vector in Rn, then the
orthogonal projection of ~x onto span(~a) is denoted proj~a~x and defined
to be

proj~a~x =
~x · ~a
‖~a‖2

~a

The vector proj~a~x is also called the vector component of ~x along ~a and
~x − proj~a~x is called the vector component of ~x orthogonal to ~a.
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Example

Let ~x = (2,−1, 3) and ~a = (4,−1, 2). Find the vector component of ~x
along ~a and the vector component of ~x orthogonal to ~a.
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Orthogonal Projections as Linear Transformations

For any vector ~a ∈ Rn, we can define the map T : Rn → Rn

T (~x) = proj~a~x =
~x · ~a
‖~a‖2

~a

Exercise

Show that T is a linear transformation.

We call this map the orthogonal projection of Rn onto span(~a).
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Standard Matrix of Orthogonal Projection

Theorem

If ~a is a nonzero vector in Rn, and if ~a is viewed as an n × 1 matrix, then
the standard matrix for the linear operator T (~x) = proj~a~x is

P =
1

~aT~a
~a~aT

Note: ~aT~a ∈ R1 and so is a scalar, whereas ~a~aT is an n × n matrix.
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More Work Space
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Example

Find the standard matrix of the linear transformation given by projecting
onto span{(4,−1, 2)}.
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Projection Theorem for Subspaces

So far we have talked about projecting onto a line given by span{~a}.

However, we can do this for an arbitrary subspace of Rn.

Theorem

Let W be a subspace of Rn, then every vector ~x ∈ Rn can be expressed in
exactly one way as

~x = ~x1 + ~x2

where ~x1 ∈W and ~x2 ∈W⊥.

We call ~x1 the orthogonal projection of ~x onto W and ~x2 the
orthogonal projection of ~x on W⊥ and denote them

~x1 = projW ~x and ~x2 = projW⊥~x

We can prove this theorem by constructing a value for projW ~x that works.
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Orthogonal Projection onto W

Theorem

If W is a nonzero subspace of Rn, and if M is any matrix whose column
vectors form a basis for W , then setting

~x1 = projW ~x = M(MTM)−1MT~x

satisfies the previous theorem.

In particular,

projW ~x ∈W and ~x2 = ~x − ~x1 = ~x − projW ~x ∈W⊥

Proof.

See page 384 of textbook.
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Example

Let ~x = (1, 0, 4) ∈ R3. Find the orthogonal projection of ~x onto the plane
P : x − 4y + 2z = 0 as well the orthogonal projection onto P⊥.

First, let us find a basis for P: if ~x = (x , y , z) ∈ P then x = 4y + 2z

~x =

xy
z

 =

4s + 2t
s
t

 =

4
1
0

 s +

2
0
1

 t

Thus we see a basis for P is 
4

1
0

 ,

2
0
1


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Example Continued

Thus, forming the matrix M whose columns are the basis for P, we see
that

M =

4 2
1 0
0 1



MT =

(
4 1 0
−2 0 −1

)
MTM =

(
17 −8
−8 4

)

(MTM)−1 =

(
5/21 8/21
8/21 17/21

)
Hence the standard matrix for the orthogonal projection onto P will be

A = M(MTM)−1MT =

20/21 4/21 −2/21
4/21 5/21 8/21
−2/21 8/21 17/21


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Example Continued

Therefore, the orthogonal projection of ~x = (1, 0, 4) onto the plane will be

projP~x = A~x

=

20/21 4/21 −2/21
4/21 5/21 8/21
−2/21 8/21 17/21

1
0
4

 =

 4/7
12/7
22/7


Moreover, projP⊥~x = ~x − ~x1 and so

projP⊥~x =

1
0
4

−
 4/7

12/7
22/7

 =

 3/7
−12/7

6/7



Exercise

Show that (3/7,−12/7, 6/7) ∈ P⊥.

Patrick Meisner (KTH) Lecture 14 15 / 24



Example Continued

Therefore, the orthogonal projection of ~x = (1, 0, 4) onto the plane will be

projP~x = A~x =

20/21 4/21 −2/21
4/21 5/21 8/21
−2/21 8/21 17/21

1
0
4



=

 4/7
12/7
22/7


Moreover, projP⊥~x = ~x − ~x1 and so

projP⊥~x =

1
0
4

−
 4/7

12/7
22/7

 =

 3/7
−12/7

6/7



Exercise

Show that (3/7,−12/7, 6/7) ∈ P⊥.

Patrick Meisner (KTH) Lecture 14 15 / 24



Example Continued

Therefore, the orthogonal projection of ~x = (1, 0, 4) onto the plane will be

projP~x = A~x =

20/21 4/21 −2/21
4/21 5/21 8/21
−2/21 8/21 17/21

1
0
4

 =

 4/7
12/7
22/7



Moreover, projP⊥~x = ~x − ~x1 and so

projP⊥~x =

1
0
4

−
 4/7

12/7
22/7

 =

 3/7
−12/7

6/7



Exercise

Show that (3/7,−12/7, 6/7) ∈ P⊥.

Patrick Meisner (KTH) Lecture 14 15 / 24



Example Continued

Therefore, the orthogonal projection of ~x = (1, 0, 4) onto the plane will be

projP~x = A~x =

20/21 4/21 −2/21
4/21 5/21 8/21
−2/21 8/21 17/21

1
0
4

 =

 4/7
12/7
22/7


Moreover, projP⊥~x = ~x − ~x1

and so

projP⊥~x =

1
0
4

−
 4/7

12/7
22/7

 =

 3/7
−12/7

6/7



Exercise

Show that (3/7,−12/7, 6/7) ∈ P⊥.

Patrick Meisner (KTH) Lecture 14 15 / 24



Example Continued

Therefore, the orthogonal projection of ~x = (1, 0, 4) onto the plane will be

projP~x = A~x =

20/21 4/21 −2/21
4/21 5/21 8/21
−2/21 8/21 17/21

1
0
4

 =

 4/7
12/7
22/7


Moreover, projP⊥~x = ~x − ~x1 and so

projP⊥~x =

1
0
4

−
 4/7

12/7
22/7

 =

 3/7
−12/7

6/7



Exercise

Show that (3/7,−12/7, 6/7) ∈ P⊥.
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Some Remarks

We can think of projW ~x as the “component of ~x that lies in W ”.

Therefore, if ~x ∈W , then projW ~x = ~x .

We see that for any subspace W , we get a linear transformation

T (~x) = projW ~x

called the orthogonal projection of Rn onto W and in fact, we get that
it’s standard matrix will be M(MTM)−1MT .

Further, we see that the projection of Rn onto W⊥ will then be

S(~x) = projW⊥~x = ~x − projW ~x = (In −M(MTM)−1MT )~x

and so, its standard matrix will be In −M(MTM)−1MT
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Example Redux

Back to the example before, we saw that the standard matrix for projP will
be

A =

20/21 4/21 −2/21
4/21 5/21 8/21
−2/21 8/21 17/21



And so the standard matrix for projP⊥ would be

B =

1 0 0
0 1 0
0 0 1

−
20/21 4/21 −2/21

4/21 5/21 8/21
−2/21 8/21 17/21

 =

 1/21 −4/21 2/21
−4/21 16/21 −8/21
2/21 −8/21 4/21


Exercise

Confirm the previous example by showing that 1/21 −4/21 2/21
−4/21 16/21 −8/21
2/21 −8/21 4/21

1
0
4

 =

 3/7
−12/7

6/7


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Some More Remarks

In general M will not be an square matrix.

Thus M−1 does not make
sense. However, MTM will be a square matrix and, it turns out, always
invertible.However, we can not distribute the inverse
(MTM)−1 = M−1(MT )−1.

In the case where M is a square n × n matrix, then we can distribute the
inverse and see that the standard matrix will then be

M(MTM)−1MT = MM−1(MT )−1MT = In
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Even More Remarks

Hence we see in the case where M is a square n × n matrix, we get that

projW ~x = In~x

= ~x

This makes geometric sense as M was the matrix whose columns were
basis vectors for W . So M is a square n × n matrix if and only if
dim(W ) = n if and only if W = Rn.

Hence, projW ~x is the “component of ~x lying in W = Rn”, which would be
just ~x itself.
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Double Perp Theorem

We can use this notion to prove the double perp theorem.

Theorem (Double Perp Theorem)

If W is a subspace of Rn then (W⊥)⊥ = W, i.e. “the perp space of the
perp space is the original space.”
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Projection Matrices are Symmetric

Which matrices may occur as the standard matrix of a projection onto to
a subspace map?

We know that they will be of the form

A = M(MTM)−1MT

for some matrix M. Thus, if we look at the transpose of this matrix, we
get

AT = (M(MTM)−1MT )T = (MT )T (MT (MT )T )−1MT

= M(MTM)−1MT = A

Definition

We say a matrix A is symmetric if AT = A. Equivalently, its “upper
triangle” is the same as its “lower triangle”.
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Projection Matrices are Idempotent

If W is a subspace and T is the projection of Rn onto W , then we know
that T (~x) = ~x1 ∈W .

Moreover, we know that if ~w ∈W , then
T (~w) = ~w ∈W . Hence, if we look at T ◦ T , then

(T ◦ T )(~x) = T (T (~x)) = T (~x1) = ~x1 = T (~x)

In particular, this shows that T ◦ T = T . Hence, if A is the standard
matrix of T , this corresponds to saying

A2 = A

Definition

We say a matrix is idempotent if A2 = A.
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Exercise

Exercise

Show that if A = M(MTM)−1MT for some matrix M then A2 = A.

Exercise

Show that the matrices of projP and projP⊥ from the previous example are
idempotent and symmetric. That is, if

A :=

20/21 4/21 −2/21
4/21 5/21 8/21
−2/21 8/21 17/21

 B :=

 1/21 −4/21 2/21
−4/21 16/21 −8/21
2/21 −8/21 4/21


then AT = A, BT = B, A2 = A and B2 = B.
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Projection Matrices Theorem

Theorem

An n × n matrix A is the standard matrix for an orthogonal projection of
Rn onto a k-dimensional subspace of Rn if and only if A is symmetric,
idempotent and has rank k. The subspace, W , that A projects onto is
then the column space of A.
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