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Topics for Today

1 Dimension Theorem

2 Rank Theorem

3 Pivot Theorem
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Nullity and Dimension Theorem

Definition

We will define the nullity of matrix A to be nullity(A) = dim(null(A)).

Theorem (Dimension Theorem)

Let A be an m × n matrix, then

rk(A) + nullity(A) = n

Proof.

Indeed, we know that

n = number of columns

= number of leading ones + number of free variable

= rk(A) + dim(null(A))
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Perp Space

Definition

For any subspace W of Rn, we define the perp space of W , denote W⊥,
to be the set of all vectors whose dot product with every vector in W is 0:

W⊥ = {~v ∈ Rn : ~v · ~w = 0 for all ~w ∈W }

It is called the perp space because everything in W⊥ is orthogonal (or
perpendicular) to everything in W .

Theorem

For any subspace W of Rn, W⊥ is also a subspace of Rn.
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Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.

Then L⊥ is the hyperplane in Rn with normal ~a. Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x = a1tx1 + a2tx2 + · · ·+ antxn = t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥.

What is the perp space of all of Rn?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn. And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i . Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x = 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.Then L⊥ is the hyperplane in Rn with normal ~a.

Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x = a1tx1 + a2tx2 + · · ·+ antxn = t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥.

What is the perp space of all of Rn?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn. And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i . Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x = 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.Then L⊥ is the hyperplane in Rn with normal ~a. Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x

= a1tx1 + a2tx2 + · · ·+ antxn = t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥.

What is the perp space of all of Rn?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn. And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i . Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x = 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.Then L⊥ is the hyperplane in Rn with normal ~a. Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x = a1tx1 + a2tx2 + · · ·+ antxn

= t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥.

What is the perp space of all of Rn?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn. And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i . Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x = 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.Then L⊥ is the hyperplane in Rn with normal ~a. Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x = a1tx1 + a2tx2 + · · ·+ antxn = t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥.

What is the perp space of all of Rn?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn. And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i . Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x = 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.Then L⊥ is the hyperplane in Rn with normal ~a. Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x = a1tx1 + a2tx2 + · · ·+ antxn = t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥

.

What is the perp space of all of Rn?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn. And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i . Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x = 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.Then L⊥ is the hyperplane in Rn with normal ~a. Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x = a1tx1 + a2tx2 + · · ·+ antxn = t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥.

What is the perp space of all of Rn?

It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn. And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i . Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x = 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.Then L⊥ is the hyperplane in Rn with normal ~a. Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x = a1tx1 + a2tx2 + · · ·+ antxn = t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥.

What is the perp space of all of Rn?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn.

And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i . Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x = 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.Then L⊥ is the hyperplane in Rn with normal ~a. Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x = a1tx1 + a2tx2 + · · ·+ antxn = t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥.

What is the perp space of all of Rn?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn. And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i .

Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x = 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.Then L⊥ is the hyperplane in Rn with normal ~a. Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x = a1tx1 + a2tx2 + · · ·+ antxn = t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥.

What is the perp space of all of Rn?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn. And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i . Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x

= 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.Then L⊥ is the hyperplane in Rn with normal ~a. Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x = a1tx1 + a2tx2 + · · ·+ antxn = t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥.

What is the perp space of all of Rn?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn. And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i . Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x = 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Examples

Let ~a be a vector in Rn, and L = {~at : t ∈ R}, be the line in Rn in the
direction of ~a.Then L⊥ is the hyperplane in Rn with normal ~a. Indeed, if
~x ∈ L⊥, then

0 = (~at) · ~x = a1tx1 + a2tx2 + · · ·+ antxn = t(a1x1 + a2x2 + · · ·+ anxn)

We often just write ~a⊥ for L⊥.

What is the perp space of all of Rn?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in Rn. And so in
particular, would need to be the orthogonal to the standard vectors ei for
all i . Hence if ~x ∈ (Rn)⊥, then

0 = ~ei · ~x = 0 ∗ x1 + 0 ∗ x2 + · · ·+ 1 ∗ xi + · · ·+ 0 ∗ xn = xi

And we see that (Rn)⊥ = {~0}, the zero-suspace.

Patrick Meisner (KTH) Lecture 13 5 / 22



Perp Space and Bases

Theorem

If W is a subspace of Rn with basis {~b1, . . . , ~bk}, then ~v ∈W⊥ if and
only if ~v · ~bi = 0 for i = 1, . . . , k.
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Perp Space and Null Space

Corollary

If W is a subspace of Rn with basis {~b1, . . . , ~bk}, then W⊥ is the null
space of the matrix whose rows are the ~bi .
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Perp Space and Dimension Theorem

Theorem

If W is a subspace of Rn, then n = dim(W ) + dim(W⊥).
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Rank Theorem

Recall the column space of a matrix col(A), is the spanning set of the
column vectors of A.

We define the row space of a matrix, row(A) to be
the spanning set of the row vectors of A.

Theorem (Rank Theorem)

The row space and column space of a matrix have the same dimension.

Theorem (Rank Theorem)

If A is an m × n matrix, then

rk(A) = rk(AT )
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Sketch of Proof

We will sketch the proof that dim(col(A)) ≤ dim(row(A)).

To prove
equality, it then is enough to replace A with AT .

Let A be an m× n matrix. Then we know that col(A) is a subspace of Rm

and so dim(col(A)) ≤ m.

Moreover, we know that row(A) is a subspace of Rn spanned by m vectors
and so dim(row(A)) ≤ m. If dim(row(A)) = m, then we get that
dim(col(A)) ≤ dim(row(A)).

If dim(row(A)) < m, then one row of A must be written as a linear
combination of the rest. That is, there exists c1, . . . , cm−1 such that

~rm = c1~r1 + · · · cm−1~rm−1
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Sketch of Proof 2

We have
~rm = c1~r1 + · · · cm−1~rm−1

Looking at the j th entry of the row vectors, we get

am,j = c1a1,j + · · ·+ cm−1am−1,j

and so each column vector

~cj =

a1,j...
am,j

 = c1

a1,j...
a1,j

+ · · ·+ cm−1

 a1,j
...

am−1,j


can be written as a linear combination of m − 1 vectors and so

dim(col(A)) ≤ m − 1.
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Fundamental Spaces of a Matrix

If A is an m × n matrix, then AT is an n ×m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT ) + nullity(AT )

= rk(A) + nullity(AT )

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an m × n matrix with rank k, then

dim(row(A)) = k dim(null(A)) = n − k

dim(col(A)) = k dim(null(AT )) = m − k

Patrick Meisner (KTH) Lecture 13 12 / 22



Fundamental Spaces of a Matrix

If A is an m × n matrix, then AT is an n ×m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT ) + nullity(AT ) = rk(A) + nullity(AT )

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an m × n matrix with rank k, then

dim(row(A)) = k dim(null(A)) = n − k

dim(col(A)) = k dim(null(AT )) = m − k

Patrick Meisner (KTH) Lecture 13 12 / 22



Fundamental Spaces of a Matrix

If A is an m × n matrix, then AT is an n ×m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT ) + nullity(AT ) = rk(A) + nullity(AT )

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an m × n matrix with rank k, then

dim(row(A)) = k dim(null(A)) = n − k

dim(col(A)) = k dim(null(AT )) = m − k

Patrick Meisner (KTH) Lecture 13 12 / 22



Fundamental Spaces of a Matrix

If A is an m × n matrix, then AT is an n ×m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT ) + nullity(AT ) = rk(A) + nullity(AT )

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an m × n matrix with rank k, then

dim(row(A)) = k

dim(null(A)) = n − k

dim(col(A)) = k dim(null(AT )) = m − k

Patrick Meisner (KTH) Lecture 13 12 / 22



Fundamental Spaces of a Matrix

If A is an m × n matrix, then AT is an n ×m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT ) + nullity(AT ) = rk(A) + nullity(AT )

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an m × n matrix with rank k, then

dim(row(A)) = k dim(null(A)) = n − k

dim(col(A)) = k dim(null(AT )) = m − k

Patrick Meisner (KTH) Lecture 13 12 / 22



Fundamental Spaces of a Matrix

If A is an m × n matrix, then AT is an n ×m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT ) + nullity(AT ) = rk(A) + nullity(AT )

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an m × n matrix with rank k, then

dim(row(A)) = k dim(null(A)) = n − k

dim(col(A)) = k

dim(null(AT )) = m − k

Patrick Meisner (KTH) Lecture 13 12 / 22



Fundamental Spaces of a Matrix

If A is an m × n matrix, then AT is an n ×m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT ) + nullity(AT ) = rk(A) + nullity(AT )

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an m × n matrix with rank k, then

dim(row(A)) = k dim(null(A)) = n − k

dim(col(A)) = k dim(null(AT )) = m − k

Patrick Meisner (KTH) Lecture 13 12 / 22



Consistency and Rank

Theorem

If A~x = ~b is a linear system of m equations in n unknowns, then the
following statements are equivalent

1 A~x = ~b

2 ~b is in the column space of A

3 The coefficient matrix A and the augmented matrix (A|~b) have the
same rank.
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Full Rank

Definition

An m × n is said to have full column rank is its column vectors are
linearly independent

and it is said to have full row rank if its row vectors
are linearly independent.

Theorem

Let A be an m × n matrix.

1 A has full column rank if and only if the column vectors form a basis
for the column space if and only if rk(A) = n

2 A has full row rank if and only if the row vectors form a basis for the
row space if and only if rk(A) = m
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Full Column Rank and Solutions

Theorem

If A is an m × n matrix then the following are equivalent

1 A~x = 0 has only the trivial solution

2 A~x = ~b has at most one solution for every ~b ∈ Rm

3 A has full column rank
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Over- and Underdetermined

Theorem

Let A be an m × n matrix.

1 If m > n, then the system A~x = ~b is inconsistent for some vector ~b in
Rm. This is called overdetermined.

2 If m < n, then for every vector ~b in Rm the system A~x = ~b is either
inconsistent or has infinitely many solutions. This is called
underdetermined.
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Pivot Theorem

Theorem

Pivot Theorem The pivot columns of a nonzero matrix A for a basis for
the column space of A.

Example:

A =


7 1 9 6
5 3 11 2
7 2 11 5
7 −2 3 9
0 1 2 −1

 =⇒


1 0 1 1
0 1 2 −1
0 0 0 0
0 0 0 0
0 0 0 0


And so a basis for the column space of A would be


7
5
7
7
0

 ,


1
3
2
−2
1



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Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of
vectors:

Let W = span{~v1, . . . , ~vk} then:

1 Form the matrix A whose columns are ~v1, . . . , ~vk
2 Reduce the matrix A to row echelon form.

3 The columns with the leading ones will correspond to vectors in the
basis.

4 To find the other vectors as a linear combination of your basis, reduce
A further to RREF.

See example in the slides of last lecture.
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Fundamental Matrix Spaces Bases

We now see that by reducing A to REF or RREF we can find bases for the
row space, the column space and the null space.

Namely:

1 The non-zero rows of the REF of A form a basis for row(A)

2 The pivot columns of the REF of A correspond to a basis for col(A)

3 The canonical solutions to A~x = ~0 can readily be seen from R~x = 0
where R is the RREF of A. Moreover, these form a basis for null(A).

The last remaining fundamental space of a matrix is null(AT ). This can
also be determined by find the REF.
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Algorithm for Basis of null(AT )

If A is an m × n matrix, then the following procedure produces a basis for
null(AT ).

1 Adjoin the m ×m identity matrix Im to A to create the augmented
matrix (A|Im)

2 Row reduce (A|Im) to (U|E ) where U is the REF of A

3 We know that U may have some rows of zeroes. So repartition (U|E )

into

(
V E1

0 E2

)
4 The row vectors of E2 now form a basis for null(AT ).
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Example

Find null(AT ) for

A =


1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7
−1 3 4 2 −5 −4



Step 1: Adjoin I4 to A:

(A|I4) =


1 −3 4 −2 5 4 1 0 0 0
2 −6 9 −1 8 2 0 1 0 0
2 −6 9 −1 9 7 0 0 1 0
−1 3 4 2 −5 −4 0 0 0 1


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Example Continued

Step 2: Row reduce A to REF

(U|E ) =


1 −3 4 −2 5 4 1 0 0 0
0 0 1 3 −2 6 −2 1 0 0
0 0 0 0 1 5 0 −1 1 0
0 0 0 0 0 0 1 0 0 1



Step 3: Repartition it into

(
V E1

0 E2

)
=


1 −3 4 −2 5 4 1 0 0 0
0 0 1 3 −2 6 −2 1 0 0
0 0 0 0 1 5 0 −1 1 0
0 0 0 0 0 0 1 0 0 1


Hence, we see that {(1, 0, 0, 1)} is a basis for null(AT ).
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