SF 1684 Algebra and Geometry Lecture 13

Patrick Meisner
KTH Royal Institute of Technology

Topics for Today

(1) Dimension Theorem
(2) Rank Theorem
(3) Pivot Theorem

Nullity and Dimension Theorem

Nullity and Dimension Theorem
Definition
We will define the nullity of matrix A to be nullity $(A)=\operatorname{dim}(\operatorname{null}(A))$.
nullity $(A)=\operatorname{dim}(\ln u 1(4))=\#$ free variable in IRRGR of A

Nullity and Dimension Theorem

Definition

We will define the nullity of matrix A to be nullity $(A)=\operatorname{dim}(\operatorname{null}(A))$.
Theorem (Dimension Theorem)
Let A be an $m \times$ (10 matrix, then

$$
r k(A)+\operatorname{nullity}(A)=0=\text { Hat calumas of } A \text {. }
$$

Nullity and Dimension Theorem

Definition

We will define the nullity of matrix A to be nullity $(A)=\operatorname{dim}($ null $(A))$.
Theorem (Dimension Theorem)
Let A be an $m \times n$ matrix, then

$$
r k(A)+\operatorname{nullity}(A)=n
$$

Proof.

Indeed, we know that

$$
\begin{aligned}
n & =\text { number of columns } \\
& =\text { number of leading ones }+ \text { number of free variable } \\
& =\operatorname{rk}(A)+\operatorname{dim}(\operatorname{null}(A))=r k(A)+\operatorname{nollity}(A)
\end{aligned}
$$

Perp Space

Definition

For any subspace W of \mathbb{R}^{n}, we define the perp space of W, denote $W(\mathbb{L}$, to be the set of all vectors whose dot product with every vector in W is 0 :

Perp Space

Definition

For any subspace W of \mathbb{R}^{n}, we define the perp space of W, denote W^{\perp}, to be the set of all vectors whose dot product with every vector in W is 0 :

$$
W^{\perp}=\left\{\vec{v} \in \mathbb{R}^{n}: \vec{v} \cdot \vec{w}=0 \text { for all } \vec{w} \in W\right\}
$$

Perp Space

Definition

For any subspace W of \mathbb{R}^{n}, we define the perp space of W, denote W^{\perp}, to be the set of all vectors whose dot product with every vector in W is 0 :

$$
W^{\perp}=\left\{\vec{v} \in \mathbb{R}^{n}: \vec{v} \cdot \vec{w}=0 \text { for all } \vec{w} \in W\right\}
$$

It is called the perp space because everything in W^{\perp} is orthogonal (or perpendicular) to everything in W.

Pert Space
Definition
For any subspace W of \mathbb{R}^{n}, we define the pert space of W, denote W^{\perp}, to be the set of all vectors whose dot product with every vector in W is 0 :

$$
W^{\perp}=\left\{\vec{v} \in \mathbb{R}^{n}: \vec{v} \cdot \vec{w}=0 \text { for all } \vec{w} \in W\right\}
$$

It is called the pert space because everything in W^{\perp} is orthogonal (or perpendicular) to everything in W.

Theorem
For any subspace W of $\mathbb{R}^{n}, W^{\perp}$ is also a subspace of \mathbb{R}^{n}.
proof: u, vow $u+v \in w^{t} \Leftrightarrow(u+v) \cdot \vec{\omega}=0$ for all weW
$(u+v) \cdot w=u \cdot u+v \cdot w=0+0=0$ for all wow \& so otvewt
$u \in w^{t}$ \& CQR then $c u c w^{t} \Leftrightarrow(c a r \cdot w=0$ for all wow

$$
(c u) w=c(u \cdot v)=c(0)=0 \text { for enow cue lt }
$$

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}.

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}. Then L^{\perp} is the hyperplane in \mathbb{R}^{n} with normal \vec{a}.

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}. Then L^{\perp} is the hyperplane in \mathbb{R}^{n} with normal \vec{a}. Indeed, if $\vec{x} \in L^{\perp}$, then

$$
\begin{aligned}
0= & (\vec{a} t) \cdot \vec{x} \\
& \text { for all } t \in \mathbb{R}
\end{aligned}
$$

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}. Then L^{\perp} is the hyperplane in \mathbb{R}^{n} with normal \vec{a}. Indeed, if $\vec{x} \in L^{\perp}$, then

$$
\begin{gathered}
0=(\vec{a} t) \cdot \vec{x}=a_{1} t x_{1}+a_{2} t x_{2}+\cdots+a_{n} t x_{n} \\
a=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \quad x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
\end{gathered}
$$

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}. Then L^{\perp} is the hyperplane in \mathbb{R}^{n} with normal \vec{a}. Indeed, if $\vec{x} \in L^{\perp}$, then

$$
0=(\vec{a} t) \cdot \vec{x}=a_{1} t x_{1}+a_{2} t x_{2}+\cdots+a_{n} t x_{n}=t\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)
$$

for al $t \in \mathbb{R}$.
for $t=1: \quad a_{1} x_{1}+\cdots+c_{n} x_{n}=0 \quad *$
介
equation for hyperplane with normal \vec{c}.

Morean if * the ($\vec{c} t) \bar{x}=0$ for all t.

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}. Then L^{\perp} is the hyperplane in \mathbb{R}^{n} with normal \vec{a}. Indeed, if $\vec{x} \in L^{\perp}$, then

$$
0=(\vec{a} t) \cdot \vec{x}=a_{1} t x_{1}+a_{2} t x_{2}+\cdots+a_{n} t x_{n}=t\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)
$$

We often just write \vec{a}^{\perp} for L^{\perp}

$$
a^{\perp}=L^{\perp}
$$

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}. Then L^{\perp} is the hyperplane in \mathbb{R}^{n} with normal \vec{a}. Indeed, if $\vec{x} \in L^{\perp}$, then

$$
0=(\vec{a} t) \cdot \vec{x}=a_{1} t x_{1}+a_{2} t x_{2}+\cdots+a_{n} t x_{n}=t\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)
$$

We often just write \vec{a}^{\perp} for L^{\perp}.
What is the perp space of all of \mathbb{R}^{n} ?

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}. Then L^{\perp} is the hyperplane in \mathbb{R}^{n} with normal \vec{a}. Indeed, if $\vec{x} \in L^{\perp}$, then

$$
0=(\vec{a} t) \cdot \vec{x}=a_{1} t x_{1}+a_{2} t x_{2}+\cdots+a_{n} t x_{n}=t\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)
$$

We often just write \vec{a}^{\perp} for L^{\perp}.
What is the perp space of all of \mathbb{R}^{n} ? It would have to be the set of vectors that is orthogonal (perpendicular) to all vectors in \mathbb{R}^{n}.

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}. Then L^{\perp} is the hyperplane in \mathbb{R}^{n} with normal \vec{a}. Indeed, if $\vec{x} \in L^{\perp}$, then

$$
0=(\vec{a} t) \cdot \vec{x}=a_{1} t x_{1}+a_{2} t x_{2}+\cdots+a_{n} t x_{n}=t\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)
$$

We often just write \vec{a}^{\perp} for L^{\perp}.
What is the perp space of all of \mathbb{R}^{n} ? It would have to be the set of vectors that is orthogonal (perpendicular) to all vectors in \mathbb{R}^{n}. And so in particular, would need to be the orthogonal to the standard vectors e_{i} for all i.

$$
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \quad e_{1}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right] \ldots
$$

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}. Then L^{\perp} is the hyperplane in \mathbb{R}^{n} with normal \vec{a}. Indeed, if $\vec{x} \in L^{\perp}$, then

$$
0=(\vec{a} t) \cdot \vec{x}=a_{1} t x_{1}+a_{2} t x_{2}+\cdots+a_{n} t x_{n}=t\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)
$$

We often just write \vec{a}^{\perp} for L^{\perp}.
What is the perp space of all of \mathbb{R}^{n} ? It would have to be the set of vectors that is orthogonal (perpendicular) to all vectors in \mathbb{R}^{n}. And so in particular, would need to be the orthogonal to the standard vectors e_{i} for all i. Hence if $\vec{x} \in\left(\mathbb{R}^{n}\right)^{\perp}$, then

$$
0=\vec{e}_{i} \cdot \vec{x}
$$

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}. Then L^{\perp} is the hyperplane in \mathbb{R}^{n} with normal \vec{a}. Indeed, if $\vec{x} \in L^{\perp}$, then

$$
0=(\vec{a} t) \cdot \vec{x}=a_{1} t x_{1}+a_{2} t x_{2}+\cdots+a_{n} t x_{n}=t\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)
$$

We often just write \vec{a}^{\perp} for L^{\perp}.
What is the perp space of all of \mathbb{R}^{n} ? It would have to be the set of vectors that is orthogonal (perpendicular) to all vectors in \mathbb{R}^{n}. And so in particular, would need to be the orthogonal to the standard vectors e_{i} for all i. Hence if $\vec{x} \in\left(\mathbb{R}^{n}\right)^{\perp}$, then

$$
\begin{array}{ll}
0=\vec{e}_{i} \cdot \vec{x}=0 * x_{1}+0 * x_{2}+\cdots+\underbrace{1 * x_{i}}_{i}+\cdots+0 * x_{n}=x_{i} & \text { For } \\
\text { पll } i
\end{array}
$$

Examples

Let \vec{a} be a vector in \mathbb{R}^{n}, and $L=\{\vec{a} t: t \in \mathbb{R}\}$, be the line in \mathbb{R}^{n} in the direction of \vec{a}. Then L^{\perp} is the hyperplane in \mathbb{R}^{n} with normal \vec{a}. Indeed, if $\vec{x} \in L^{\perp}$, then

$$
0=(\vec{a} t) \cdot \vec{x}=a_{1} t x_{1}+a_{2} t x_{2}+\cdots+a_{n} t x_{n}=t\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)
$$

We often just write \vec{a}^{\perp} for L^{\perp}. It is canogh to just clack cox $=0$ nate $S \bar{a})$ is a basis for L
What is the pert space of all of \mathbb{R}^{n} ? It would have to be the set of vectors that is orthogonal (perpendicular) to all vectors in \mathbb{R}^{n}. And so in particular, would need to be the orthogonal to the standard vectors e_{i} for all i. Hence if $\vec{x} \in\left(\mathbb{R}^{n}\right)^{\perp}$, then lis errush to crack $e: x=0$ for a 4 ic and $\left./ e_{i} \ldots e_{n}\right)$ form a basis for L

$$
0=\vec{e}_{i} \cdot \vec{x}=0 * x_{1}+0 * x_{2}+\cdots+1 * x_{i}+\cdots+0 * x_{n}=x_{i}
$$

And we see that $\left(\mathbb{R}^{n}\right)^{\perp}=\{\overrightarrow{0}\}$, the zero-suspace. if $\bar{x}=\overrightarrow{0}$ the

$$
x \cdot v=0 \text { for } a l l
$$

Perp Space and Bases
Theorem
If W is a subspace of \mathbb{R}^{n} with basis $\left\{\vec{b}_{1}, \ldots, \vec{b}_{k}\right\}$, then $\vec{v} \in W^{\perp}$ if and only if $\vec{v} \cdot \vec{b}_{i}=0$ for $i=1, \ldots, k$.
prove: (\Rightarrow) it $V \in W^{t}$ He $v-w=0$ for $w \in W$ in porticuder $V \cdot b_{i}=0$ for $\&\left(C\right.$ as $b_{i} \in W$.
(\leftrightarrows) Sense $\frac{\bar{v}-\bar{b}_{i}=0}{}$ for all $i=1 . . k$. let $w \in W$ the canute $w=t_{1} b,+\cdots+t_{k} b_{k}$.

$$
\begin{aligned}
V-w=V \cdot\left(t_{1} b_{1}+\cdots+t_{k} b_{k}\right) & =t_{1}\left(v_{1} \cdot b_{1}\right)+\cdots+t_{k}\left(V_{c} \cdot b_{c}\right) \\
& =t_{1} \cdot 0+\cdots+t_{c} \cdot 0=0
\end{aligned}
$$

$\&$ so $v \in w^{+}$

Perp Space and Null Space
Corollary
If W is a subspace of \mathbb{R}^{n} with basis $\left\{\vec{b}_{1}, \ldots, \vec{b}_{k}\right\}$, then W^{\perp} is the null space of the matrix whose rows are the \vec{b}_{i}.
pref:
$B=\left[\begin{array}{c}b_{1} \\ \vdots \\ \vec{b}_{k}\end{array}\right]$

$$
\begin{array}{r}
x \in \operatorname{null}(B) \Leftrightarrow B \vec{x}=\overrightarrow{0} \\
\Leftrightarrow\left[\begin{array}{c}
\overrightarrow{b_{1}} \\
\vdots \\
v_{v}
\end{array}\right] \vec{x}=\overrightarrow{0} \\
\Leftrightarrow\left[\begin{array}{c}
\vec{b}_{1} \\
\vdots \\
\vec{b}_{k}-x
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
\end{array}
$$

Aside: Commonly we ort to consider the matrix A with the calumus of the basis vectors. $A=\left[5, \ldots, \vec{b}_{x}\right]$. But notice $B=A^{\top}$. Then re conclucle

$$
\text { that } w^{+}=\operatorname{noll}\left(A^{\top}\right)
$$

Perp Space and Dimension Theorem

Theorem
If W is a subspace of \mathbb{R}^{n}, then $n=\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)$.
prove; soppas w had a basis bi.. l_{k}
lat $B=\left[\begin{array}{c}b_{1} \\ \vdots \\ k_{x}\end{array}\right]$. $\begin{gathered}1 \text { know that since ba... be are } \\ \text { linearly indepordest, Her ever maw will } \\ \text { hare a leading 1. }\end{gathered}$

$$
\beta \rightarrow\left[\begin{array}{lll}
1 & & \\
& 1
\end{array}\right] \Rightarrow r k(3)=k=\operatorname{dim} W
$$

from preanoss din $w^{t}=$ nullity (B)
Dimeresia the: $\quad n=a k(B)+\operatorname{vollh}+2(B)=\operatorname{dim} W+\operatorname{dim} W^{+}$.

Rank Theorem

Recall the column space of a matrix $\operatorname{col}(A)$, is the spanning set of the column vectors of A.

Rank Theorem

Recall the column space of a matrix $\operatorname{col}(A)$, is the spanning set of the column vectors of A. We define the row space of a matrix, $\operatorname{row}(A)$ to be the spanning set of the row vectors of A.

Rank Theorem

Recall the column space of a matrix $\operatorname{col}(A)$, is the spanning set of the column vectors of A. We define the row space of a matrix, $\operatorname{row}(A)$ to be the spanning set of the row vectors of A.

Theorem (Rank Theorem)
The row space and column space of a matrix have the same dimension.

Rank Theorem

Recall the column space of a matrix $\operatorname{col}(A)$, is the spanning set of the column vectors of A. We define the row space of a matrix, $\operatorname{row}(A)$ to be the spanning set of the row vectors of A.

Theorem (Rank Theorem)

The row space and column space of a matrix have the same dimension.

Theorem (Rank Theorem)

If A is an $m \times n$ matrix, then

$$
\operatorname{col}\left(A^{\top}\right)=\operatorname{ruw}(A)
$$

$$
r k(A)=r k\left(A^{T}\right)
$$

$$
\begin{aligned}
& \operatorname{rk}(A)=\operatorname{din}(\operatorname{col}(A)) \Longrightarrow \\
& \operatorname{rk}\left(A^{\top}\right)=\operatorname{dim}\left(\operatorname{col}\left(A^{\top}\right)\right)=\operatorname{din}(\operatorname{rov}(A))
\end{aligned}
$$

Sketch of Proof

We will sketch the proof that $\operatorname{dim}(\operatorname{col}(A)) \leq \operatorname{dim}(\operatorname{row}(A))$.

Sketch of Proof

We will sketch the proof that $\operatorname{dim}(\operatorname{col}(A)) \leq \operatorname{dim}(\operatorname{row}(A))$. To prove equality, it then is enough to replace A with A^{T}.

$$
\begin{gathered}
\ln \text { particule this) shins that } \\
\operatorname{dim}(\operatorname{raw}(A))=\operatorname{dim}\left(\operatorname{col}\left(A^{\top}\right)\right) \leq \operatorname{dim}\left(\operatorname{rar}\left(A^{\top}\right)\right)=\operatorname{din}(\operatorname{col}(A))
\end{gathered}
$$

now 1 han $\operatorname{din}(\operatorname{COI}(A)) \leq \operatorname{dm}(\operatorname{raw}(A)) \leq \operatorname{din} \operatorname{Col}(A))$
so Hey mast be equal

Sketch of Proof

We will sketch the proof that $\operatorname{dim}(\operatorname{col}(A)) \leq \operatorname{dim}(\operatorname{row}(A))$. To prove equality, it then is enough to replace A with A^{T}.

Let A be an $m \times n$ matrix. Then we know that $\operatorname{col}(A)$ is a subspace of \mathbb{R}^{m} and so $\operatorname{dim}(\operatorname{col}(A)) \leq m$.

$$
A=\left(c_{1} \cdots c_{n}\right) \quad c_{i} \in \mathbb{R}^{m}
$$

Sketch of Proof

We will sketch the proof that $\operatorname{dim}(\operatorname{col}(A)) \leq \operatorname{dim}(\operatorname{row}(A))$. To prove equality, it then is enough to replace A with A^{T}.

Let A be an $m \times n$ matrix. Then we know that $\operatorname{col}(A)$ is a subspace of \mathbb{R}^{m} and so $\operatorname{dim}(\operatorname{col}(A)) \leq m$.

Moreover, we know that $\operatorname{row}(A)$ is a subspace of \mathbb{R}^{n} spanned by m vectors and so $\operatorname{dim}(\operatorname{row}(A)) \leq m$.

Sketch of Proof

We will sketch the proof that $\operatorname{dim}(\operatorname{col}(A)) \leq \operatorname{dim}(\operatorname{row}(A))$. To prove equality, it then is enough to replace A with A^{T}.

Let A be an $m \times n$ matrix. Then we know that $\operatorname{col}(A)$ is a subspace of \mathbb{R}^{m} and so $\operatorname{dim}(\operatorname{col}(A)) \leq m$.

Moreover, we know that $\operatorname{row}(A)$ is a subspace of \mathbb{R}^{n} spanned by m vectors and so $\operatorname{dim}(\operatorname{row}(A)) \leq m$. If $\operatorname{dim}(\operatorname{row}(A))=m$, then we get that $\operatorname{dim}(\operatorname{col}(A)) \leq \operatorname{dim}(\operatorname{row}(A))$.

Sketch of Proof

We will sketch the proof that $\operatorname{dim}(\operatorname{col}(A)) \leq \operatorname{dim}(\operatorname{row}(A))$. To prove equality, it then is enough to replace A with A^{T}.

Let A be an $m \times n$ matrix. Then we know that $\operatorname{col}(A)$ is a subspace of \mathbb{R}^{m} and so $\operatorname{dim}(\operatorname{col}(A)) \leq m$.

Moreover, we know that $\operatorname{row}(A)$ is a subspace of \mathbb{R}^{n} spanned by m vectors and so $\operatorname{dim}(\operatorname{row}(A)) \leq m$. If $\operatorname{dim}(\operatorname{row}(A))=m$, then we get that $\operatorname{dim}(\operatorname{col}(A)) \leq \operatorname{dim}(\operatorname{row}(A))$.

If $\operatorname{dim}(\operatorname{row}(A))<m$, then one row of A must be written as a linear combination of the rest. That is, there exists c_{1}, \ldots, c_{m-1} such that

$$
\vec{r}_{m}=c_{1} \vec{r}_{1}+\cdots c_{m-1} \vec{r}_{m-1}
$$

Sketch of Proof 2

We have

$$
\vec{r}_{m}=c_{1} \vec{r}_{1}+\cdots c_{m-1} \vec{r}_{m-1}
$$

Sketch of Proof 2

We have

$$
-\vec{r}_{m}=c_{1} \vec{r}_{1}+\cdots c_{m-1} \vec{r}_{m-1}
$$

$$
\vec{r}_{m}=\left[\begin{array}{c}
a_{m, 1} \\
\vdots \\
a_{m, n}
\end{array}\right]
$$

Looking at the $j^{\text {th }}$ entry of the row vectors, we get

$$
a_{m, j}=c_{1} a_{1, j}+\cdots+c_{m-1} a_{m-1, j}
$$

Sketch of Proof 2

We have

$$
\vec{r}_{m}=c_{1} \vec{r}_{1}+\cdots c_{m-1} \vec{r}_{m-1}
$$

$$
A=\left[\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right)=\left[\begin{array}{ccc}
s_{11} & \ldots & c_{1} \\
& \vdots & \\
c_{n_{1}} & \cdots & s_{n}
\end{array}\right]
$$

Looking at the $j^{\text {th }}$ entry of the row vectors, we get

$$
a_{m, j}=c_{1} a_{1, j}+\cdots+c_{m-1} a_{m-1, j}
$$

and so each column vector

$$
\vec{c}_{j}=\left[\begin{array}{c}
a_{1, j} \\
\vdots \\
a_{m, k}
\end{array}\right]
$$

Sketch of Proof 2

We have

$$
\vec{r}_{m}=c_{1} \vec{r}_{1}+\cdots c_{m-1} \vec{r}_{m-1}
$$

Looking at the $j^{\text {th }}$ entry of the row vectors, we get

$$
a_{m, j}=c_{1} a_{1, j}+\cdots+c_{m-1} a_{m-1, j}
$$

and so each column vector

$$
\vec{c}_{j}=\left[\begin{array}{c}
a_{1, j} \\
\vdots \\
a_{m, j}
\end{array}\right]=c_{1}\left[\begin{array}{c}
a_{1, j} \\
\vdots \\
a_{1, j}
\end{array}\right]+\cdots+c_{m-1}\left[\begin{array}{c}
a_{1, j} \\
\vdots \\
a_{m-1, j}
\end{array}\right]
$$

Sketch of Proof 2

We have

$$
\vec{r}_{m}=c_{1} \vec{r}_{1}+\cdots c_{m-1} \vec{r}_{m-1}
$$

Looking at the $j^{\text {th }}$ entry of the row vectors, we get

$$
a_{m, j}=c_{1} a_{1, j}+\cdots+c_{m-1} a_{m-1, j}
$$

and so each column vector

$$
\vec{c}_{j}=\left[\begin{array}{c}
a_{1, j} \\
\vdots \\
a_{m, j}
\end{array}\right]=c_{1}\left[\begin{array}{c}
a_{1, j} \\
\vdots \\
a_{1, j}
\end{array}\right]+\cdots+c_{m-1}\left[\begin{array}{c}
a_{1, j} \\
\vdots \\
a_{m-1, j}
\end{array}\right]
$$

can be written as a linear combination of $m-1$ vectors and so $\operatorname{dim}(\operatorname{col}(A)) \leq m-1$.

$$
\operatorname{col}(A) \subseteq \operatorname{span}\left(u_{1} \ldots v_{n_{7}}\right)
$$

Sketch of Proof 2

We have

$$
\vec{r}_{m}=c_{1} \vec{r}_{1}+\cdots c_{m-1} \vec{r}_{m-1}
$$

Looking at the $j^{\text {th }}$ entry of the row vectors, we get

$$
a_{m, j}=c_{1} a_{1, j}+\cdots+c_{m-1} a_{m-1, j}
$$

and so each column vector

$$
\vec{c}_{j}=\left[\begin{array}{c}
a_{1, j} \\
\vdots \\
a_{m, j}
\end{array}\right]=c_{1}\left[\begin{array}{c}
a_{1, j} \\
\vdots \\
a_{1, j}
\end{array}\right]+\cdots+c_{m-1}\left[\begin{array}{c}
a_{1, j} \\
\vdots \\
a_{m-1, j}
\end{array}\right]
$$

can be written as a linear combination of $m-1$ vectors and so $\operatorname{dim}(\operatorname{col}(A)) \leq m-1$.

Fundamental Spaces of a Matrix

If A is an $m \times n$ matrix, then A^{T} is an $n \times(\pi)$ matrix and so applying the dimension and rank theorems to A^{T} we get

$$
(m)=\operatorname{rk}\left(A^{T}\right)+\operatorname{nullity}\left(A^{T}\right)
$$

Fundamental Spaces of a Matrix

If A is an $m \times n$ matrix, then A^{T} is an $n \times m$ matrix and so applying the dimension and rank theorems to A^{T} we get

$$
m=\operatorname{rk}\left(A^{T}\right)+\operatorname{nullity}\left(A^{T}\right)=\operatorname{rk}(A)+\operatorname{nullity}\left(A^{T}\right)
$$

Fundamental Spaces of a Matrix

If A is an $m \times n$ matrix, then A^{T} is an $n \times m$ matrix and so applying the dimension and rank theorems to A^{T} we get

$$
m=\operatorname{rk}\left(A^{T}\right)+\operatorname{nullity}\left(A^{T}\right)=\operatorname{rk}(A)+\operatorname{nullity}\left(A^{T}\right)
$$

Therefore, knowing the rank of the matrix immediately tells us the dimensions of these four funadmental spaces of a matrix.

Fundamental Spaces of a Matrix

If A is an $m \times n$ matrix, then A^{T} is an $n \times m$ matrix and so applying the dimension and rank theorems to A^{T} we get

$$
m=\operatorname{rk}\left(A^{T}\right)+\operatorname{nullity}\left(A^{T}\right)=\operatorname{rk}(A)+\operatorname{nullity}\left(A^{T}\right)
$$

Therefore, knowing the rank of the matrix immediately tells us the dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an $m \times n$ matrix with rank k, then

$$
\operatorname{dim}(\operatorname{row}(A))=k
$$

Fundamental Spaces of a Matrix

If A is an $m \times n$ matrix, then A^{T} is an $n \times m$ matrix and so applying the dimension and rank theorems to A^{T} we get

$$
m=\operatorname{rk}\left(A^{T}\right)+\operatorname{nullity}\left(A^{T}\right)=\operatorname{rk}(A)+\operatorname{nullity}\left(A^{T}\right)
$$

Therefore, knowing the rank of the matrix immediately tells us the dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an $m \times n$ matrix with rank k, then

$$
\operatorname{dim}(\operatorname{row}(A))=k \quad \operatorname{dim}(n u l l(A))=n-k
$$

Fundamental Spaces of a Matrix

If A is an $m \times n$ matrix, then A^{T} is an $n \times m$ matrix and so applying the dimension and rank theorems to A^{T} we get

$$
m=\operatorname{rk}\left(A^{T}\right)+\operatorname{nullity}\left(A^{T}\right)=\operatorname{rk}(A)+\operatorname{nullity}\left(A^{T}\right)
$$

Therefore, knowing the rank of the matrix immediately tells us the dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an $m \times n$ matrix with rank k, then

$$
\begin{array}{ll}
\operatorname{dim}(\operatorname{row}(A))=k & \operatorname{dim}(n u l l(A))=n-k \\
\operatorname{dim}(\operatorname{col}(A))=k
\end{array}
$$

Fundamental Spaces of a Matrix

If A is an $m \times n$ matrix, then A^{T} is an $n \times m$ matrix and so applying the dimension and rank theorems to A^{T} we get

$$
m=\operatorname{rk}\left(A^{T}\right)+\operatorname{nullity}\left(A^{T}\right)=\operatorname{rk}(A)+\operatorname{nullity}\left(A^{T}\right)
$$

Therefore, knowing the rank of the matrix immediately tells us the dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an $m \times n$ matrix with rank k, then

$$
\begin{array}{ll}
\operatorname{dim}(\operatorname{row}(A))=k & \operatorname{dim}(n u l l(A))=n-k \\
\operatorname{dim}(\operatorname{col}(A))=k & \operatorname{dim}\left(n u l l\left(A^{T}\right)\right)=m-k
\end{array}
$$

Consistency and Rank

Theorem

If $A \vec{x}=\vec{b}$ is a linear system of m equations in n unknowns, then the following statements are equivalent
(1) $A \vec{x}=\vec{b}$
(2) \vec{b} is in the column space of A
(3) The coefficient matrix A and the augmented matrix $(A \mid \vec{b})$ have the same rank.

Full Rank

Definition

An $m \times n$ is said to have full column rank is its column vectors are linearly independent

Full Rank

Definition

An $m \times n$ is said to have full column rank is its column vectors are linearly independent and it is said to have full row rank if its row vectors are linearly independent.

Full Rank

Definition

An $m \times n$ is said to have full column rank is its column vectors are linearly independent and it is said to have full row rank if its row vectors are linearly independent.

Theorem

Let A be an $m \times n$ matrix.
(1) A has full column rank if and only if the column vectors form a basis for the column space if and only if $r k(A)=n$
(2) A has full row rank if and only if the row vectors form a basis for the row space if and only if $r k(A)=m$

Full Column Rank and Solutions

Theorem

If A is an $m \times n$ matrix then the following are equivalent
(1) $A \vec{x}=0$ has only the trivial solution
(2) $A \vec{x}=\vec{b}$ has at most one solution for every $\vec{b} \in \mathbb{R}^{m}$
(3) A has full column rank

Over- and Underdetermined

Theorem

Let A be an $m \times n$ matrix.
(1) If $m>n$, then the system $A \vec{x}=\vec{b}$ is inconsistent for some vector \vec{b} in \mathbb{R}^{m}. This is called overdetermined.
(2) If $m<n$, then for every vector \vec{b} in \mathbb{R}^{m} the system $A \vec{x}=\vec{b}$ is either inconsistent or has infinitely many solutions. This is called underdetermined.

Pivot Theorem

Theorem

Pivot Theorem The pivot columns of a nonzero matrix A for a basis for the column space of A.

Pivot Theorem

Theorem

Pivot Theorem The pivot columns of a nonzero matrix A for a basis for the column space of A.

Example:

$$
A=\left(\begin{array}{cccc}
7 & 1 & 9 & 6 \\
5 & 3 & 11 & 2 \\
7 & 2 & 11 & 5 \\
7 & -2 & 3 & 9 \\
0 & 1 & 2 & -1
\end{array}\right)
$$

Pivot Theorem

Theorem

Pivot Theorem The pivot columns of a nonzero matrix A for a basis for the column space of A.

Example:

$$
A=\left(\begin{array}{cccc}
7 & 1 & 9 & 6 \\
5 & 3 & 11 & 2 \\
7 & 2 & 11 & 5 \\
7 & -2 & 3 & 9 \\
0 & 1 & 2 & -1
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Pivot Theorem

Theorem

Pivot Theorem The pivot columns of a nonzero matrix A for a basis for the column space of A.

Example:

$$
A=\left(\begin{array}{cccc}
7 & 1 & 9 & 6 \\
5 & 3 & 11 & 2 \\
7 & 2 & 11 & 5 \\
7 & -2 & 3 & 9 \\
0 & 1 & 2 & -1
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

And so a basis for the column space of A would be

$$
\left\{\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right]\right\}
$$

Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of vectors:

Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of vectors:

Let $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ then:

Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of vectors:

Let $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ then:
(1) Form the matrix A whose columns are $\vec{v}_{1}, \ldots, \vec{v}_{k}$

Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of vectors:

Let $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ then:
(1) Form the matrix A whose columns are $\vec{v}_{1}, \ldots, \vec{v}_{k}$
(2) Reduce the matrix A to row echelon form.

Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of vectors:

Let $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ then:
(1) Form the matrix A whose columns are $\vec{v}_{1}, \ldots, \vec{v}_{k}$
(2) Reduce the matrix A to row echelon form.
(3) The columns with the leading ones will correspond to vectors in the basis.

Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of vectors:

Let $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ then:
(1) Form the matrix A whose columns are $\vec{v}_{1}, \ldots, \vec{v}_{k}$
(2) Reduce the matrix A to row echelon form.
(3) The columns with the leading ones will correspond to vectors in the basis.
(9) To find the other vectors as a linear combination of your basis, reduce A further to RREF.

Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of vectors:

Let $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ then:
(1) Form the matrix A whose columns are $\vec{v}_{1}, \ldots, \vec{v}_{k}$
(2) Reduce the matrix A to row echelon form.
(3) The columns with the leading ones will correspond to vectors in the basis.
(9) To find the other vectors as a linear combination of your basis, reduce A further to RREF.

See example in the slides of last lecture.

Fundamental Matrix Spaces Bases

We now see that by reducing A to REF or RREF we can find bases for the row space, the column space and the null space.

Fundamental Matrix Spaces Bases

We now see that by reducing A to REF or RREF we can find bases for the row space, the column space and the null space. Namely:
(1) The non-zero rows of the REF of A form a basis for $\operatorname{row}(A)$

Fundamental Matrix Spaces Bases

We now see that by reducing A to REF or RREF we can find bases for the row space, the column space and the null space. Namely:
(1) The non-zero rows of the REF of A form a basis for $\operatorname{row}(A)$
(2) The pivot columns of the REF of A correspond to a basis for $\operatorname{col}(A)$

Fundamental Matrix Spaces Bases

We now see that by reducing A to REF or RREF we can find bases for the row space, the column space and the null space. Namely:
(1) The non-zero rows of the REF of A form a basis for $\operatorname{row}(A)$
(2) The pivot columns of the REF of A correspond to a basis for $\operatorname{col}(A)$
(3) The canonical solutions to $A \vec{x}=\overrightarrow{0}$ can readily be seen from $R \vec{x}=0$ where R is the RREF of A. Moreover, these form a basis for null (A).

Fundamental Matrix Spaces Bases

We now see that by reducing A to REF or RREF we can find bases for the row space, the column space and the null space. Namely:
(1) The non-zero rows of the REF of A form a basis for $\operatorname{row}(A)$
(2) The pivot columns of the REF of A correspond to a basis for $\operatorname{col}(A)$
(3) The canonical solutions to $A \vec{x}=\overrightarrow{0}$ can readily be seen from $R \vec{x}=0$ where R is the RREF of A. Moreover, these form a basis for null (A).

The last remaining fundamental space of a matrix is null $\left(A^{T}\right)$. This can also be determined by find the REF.

Algorithm for Basis of null $\left(A^{T}\right)$

If A is an $m \times n$ matrix, then the following procedure produces a basis for $\operatorname{null}\left(A^{T}\right)$.

Algorithm for Basis of null $\left(A^{T}\right)$

If A is an $m \times n$ matrix, then the following procedure produces a basis for $\operatorname{null}\left(A^{T}\right)$.
(1) Adjoin the $m \times m$ identity matrix I_{m} to A to create the augmented matrix $\left(A \mid I_{m}\right)$

Algorithm for Basis of null $\left(A^{T}\right)$

If A is an $m \times n$ matrix, then the following procedure produces a basis for $\operatorname{null}\left(A^{T}\right)$.
(1) Adjoin the $m \times m$ identity matrix I_{m} to A to create the augmented matrix $\left(A \mid I_{m}\right)$
(2) Row reduce $\left(A \mid I_{m}\right)$ to $(U \mid E)$ where U is the REF of A

Algorithm for Basis of null $\left(A^{T}\right)$

If A is an $m \times n$ matrix, then the following procedure produces a basis for $\operatorname{null}\left(A^{T}\right)$.
(1) Adjoin the $m \times m$ identity matrix I_{m} to A to create the augmented matrix $\left(A \mid I_{m}\right)$
(2) Row reduce $\left(A \mid I_{m}\right)$ to $(U \mid E)$ where U is the REF of A
(3) We know that U may have some rows of zeroes. So repartition $(U \mid E)$ into $\left(\begin{array}{l|l}V & E_{1} \\ 0 & E_{2}\end{array}\right)$

Algorithm for Basis of null $\left(A^{T}\right)$

If A is an $m \times n$ matrix, then the following procedure produces a basis for $\operatorname{null}\left(A^{T}\right)$.
(1) Adjoin the $m \times m$ identity matrix I_{m} to A to create the augmented matrix $\left(A \mid I_{m}\right)$
(2) Row reduce $\left(A \mid I_{m}\right)$ to $(U \mid E)$ where U is the REF of A
(3) We know that U may have some rows of zeroes. So repartition $(U \mid E)$ into $\left(\begin{array}{l|l}V & E_{1} \\ 0 & E_{2}\end{array}\right)$
(9) The row vectors of E_{2} now form a basis for $\operatorname{null}\left(A^{T}\right)$.

Example

Find null(A^{T}) for

$$
A=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & 4 & 2 & -5 & -4
\end{array}\right]
$$

Example

Find null(A^{T}) for

$$
A=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & 4 & 2 & -5 & -4
\end{array}\right]
$$

Step 1: Adjoin I_{4} to A :
$\left(A\left|\left.\right|_{4}\right)\right.$

Example

Find null $\left(A^{T}\right)$ for

$$
A=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & 4 & 2 & -5 & -4
\end{array}\right]
$$

Step 1: Adjoin I_{4} to A :

$$
\left(A \mid I_{4}\right)=\left[\begin{array}{cccccccccc}
1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\
2 & -6 & 9 & -1 & 8 & 2 & 0 & 1 & 0 & 0 \\
2 & -6 & 9 & -1 & 9 & 7 & 0 & 0 & 1 & 0 \\
-1 & 3 & 4 & 2 & -5 & -4 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Example Continued

Step 2: Row reduce A to REF

$$
(U \mid E)=\left[\begin{array}{cccccccccc}
1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & -2 & 6 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 5 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Example Continued

Step 2: Row reduce A to REF

$$
(U \mid E)=\left[\begin{array}{cccccccccc}
1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & -2 & 6 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 5 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Step 3: Repartition it into

$$
\left(\begin{array}{l|l}
V & E_{1} \\
0 & E_{2}
\end{array}\right)=\left[\begin{array}{cccccccccc}
1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & -2 & 6 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 5 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Example Continued

Step 2: Row reduce A to REF

$$
(U \mid E)=\left[\begin{array}{cccccccccc}
1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & -2 & 6 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 5 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Step 3: Repartition it into

$$
\left(\begin{array}{l|l}
V & E_{1} \\
0 & E_{2}
\end{array}\right)=\left[\begin{array}{cccccccccc}
1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & -2 & 6 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 5 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Hence, we see that $\{(1,0,0,1)\}$ is a basis for $\operatorname{null}\left(A^{T}\right)$.

