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Topics for Today

@ Dimension Theorem
@ Rank Theorem
© Pivot Theorem
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Nullity and Dimension Theorem
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Nullity and Dimension Theorem

Definition

We will define the nullity of matrix A to be nullity(A) = dim(null(A)).
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Nullity and Dimension Theorem

Definition
We will define the nullity of matrix A to be nullity(A) = dim(null(A)).

Theorem (Dimension Theorem)
Let A be an m x @matrix, then

rk(A) + nullity(A) =@ ~ aot colomay of A
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Nullity and Dimension Theorem

Definition
We will define the nullity of matrix A to be nullity(A) = dim(null(A)).

Theorem (Dimension Theorem)

Let A be an m X n matrix, then

rk(A) + nullity(A) = n

Proof.

Indeed, we know that

n = number of columns
= number of leading ones + number of free variable
= rk(A) 4 dim(null(A)) ~ kB £ relib (A)
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Perp Space

For any subspace W of R”, we define the perp space of W, denote M@
to be the set of all vectors whose dot product with every vector in W is 0:
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Perp Space

For any subspace W of R”, we define the perp space of W, denote W,
to be the set of all vectors whose dot product with every vector in W is 0:

WL ={VeR":V-w=0forall we W}
== ——
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Perp Space

For any subspace W of R”, we define the perp space of W, denote W,
to be the set of all vectors whose dot product with every vector in W is 0:

WL ={VeR":V-w=0forall we W}

It is called the perp space because everything in W+ is orthogonal (or
perpendicular) to everything in W.

Patrick Meisner (KTH) Lecture 13 4/22



Perp Space

For any subspace W of R”, we define the perp space of W, denote W,
to be the set of all vectors whose dot product with every vector in W is 0:

WL ={VeR":V-w=0forall we W}

It is called the perp space because everything in W+ is orthogonal (or
perpendicular) to everything in W.

v

For any subspace W of R", W is also a subspace of R".
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Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the
direction of a.
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Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the
direction of 3. Then L™ is the hyperplane in R” with normal 3.
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Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the

direction of 3 Then L' is the hyperplane in R” with normal 3. Indeed, if
X € Lt then

0=(at)-x
Cor ol &l
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Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the

direction of 3 Then L' is the hyperplane in R” with normal 3. Indeed, if
X € Lt then

0=(at) X = aitxy + axtxo + - - - + antxy
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Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the

direction of 3 Then L' is the hyperplane in R” with normal 3. Indeed, if
X € Lt then

0=(at) - X = aitxy + axtxp + - - - + aptx, = t(a1x1 + azxx2 + -+ + anxn)
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Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the

direction of 3 Then L' is the hyperplane in R” with normal 3. Indeed, if
X € Lt then

0=(at) - X =aitxy + axtxp + - - - + antxp, = t(arx1 + axxo + - - - + anxy)

L ,L
We often just write 3 for L+ @=L
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Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the
direction of 3 Then L' is the hyperplane in R” with normal 3. Indeed, if
X € Lt then

0=(at) - X =aitxy + axtxp + - - - + antxp, = t(arx1 + axxo + - - - + anxy)

We often just write 3 for L.

What is the perp space of all of R"?
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Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the
direction of 3 Then L' is the hyperplane in R” with normal 3. Indeed, if
X € Lt then

0=(at) - X = aitxy + axtxp + - - - + aptx, = t(a1x1 + azxx2 + -+ + anxn)

We often just write 3 for L.

What is the perp space of all of R"?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in R".
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Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the
direction of 3 Then L' is the hyperplane in R” with normal 3. Indeed, if
X € Lt then

0=(at) - X = aitxy + axtxp + - - - + aptx, = t(a1x1 + azxx2 + -+ + anxn)

We often just write 3 for L.

What is the perp space of all of R"?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in R". And so in
particular, would need to be the orthogonal to the standard vectors ¢; for

all . ¢.- gg) ¢\ = 657 _
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Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the
direction of 3 Then L' is the hyperplane in R” with normal 3. Indeed, if
X € Lt then

0=(at) - X = aitxy + axtxp + - - - + aptx, = t(a1x1 + azxx2 + -+ + anxn)

We often just write 3 for L.

What is the perp space of all of R"?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in R". And so in
particular, would need to be the orthogonal to the standard vectors ¢; for
all i. Hence if ¥ € (R™)*, then

0=¢-X

Patrick Meisner (KTH) Lecture 13 5/22



Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the
direction of 3 Then L' is the hyperplane in R” with normal 3. Indeed, if
X € Lt then

0=(at) - X = aitxy + axtxp + - - - + aptx, = t(a1x1 + azxx2 + -+ + anxn)

We often just write 3 for L.

What is the perp space of all of R"?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in R". And so in
particular, would need to be the orthogonal to the standard vectors ¢; for
all i. Hence if ¥ € (R™)*, then

0=¢6 -X=0xx3+0xxo0+---+1kx4+ --4+0xx,=x
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Let & be a vector in R”, and L = {at : t € R}, be the line in R" in the
direction of 3 Then L' is the hyperplane in R” with normal 3. Indeed, if
X € Lt then

0=(at) - X = aitxy + axtxp + - - - + aptx, = t(a1x1 + azxx2 + -+ + anxn)
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What is the perp space of all of R"?It would have to be the set of vectors
that is orthogonal (perpendicular) to all vectors in R". And so in
particular, would need to be the orthogonal to the standard vectors ¢; for
all i. Hence if X € (R")*, then Ui et *e vnk  €ix=o for g ¢
o) e, ) P g sy Pam Lo
0=¢6 -X=0xx3+0xxo0+---+1kx4+ --4+0xx,=x

We often just write 3 for L.

And we see that (R")- = {0}, the zero-suspace. & X5 4
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Perp Space and Bases

If W is a subspace of R" with basis {51, e Ek} then Vv € W if and
only if v-bj=0fori=1,... k.
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Perp Space and Null Space

If W is a subspace of R" with basis {b1, ..., by}, then W' is the null
space of the matrix whose rows are the b;.
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Perp Space and Dimension Theorem

If W is a subspace of R", then n = dim(W) + dim(W=).
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Rank Theorem

Recall the column space of a matrix col(A), is the spanning set of the
column vectors of A.
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Rank Theorem

Recall the column space of a matrix col(A), is the spanning set of the
column vectors of A. We define the row space of a matrix, row(A) to be
the spanning set of the row vectors of A.
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Rank Theorem

Recall the column space of a matrix col(A), is the spanning set of the
column vectors of A. We define the row space of a matrix, row(A) to be

the spanning set of the row vectors of A.

Theorem (Rank Theorem)
The row space and column space of a matrix have the same dimension.
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Rank Theorem

Recall the column space of a matrix col(A), is the spanning set of the
column vectors of A. We define the row space of a matrix, row(A) to be

the spanning set of the row vectors of A.

Theorem (Rank Theorem)

The row space and column space of a matrix have the same dimension. <

Theorem (Rank Theorem)
If A'is an m x n matrix, then Col (AT)= sowr( A‘S

rk(A) = rk(AT)

ol () = don C col ((H) -
o ()= dim Con (AT)) = chin Copw (1)
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Sketch of Proof

We will sketch the proof that dim(col(A)) < dim(row(A)).
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Sketch of Proof

We will sketch the proof that dim(col(A)) < dim(row(A)). To prove
equality, it then is enough to replace A with AT.

(n pu- ¢ cole~ Y Gh(u@ LM
Aol R)e o (ol (4T & einCowr (A1) i lest 1)

VR dw\@uﬂr\\é Oin LraB) < din (ool )
So iy mer be g

Patrick Meisner (KTH) Lecture 13



Sketch of Proof

We will sketch the proof that dim(col(A)) < dim(row(A)). To prove
equality, it then is enough to replace A with AT.

Let A be an m x n matrix. Then we know that col(A) is a subspace of R
and so dim(col(A)) < m.
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Sketch of Proof

We will sketch the proof that dim(col(A)) < dim(row(A)). To prove
equality, it then is enough to replace A with AT.

Let A be an m x n matrix. Then we know that col(A) is a subspace of R
and so dim(col(A)) < m.

Moreover, we know that row(A) is a subspace of R” spanned by m vectors
and so dim(row(A)) < m.

-1
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Sketch of Proof

We will sketch the proof that dim(col(A)) < dim(row(A)). To prove
equality, it then is enough to replace A with AT.

Let A be an m x n matrix. Then we know that col(A) is a subspace of R
and so dim(col(A)) < m.
e——

Moreover, we know that row(A) is a subspace of R” spanned by m vectors
and so dim(row(A)) < m. If dim(row(A)) = m, then we get that
dim(col(A)) < dim(row(A)). -
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Sketch of Proof

We will sketch the proof that dim(col(A)) < dim(row(A)). To prove
equality, it then is enough to replace A with AT.

Let A be an m x n matrix. Then we know that col(A) is a subspace of R
and so dim(col(A)) < m.

Moreover, we know that row(A) is a subspace of R” spanned by m vectors
and so dim(row(A)) < m. If dim(row(A)) = m, then we get that
dim(col(A)) < dim(row(A)).

If dim(row(A)) < m, then one row of A must be written as a linear
combination of the rest. That is, there exists ¢, ..., cn_1 such that

m=cn-+---Cm-1rm-1
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Sketch of Proof 2

We have
Fm=ClM + - Cm—1fm-1
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Sketch of Proof 2

%‘)I

D= ‘
We have
e Im=CN+ " Cm1lm-1

Looking at the jt entry of the row vectors, we get

—— dmj = Qa1 j+ -+ Cm-1am-1,
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Sketch of Proof 2

/Jt‘_ L 9“ N
We have ' j ; :

Fm=ClM + - Cm—1fm-1 o

Looking at the jt entry of the row vectors, we get

amj=0Caj+- -+ Cm-1dm-1,

and so each column vector

DL
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Sketch of Proof 2

We have
fm=C1A + - Cm—1Im-1
Looking at the jt entry of the row vectors, we get
amj=Caij+- -+ Cm-1dm-1,

and so each column vector

ai,j aij aij
am,j di,j dm—1,j
= ——
Patrick Meisner (KTH)
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Sketch of Proof 2

We have
fm=C1A + - Cm—1Im-1
Looking at the jt entry of the row vectors, we get
amj=Caij+- -+ Cm-1dm-1,

and so each column vector

al,j al,j 31J

eli
I

=cal |+ F+cma

am,j di,j dm—1,j

can be written as a linear combination of m — 1 vectors and so

dim(col(A)) < m—1. col () X S V- V/\q>
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Sketch of Proof 2

We have
Fm=ClM + - Cm—1fm-1

Looking at the jt entry of the row vectors, we get
g

amj = Caij + -+ Cm-1am-1,
J J

and so each column vector

al,j al,j 31J

am,j di,j dm—1,j

can be written as a linear combination of m — 1 vectors and so
dim(col(A)) < m—1.
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Fundamental Spaces of a Matrix

If Aiis an m x n matrix, then AT is an n x @dmatrix and so applying the
dimension and rank theorems to AT we get

@=rk(AT) + nullity(AT)
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Fundamental Spaces of a Matrix

If Alis an m x n matrix, then AT is an n x m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT) + nullity(AT) = rk(A) + nullity(AT)
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Fundamental Spaces of a Matrix

If Alis an m x n matrix, then AT is an n x m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT) + nullity(AT) = rk(A) + nullity(AT)

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.
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Fundamental Spaces of a Matrix

If Alis an m x n matrix, then AT is an n x m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT) + nullity(AT) = rk(A) + nullity(AT)

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an m X n matrix with rank k, then

dim(row(A)) = k
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Fundamental Spaces of a Matrix

If Alis an m x n matrix, then AT is an n x m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT) + nullity(AT) = rk(A) + nullity(AT)

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an m X n matrix with rank k, then

dim(row(A)) = k dim(null(A)) = n—k
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Fundamental Spaces of a Matrix

If Alis an m x n matrix, then AT is an n x m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT) + nullity(AT) = rk(A) + nullity(AT)

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an m X n matrix with rank k, then

dim(row(A)) = k dim(null(A)) = n—k

dim(col(A)) = k
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Fundamental Spaces of a Matrix

If Alis an m x n matrix, then AT is an n x m matrix and so applying the
dimension and rank theorems to AT we get

m = rk(AT) + nullity(AT) = rk(A) + nullity(AT)

Therefore, knowing the rank of the matrix immediately tells us the
dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an m X n matrix with rank k, then

dim(row(A)) = k dim(null(A)) = n—k

dim(col(A)) = k dim(null(AT)) = m — k
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Consistency and Rank

If AX = b is a linear system of m equations in n unknowns, then the
following statements are equivalent

Q@ AX=b
@ b is in the column space of A

@ The coefficient matrix A and the augmented matrix (A|b) have the
same rank.

Patrick Meisner (KTH) Lecture 13
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Full Rank

Definition

An m x n is said to have full column rank is its column vectors are
linearly independent
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Full Rank

Definition
An m x n is said to have full column rank is its column vectors are
linearly independent and it is said to have full row rank if its row vectors

are linearly independent.
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Full Rank

Definition

An m x n is said to have full column rank is its column vectors are
linearly independent and it is said to have full row rank if its row vectors
are linearly independent.

Let A be an m x n matrix.
© A has full column rank if and only if the column vectors form a basis
for the column space if and only if rk(A) = n

@ A has full row rank if and only if the row vectors form a basis for the
row space if and only if rk(A) = m

Patrick Meisner (KTH) Lecture 13 14 /22



Full Column Rank and Solutions

If A is an m X n matrix then the following are equivalent

@ AX =0 has only the trivial solution
@ AX = b has at most one solution for every beRM
© A has full column rank
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Over- and Underdetermined

Let A be an m x n matrix.
@ /f m > n, then the system AX = b is inconsistent for some vector b in
R™. This is called overdetermined.
@ If m < n, then for every vector b in R™ the system AX = b is either
inconsistent or has infinitely many solutions. This is called
underdetermined. )
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Pivot Theorem The pivot columns of a nonzero matrix A for a basis for
the column space of A.
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Pivot Theorem The pivot columns of a nonzero matrix A for a basis for
the column space of A.

Example:
7 1 9 6
5 3 11 2
A=1|7 2 11 5
7 -2 3 9
0o 1 2 -1
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Pivot Theorem The pivot columns of a nonzero matrix A for a basis for
the column space of A.

Example:
7 1 9 6 101 1
5 3 11 2 01 2 —1
A=1|7 2 11 5 = |0 0 0 O
7 -2 3 9 0 00 O
0o 1 2 -1 000 O
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Pivot Theorem The pivot columns of a nonzero matrix A for a basis for
the column space of A.

Example:
7 1 9 6 101 1
5 3 11 2 01 2 —1
A=1|7 2 11 5 = |0 0 0 O
7 -2 3 9 0 00 O
0o 1 2 -1 000 O

And so a basis for the column space of A would be

~
[y

O NN O
N
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Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of
vectors:
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Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of
vectors:

Let W = span{w,..., vk} then:
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Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of
vectors:

Let W = span{w,..., vk} then:

—

@ Form the matrix A whose columns are vi, ..., Vi
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Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of
vectors:

Let W = span{w,..., vk} then:

@ Form the matrix A whose columns are vi, ..., Vi

@ Reduce the matrix A to row echelon form.
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Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of
vectors:

Let W = span{w,..., vk} then:
@ Form the matrix A whose columns are vi, ..., Vi
@ Reduce the matrix A to row echelon form.

© The columns with the leading ones will correspond to vectors in the
basis.
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Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of
vectors:

Let W = span{w,..., vk} then:
@ Form the matrix A whose columns are vi, ..., Vi
@ Reduce the matrix A to row echelon form.
© The columns with the leading ones will correspond to vectors in the
basis.
@ To find the other vectors as a linear combination of your basis, reduce
A further to RREF.
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Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of
vectors:

Let W = span{w,..., vk} then:
@ Form the matrix A whose columns are vi, ..., Vi
@ Reduce the matrix A to row echelon form.

© The columns with the leading ones will correspond to vectors in the
basis.

@ To find the other vectors as a linear combination of your basis, reduce
A further to RREF.

See example in the slides of last lecture.
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Fundamental Matrix Spaces Bases

We now see that by reducing A to REF or RREF we can find bases for the
row space, the column space and the null space.
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Fundamental Matrix Spaces Bases

We now see that by reducing A to REF or RREF we can find bases for the
row space, the column space and the null space.Namely:

@ The non-zero rows of the REF of A form a basis for row(A)
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Fundamental Matrix Spaces Bases

We now see that by reducing A to REF or RREF we can find bases for the
row space, the column space and the null space.Namely:

@ The non-zero rows of the REF of A form a basis for row(A)
@ The pivot columns of the REF of A correspond to a basis for col(A)
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Fundamental Matrix Spaces Bases

We now see that by reducing A to REF or RREF we can find bases for the
row space, the column space and the null space.Namely:

@ The non-zero rows of the REF of A form a basis for row(A)
@ The pivot columns of the REF of A correspond to a basis for col(A)

© The canonical solutions to AX = 0 can readily be seen from RX =0
where R is the RREF of A. Moreover, these form a basis for null(A).
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Fundamental Matrix Spaces Bases

We now see that by reducing A to REF or RREF we can find bases for the
row space, the column space and the null space.Namely:

@ The non-zero rows of the REF of A form a basis for row(A)
@ The pivot columns of the REF of A correspond to a basis for col(A)

© The canonical solutions to AX = 0 can readily be seen from RX =0
where R is the RREF of A. Moreover, these form a basis for null(A).

The last remaining fundamental space of a matrix is null(AT). This can
also be determined by find the REF.
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Algorithm for Basis of null(AT)

If Ais an m x n matrix, then the following procedure produces a basis for
null(AT).
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Algorithm for Basis of null(AT)

If Ais an m x n matrix, then the following procedure produces a basis for
null(AT).
© Adjoin the m x m identity matrix /,, to A to create the augmented
matrix (A|ln)
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Algorithm for Basis of null(AT)

If Ais an m x n matrix, then the following procedure produces a basis for
null(AT).
© Adjoin the m x m identity matrix /,, to A to create the augmented
matrix (A|ln)
@ Row reduce (A|l,) to (U|E) where U is the REF of A
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Algorithm for Basis of null(AT)

If Ais an m x n matrix, then the following procedure produces a basis for
null(AT).

© Adjoin the m x m identity matrix /,, to A to create the augmented
matrix (A|ln)

@ Row reduce (A|l,) to (U|E) where U is the REF of A

© We know that U may have some rows of zeroes. So repartition (U|E)

into Vi &
0| E
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Algorithm for Basis of null(AT)

If Ais an m x n matrix, then the following procedure produces a basis for
null(AT).
© Adjoin the m x m identity matrix /,, to A to create the augmented
matrix (A|ln)
@ Row reduce (A|l,) to (U|E) where U is the REF of A
© We know that U may have some rows of zeroes. So repartition (U|E)
into V&
0| E

@ The row vectors of E» now form a basis for null(AT).
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Find nuII(AT) for

1 -3 4 -2 5 4
A_|2 69 -1 8 2
2 69 -1 9 7
-1 3 4 2 -5 —4
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Find nuII(AT) for

1 -3 4 -2 5 4
A_|2 69 -1 8 2
2 69 -1 9 7
1 3 4 2 -5 —4

Step 1: Adjoin I to A:

(Alla)
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Find nuII(AT) for

1 -3 4 -2 5 4
A_|2 69 -1 8 2
“l2 -69 -1 9 7
1 3 4 2 -5 —4
Step 1: Adjoin I to A:
1 34 -2 5 4 1000
2 69 -1 8 2 0100
(Alla) =] 5 -6 9 -1 9 7 0010
-1 3 4 2 -5 -4 0001
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Example Continued

Step 2: Row reduce A to REF

1 34 -2 5 4 1 0 00
o 01 3 -26 -2 1 00
(UIE) = 0o 0 0o 0O 15 0 -110
0 0 0 0 0 0 1 0 01
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Example Continued

Step 2: Row reduce A to REF

1 -34 -2 5 4 1 0 00

0o 01 3 -26 -2 1 00

(U[E) = 0 0 0o 0o 15 0 —-110

0 0 0 0 00 1 0 01

Step 3: Repartition it into

1 34 -2 5 4 1 0 00
VIiEYy |0 0 1 3 -26 -2 1 00
0|E) (0 0 OO 1 5 0 -110
0O 0 0o o o0 1 0 01
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Example Continued

Step 2: Row reduce A to REF

1 -34 -2 5 4 1 0 00

0o 01 3 -26 -2 1 00

(U[E) = 0 0 0o 0o 15 0 —-110

0 0 0 0 00 1 0 01

Step 3: Repartition it into

1 34 -2 5 4 1 0 00
VIiEYy |0 0 1 3 -26 -2 1 00
0|E) (0 0 OO 1 5 0 -110
0O 0 0o o o0 1 0 01

Hence, we see that {(1,0,0,1)} is a basis for null(AT).
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