SF 1684 Algebra and Geometry Lecture 13

Patrick Meisner

KTH Royal Institute of Technology

- Dimension Theorem
- 2 Rank Theorem
- O Pivot Theorem

Nullity and Dimension Theorem

Definition

We will define the **nullity** of matrix A to be nullity $(A) = \dim(\text{null}(A))$.

Nullity and Dimension Theorem

Definition

We will define the **nullity** of matrix A to be nullity $(A) = \dim(\text{null}(A))$.

Theorem (Dimension Theorem)

Let A be an $m \times \widehat{m}$ matrix, then

$$rk(A) + nullity(A) = 0 \sim \# c \downarrow c q(und) of A.$$

Nullity and Dimension Theorem

Definition

We will define the **nullity** of matrix A to be nullity(A) = dim(null(A)).

Theorem (Dimension Theorem)

Let A be an $m \times n$ matrix, then

rk(A) + nullity(A) = n

Proof.

Indeed, we know that

n = number of columns= number of leading ones + number of free variable = rk(A) + dim(null(A)) ~ rk(A) + rk(A) + rk(A)

Definition

For any subspace W of \mathbb{R}^n , we define the **perp space** of W, denote W^{\square} to be the set of all vectors whose dot product with every vector in W is 0:

Definition

For any subspace W of \mathbb{R}^n , we define the **perp space** of W, denote W^{\perp} , to be the set of all vectors whose dot product with every vector in W is 0:

$$W^{\perp} = \{ \vec{v} \in \mathbb{R}^n : \vec{v} \cdot \vec{w} = 0 \text{ for all } \vec{w} \in W \}$$

Definition

For any subspace W of \mathbb{R}^n , we define the **perp space** of W, denote W^{\perp} , to be the set of all vectors whose dot product with every vector in W is 0:

$$W^{\perp} = \{ \vec{v} \in \mathbb{R}^n : \vec{v} \cdot \vec{w} = 0 \text{ for all } \vec{w} \in W \}$$

It is called the perp space because everything in W^{\perp} is orthogonal (or perpendicular) to everything in W.

Definition

For any subspace W of \mathbb{R}^n , we define the **perp space** of W, denote W^{\perp} , to be the set of all vectors whose dot product with every vector in W is 0:

$$W^{\perp} = \{ \vec{v} \in \mathbb{R}^n : \vec{v} \cdot \vec{w} = 0 \text{ for all } \vec{w} \in W \}$$

It is called the perp space because everything in W^{\perp} is orthogonal (or perpendicular) to everything in W.

Theorem

For any subspace W of \mathbb{R}^n , W^{\perp} is also a subspace of \mathbb{R}^n .

Proof: u, vew utvew es (utv).
$$\vec{v} = 0$$
 for all well
(utv). $w = u \cdot ut \cdot v \cdot w = 0 + 0 = 0$ for all well the utvew
Us wt & conf the cup wt be (cu). $w = 0$ for all new
(cu) $w = c(u \cdot v) = c(0) = 0$ for $v = 0$
Patrick Meisner (KTH)

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} .

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} . Then L^{\perp} is the hyperplane in \mathbb{R}^n with normal \vec{a} .

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} . Then L^{\perp} is the hyperplane in \mathbb{R}^n with normal \vec{a} . Indeed, if $\vec{x} \in L^{\perp}$, then

$$0 = (\vec{a}t) \cdot \vec{x}$$
for all tell

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} . Then L^{\perp} is the hyperplane in \mathbb{R}^n with normal \vec{a} . Indeed, if $\vec{x} \in L^{\perp}$, then

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} . Then L^{\perp} is the hyperplane in \mathbb{R}^n with normal \vec{a} . Indeed, if $\vec{x} \in L^{\perp}$, then

$$0 = (\vec{a}t) \cdot \vec{x} = a_1 tx_1 + a_2 tx_2 + \dots + a_n tx_n = t(a_1 x_1 + a_2 x_2 + \dots + a_n x_n)$$

for all $t \in \mathbb{R}$.
for $t = 1$: $a_1 x_1 + \dots + a_n x_n = 0$
for $t = 1$: $a_1 x_1 + \dots + a_n x_n = 0$
 f_1
 f_2
 f_3
 f_4
 f_5
 f_6
 f_7
 $f_$

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} . Then L^{\perp} is the hyperplane in \mathbb{R}^n with normal \vec{a} . Indeed, if $\vec{x} \in L^{\perp}$, then

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} . Then L^{\perp} is the hyperplane in \mathbb{R}^n with normal \vec{a} . Indeed, if $\vec{x} \in L^{\perp}$, then

 $0 = (\vec{a}t) \cdot \vec{x} = a_1 t x_1 + a_2 t x_2 + \dots + a_n t x_n = t(a_1 x_1 + a_2 x_2 + \dots + a_n x_n)$

We often just write \vec{a}^{\perp} for L^{\perp} .

What is the perp space of all of \mathbb{R}^n ?

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} . Then L^{\perp} is the hyperplane in \mathbb{R}^n with normal \vec{a} . Indeed, if $\vec{x} \in L^{\perp}$, then

 $0 = (\vec{at}) \cdot \vec{x} = a_1 t x_1 + a_2 t x_2 + \dots + a_n t x_n = t(a_1 x_1 + a_2 x_2 + \dots + a_n x_n)$

We often just write \vec{a}^{\perp} for L^{\perp} .

What is the perp space of all of \mathbb{R}^n ?It would have to be the set of vectors that is orthogonal (perpendicular) to all vectors in \mathbb{R}^n .

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} . Then L^{\perp} is the hyperplane in \mathbb{R}^n with normal \vec{a} . Indeed, if $\vec{x} \in L^{\perp}$, then

$$0 = (\vec{at}) \cdot \vec{x} = a_1 t x_1 + a_2 t x_2 + \dots + a_n t x_n = t(a_1 x_1 + a_2 x_2 + \dots + a_n x_n)$$

We often just write \vec{a}^{\perp} for L^{\perp} .

What is the perp space of all of \mathbb{R}^n ?It would have to be the set of vectors that is orthogonal (perpendicular) to all vectors in \mathbb{R}^n . And so in particular, would need to be the orthogonal to the standard vectors e_i for all *i*. $\mathcal{C}_i \subset \begin{pmatrix} i \\ 0 \\ i \end{pmatrix} \qquad \mathcal{C}_i \subset \begin{pmatrix} i \\ 0 \\ i \end{pmatrix} \qquad - \cdots$

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} . Then L^{\perp} is the hyperplane in \mathbb{R}^n with normal \vec{a} . Indeed, if $\vec{x} \in L^{\perp}$, then

 $0 = (\vec{a}t) \cdot \vec{x} = a_1 t x_1 + a_2 t x_2 + \dots + a_n t x_n = t(a_1 x_1 + a_2 x_2 + \dots + a_n x_n)$

We often just write \vec{a}^{\perp} for L^{\perp} .

What is the perp space of all of \mathbb{R}^n ?It would have to be the set of vectors that is orthogonal (perpendicular) to all vectors in \mathbb{R}^n . And so in particular, would need to be the orthogonal to the standard vectors e_i for all *i*. Hence if $\vec{x} \in (\mathbb{R}^n)^{\perp}$, then

$$0 = \vec{e_i} \cdot \vec{x}$$

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} . Then L^{\perp} is the hyperplane in \mathbb{R}^n with normal \vec{a} . Indeed, if $\vec{x} \in L^{\perp}$, then

 $0 = (\vec{a}t) \cdot \vec{x} = a_1 t x_1 + a_2 t x_2 + \dots + a_n t x_n = t(a_1 x_1 + a_2 x_2 + \dots + a_n x_n)$

We often just write \vec{a}^{\perp} for L^{\perp} .

What is the perp space of all of \mathbb{R}^n ?It would have to be the set of vectors that is orthogonal (perpendicular) to all vectors in \mathbb{R}^n . And so in particular, would need to be the orthogonal to the standard vectors e_i for all *i*. Hence if $\vec{x} \in (\mathbb{R}^n)^{\perp}$, then

$$0 = \vec{e_i} \cdot \vec{x} = 0 * x_1 + 0 * x_2 + \dots + \underbrace{1 * x_i + \dots + 0 * x_n = x_i}_{\varphi_{(i)}}$$

Let \vec{a} be a vector in \mathbb{R}^n , and $L = {\vec{a}t : t \in \mathbb{R}}$, be the line in \mathbb{R}^n in the direction of \vec{a} . Then L^{\perp} is the hyperplane in \mathbb{R}^n with normal \vec{a} . Indeed, if $\vec{x} \in L^{\perp}$, then

$$0 = (\vec{a}t) \cdot \vec{x} = a_1 t x_1 + a_2 t x_2 + \dots + a_n t x_n = t (a_1 x_1 + a_2 x_2 + \dots + a_n x_n)$$

We often just write \vec{a}^{\perp} for L^{\perp} .
We (\vec{a}) is charged to just cleak $\vec{c} \cdot \vec{x} = 0$

What is the perp space of all of \mathbb{R}^n ? It would have to be the set of vectors that is orthogonal (perpendicular) to all vectors in \mathbb{R}^n . And so in particular, would need to be the orthogonal to the standard vectors e_i for all *i*. Hence if $\vec{x} \in (\mathbb{R}^n)^{\perp}$, then the orthogonal to the standard vectors e_i for all *i*. Hence if $\vec{x} \in (\mathbb{R}^n)^{\perp}$, then the orthogonal to the standard vectors e_i for \mathcal{A}_i or \mathcal{A}_i . The order $\vec{x} \in \mathcal{A}_i$ of $\vec{x} = 0$ for $\vec{x} = 0$ and $\vec{x} = 0$ and $\vec{x} = 0$. The order $\vec{x} = 0$ and $\vec{x} = 0$.

Perp Space and Bases

Theorem

If W is a subspace of \mathbb{R}^n with basis $\{\vec{b}_1, \ldots, \vec{b}_k\}$, then $\vec{v} \in W^{\perp}$ if and only if $\vec{v} \cdot \vec{b}_i = 0$ for $i = 1, \ldots, k$. Prover (->) it vent the v-w-o for wew in poticular v- 4:00 for uki as hiew. (E) Seprense V- Be =0 for all c'-1... K. let we we the converte we tobet ... to bube. N-w = V. (tik + ...+ tr br br) = ti (Vi · h) + - ... + tr (Vic· br) $= \beta_1 \cdot O F = - + \xi_{\mathcal{E}} \cdot O = C$ k so $v \in W^+$

M

Perp Space and Null Space

Corollary

If W is a subspace of \mathbb{R}^n with basis $\{\vec{b}_1, \ldots, \vec{b}_k\}$, then W^{\perp} is the null space of the matrix whose rows are the \vec{b}_i .

Perp Space and Dimension Theorem

Theorem

If W is a subspace of \mathbb{R}^n , then $n = \dim(W) + \dim(W^{\perp})$.

W had a basis be- he Suppi 2 Prove; let B = [b] . (Know that since him be one in early independent, then every non will have a leading 1. B-> / ...] -> Nb (B)= k = dim h from pression din wt= nullity (B) Dimension than in the cost ordination (B) = dim W + dim Wt.

Recall the column space of a matrix col(A), is the spanning set of the column vectors of A.

Recall the column space of a matrix col(A), is the spanning set of the column vectors of A. We define the row space of a matrix, row(A) to be the spanning set of the row vectors of A.

Recall the column space of a matrix col(A), is the spanning set of the column vectors of A. We define the row space of a matrix, row(A) to be the spanning set of the row vectors of A.

Theorem (Rank Theorem)

The row space and column space of a matrix have the same dimension.

Recall the column space of a matrix col(A), is the spanning set of the column vectors of A. We define the row space of a matrix, row(A) to be the spanning set of the row vectors of A.

Theorem (Rank Theorem)

The row space and column space of a matrix have the same dimension.

Theorem (Rank Theorem)

If A is an $m \times n$ matrix, then

$$rk(A) = rk(A^T)$$

$$r le (A) = din (col (A)) \implies$$

 $r le (A^T) = din (col (A^T)) = din (row (A))$

We will sketch the proof that $\dim(col(A)) \leq \dim(row(A))$.

We will sketch the proof that $\dim(\operatorname{col}(A)) \leq \dim(\operatorname{row}(A))$. To prove equality, it then is enough to replace A with A^{T} .

$$(n \quad \text{purticular} \quad \text{this} \quad \text{sharps} \quad \text{that} \\ d(m(raw(h))) = d(m(co)(ATI)) = d(m(raw(AT))) = d(m(co)(A)) \\ \text{now} \quad | \quad \text{hare} \quad d(m(co)(A)) \leq d(m(raw(A))) \leq d(m(co)(A)) \\ \text{So} \quad \text{they} \quad \text{nest} \quad \text{be} \quad \text{equal}$$

We will sketch the proof that $\dim(col(A)) \leq \dim(row(A))$. To prove equality, it then is enough to replace A with A^T .

Let A be an $m \times n$ matrix. Then we know that col(A) is a subspace of \mathbb{R}^m and so $dim(col(A)) \leq m$.

We will sketch the proof that $\dim(\operatorname{col}(A)) \leq \dim(\operatorname{row}(A))$. To prove equality, it then is enough to replace A with A^{T} .

Let A be an $m \times n$ matrix. Then we know that col(A) is a subspace of \mathbb{R}^m and so $dim(col(A)) \leq m$.

Moreover, we know that row(A) is a subspace of \mathbb{R}^n spanned by m vectors and so dim $(row(A)) \leq m$.

$$A = \begin{bmatrix} r_1 \\ r_2 \\ r_1 \end{bmatrix}$$

We will sketch the proof that $\dim(col(A)) \leq \dim(row(A))$. To prove equality, it then is enough to replace A with A^T .

Let A be an $m \times n$ matrix. Then we know that col(A) is a subspace of \mathbb{R}^m and so $dim(col(A)) \leq m$.

Moreover, we know that row(A) is a subspace of \mathbb{R}^n spanned by m vectors and so $dim(row(A)) \leq m$. If dim(row(A)) = m, then we get that $dim(col(A)) \leq dim(row(A))$.

We will sketch the proof that $\dim(col(A)) \leq \dim(row(A))$. To prove equality, it then is enough to replace A with A^T .

Let A be an $m \times n$ matrix. Then we know that col(A) is a subspace of \mathbb{R}^m and so $dim(col(A)) \leq m$.

Moreover, we know that row(A) is a subspace of \mathbb{R}^n spanned by m vectors and so $dim(row(A)) \leq m$. If dim(row(A)) = m, then we get that $dim(col(A)) \leq dim(row(A))$.

If dim(row(A)) < m, then one row of A must be written as a linear combination of the rest. That is, there exists c_1, \ldots, c_{m-1} such that

$$\vec{r}_m = c_1 \vec{r}_1 + \cdots + c_{m-1} \vec{r}_{m-1}$$

Sketch of Proof 2

We have

$$\vec{r}_m = c_1 \vec{r_1} + \cdots + c_{m-1} \vec{r}_{m-1}$$
We have

$$r_m = c_1 \vec{r_1} + \cdots + c_{m-1} \vec{r_{m-1}}$$

Looking at the j^{th} entry of the row vectors, we get

$$a_{m,j} = c_1 a_{1,j} + \cdots + c_{m-1} a_{m-1,j}$$

We have

$$\vec{r}_m = c_1 \vec{r}_1 + \cdots + c_{m-1} \vec{r}_{m-1}$$

Looking at the j^{th} entry of the row vectors, we get

$$a_{m,j} = c_1 a_{1,j} + \cdots + c_{m-1} a_{m-1,j}$$

and so each column vector

$$\vec{c}_j = \begin{bmatrix} a_{1,j} \\ \vdots \\ a_{m_j} \end{bmatrix}$$

We have

$$\vec{r}_m = c_1 \vec{r}_1 + \cdots + c_{m-1} \vec{r}_{m-1}$$

Looking at the j^{th} entry of the row vectors, we get

$$a_{m,j}=c_1a_{1,j}+\cdots+c_{m-1}a_{m-1,j}$$

and so each column vector

$$\vec{c}_{j} = \begin{bmatrix} a_{1,j} \\ \vdots \\ a_{m,j} \end{bmatrix} = c_{1} \begin{bmatrix} a_{1,j} \\ \vdots \\ a_{1,j} \end{bmatrix} + \dots + c_{m-1} \begin{bmatrix} a_{1,j} \\ \vdots \\ a_{m-1,j} \end{bmatrix}$$

We have

$$\vec{r}_m = c_1 \vec{r}_1 + \cdots + c_{m-1} \vec{r}_{m-1}$$

Looking at the j^{th} entry of the row vectors, we get

$$a_{m,j}=c_1a_{1,j}+\cdots+c_{m-1}a_{m-1,j}$$

and so each column vector

$$\vec{c}_{j} = \begin{bmatrix} a_{1,j} \\ \vdots \\ a_{m,j} \end{bmatrix} = c_{1} \begin{bmatrix} a_{1,j} \\ \vdots \\ a_{1,j} \end{bmatrix} + \dots + c_{m-1} \begin{bmatrix} a_{1,j} \\ \vdots \\ a_{m-1,j} \end{bmatrix}$$

can be written as a linear combination of m-1 vectors and so $\dim(\operatorname{col}(A)) \leq m-1$.

We have

$$\vec{r}_m = c_1 \vec{r}_1 + \cdots + c_{m-1} \vec{r}_{m-1}$$

Looking at the j^{th} entry of the row vectors, we get

$$a_{m,j}=c_1a_{1,j}+\cdots+c_{m-1}a_{m-1,j}$$

and so each column vector

$$\vec{c}_{j} = \begin{bmatrix} a_{1,j} \\ \vdots \\ a_{m,j} \end{bmatrix} = c_{1} \begin{bmatrix} a_{1,j} \\ \vdots \\ a_{1,j} \end{bmatrix} + \dots + c_{m-1} \begin{bmatrix} a_{1,j} \\ \vdots \\ a_{m-1,j} \end{bmatrix}$$

can be written as a linear combination of m-1 vectors and so $\dim(\operatorname{col}(A)) \leq m-1$.

If A is an $m \times n$ matrix, then A^T is an $n \times m$ matrix and so applying the dimension and rank theorems to A^T we get

$$\mathfrak{m} = \mathsf{rk}(A^T) + \mathsf{nullity}(A^T)$$

If A is an $m \times n$ matrix, then A^T is an $n \times m$ matrix and so applying the dimension and rank theorems to A^T we get

$$m = \mathsf{rk}(A^{\mathsf{T}}) + \mathsf{nullity}(A^{\mathsf{T}}) = \mathsf{rk}(A) + \mathsf{nullity}(A^{\mathsf{T}})$$

If A is an $m \times n$ matrix, then A^T is an $n \times m$ matrix and so applying the dimension and rank theorems to A^T we get

$$m = \mathsf{rk}(A^{\mathcal{T}}) + \mathsf{nullity}(A^{\mathcal{T}}) = \mathsf{rk}(A) + \mathsf{nullity}(A^{\mathcal{T}})$$

Therefore, knowing the rank of the matrix immediately tells us the dimensions of these four funadmental spaces of a matrix.

If A is an $m \times n$ matrix, then A^T is an $n \times m$ matrix and so applying the dimension and rank theorems to A^T we get

$$m = \mathsf{rk}(A^{\mathcal{T}}) + \mathsf{nullity}(A^{\mathcal{T}}) = \mathsf{rk}(A) + \mathsf{nullity}(A^{\mathcal{T}})$$

Therefore, knowing the rank of the matrix immediately tells us the dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an $m \times n$ matrix with rank k, then

 $\dim(\mathit{row}(A)) = k$

If A is an $m \times n$ matrix, then A^T is an $n \times m$ matrix and so applying the dimension and rank theorems to A^T we get

$$m = \mathsf{rk}(A^{\mathcal{T}}) + \mathsf{nullity}(A^{\mathcal{T}}) = \mathsf{rk}(A) + \mathsf{nullity}(A^{\mathcal{T}})$$

Therefore, knowing the rank of the matrix immediately tells us the dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an $m \times n$ matrix with rank k, then

 $\dim(row(A)) = k \qquad \qquad \dim(null(A)) = n - k$

If A is an $m \times n$ matrix, then A^T is an $n \times m$ matrix and so applying the dimension and rank theorems to A^T we get

$$m = \mathsf{rk}(A^{\mathcal{T}}) + \mathsf{nullity}(A^{\mathcal{T}}) = \mathsf{rk}(A) + \mathsf{nullity}(A^{\mathcal{T}})$$

Therefore, knowing the rank of the matrix immediately tells us the dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an $m \times n$ matrix with rank k, then

 $\dim(row(A)) = k \qquad \qquad \dim(null(A)) = n - k$

$$\dim(\mathit{col}(A)) = k$$

If A is an $m \times n$ matrix, then A^T is an $n \times m$ matrix and so applying the dimension and rank theorems to A^T we get

$$m = \mathsf{rk}(A^{\mathcal{T}}) + \mathsf{nullity}(A^{\mathcal{T}}) = \mathsf{rk}(A) + \mathsf{nullity}(A^{\mathcal{T}})$$

Therefore, knowing the rank of the matrix immediately tells us the dimensions of these four funadmental spaces of a matrix.

Theorem

If A is an $m \times n$ matrix with rank k, then

 $\dim(row(A)) = k \qquad \qquad \dim(null(A)) = n - k$

 $\dim(col(A)) = k \qquad \dim(null(A^T)) = m - k$

Consistency and Rank

Theorem

If $A\vec{x} = \vec{b}$ is a linear system of *m* equations in *n* unknowns, then the following statements are equivalent

- $A\vec{x} = \vec{b}$
- 2 \vec{b} is in the column space of A
- The coefficient matrix A and the augmented matrix (A|b) have the same rank.

Full Rank

Definition

An $m \times n$ is said to have **full column rank** is its column vectors are linearly independent

Full Rank

Definition

An $m \times n$ is said to have **full column rank** is its column vectors are linearly independent and it is said to have **full row rank** if its row vectors are linearly independent.

Full Rank

Definition

An $m \times n$ is said to have **full column rank** is its column vectors are linearly independent and it is said to have **full row rank** if its row vectors are linearly independent.

Theorem

Let A be an $m \times n$ matrix.

- A has full column rank if and only if the column vectors form a basis for the column space if and only if rk(A) = n
- A has full row rank if and only if the row vectors form a basis for the row space if and only if rk(A) = m

Full Column Rank and Solutions

Theorem

If A is an $m \times n$ matrix then the following are equivalent

- $A\vec{x} = 0$ has only the trivial solution
- **2** $A\vec{x} = \vec{b}$ has at most one solution for every $\vec{b} \in \mathbb{R}^m$
- 3 A has full column rank

Theorem

Let A be an $m \times n$ matrix.

- If m > n, then the system $A\vec{x} = \vec{b}$ is inconsistent for some vector \vec{b} in \mathbb{R}^m . This is called **overdetermined**.
- ② If m < n, then for every vector \vec{b} in \mathbb{R}^m the system $A\vec{x} = \vec{b}$ is either inconsistent or has infinitely many solutions. This is called **underdetermined**.

Theorem

Pivot Theorem The pivot columns of a nonzero matrix A for a basis for the column space of A.

Theorem

Pivot Theorem The pivot columns of a nonzero matrix A for a basis for the column space of A.

Example:

$$A = \begin{pmatrix} 7 & 1 & 9 & 6 \\ 5 & 3 & 11 & 2 \\ 7 & 2 & 11 & 5 \\ 7 & -2 & 3 & 9 \\ 0 & 1 & 2 & -1 \end{pmatrix}$$

Theorem

Pivot Theorem The pivot columns of a nonzero matrix A for a basis for the column space of A.

Example:

Theorem

Pivot Theorem The pivot columns of a nonzero matrix A for a basis for the column space of A.

Example:

And so a basis for the column space of A would be

$$\left\{ \begin{bmatrix} 7\\5\\7\\7\\7\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\2\\-2\\-2\\1 \end{bmatrix} \right\}$$

Algorithm for Finding Basis of col(A)

Algorithm for Finding Basis of col(A)

This allows us to create an algorithm for finding a basis for the span of vectors:

Let $W = \text{span}\{\vec{v_1}, \ldots, \vec{v_k}\}$ then:

- Let $W = \text{span}\{\vec{v_1}, \dots, \vec{v_k}\}$ then:
 - Form the matrix A whose columns are $\vec{v_1}, \ldots, \vec{v_k}$

- Let $W = \text{span}\{\vec{v_1}, \dots, \vec{v_k}\}$ then:
 - Form the matrix A whose columns are $\vec{v}_1, \ldots, \vec{v}_k$
 - **2** Reduce the matrix A to row echelon form.

- Let $W = \text{span}\{\vec{v_1}, \dots, \vec{v_k}\}$ then:
 - Form the matrix A whose columns are $\vec{v}_1, \ldots, \vec{v}_k$
 - **2** Reduce the matrix A to row echelon form.
 - The columns with the leading ones will correspond to vectors in the basis.

- Let $W = \text{span}\{\vec{v_1}, \dots, \vec{v_k}\}$ then:
 - Form the matrix A whose columns are $\vec{v}_1, \ldots, \vec{v}_k$
 - **2** Reduce the matrix A to row echelon form.
 - The columns with the leading ones will correspond to vectors in the basis.
 - To find the other vectors as a linear combination of your basis, reduce A further to RREF.

- Let $W = \text{span}\{\vec{v_1}, \dots, \vec{v_k}\}$ then:
 - Form the matrix A whose columns are $\vec{v}_1, \ldots, \vec{v}_k$
 - **2** Reduce the matrix A to row echelon form.
 - The columns with the leading ones will correspond to vectors in the basis.
 - To find the other vectors as a linear combination of your basis, reduce A further to RREF.

See example in the slides of last lecture.

() The non-zero rows of the REF of A form a basis for row(A)

- **1** The non-zero rows of the REF of A form a basis for row(A)
- **②** The pivot columns of the REF of A correspond to a basis for col(A)

- **1** The non-zero rows of the REF of A form a basis for row(A)
- Interpretation of the REF of A correspond to a basis for col(A)
- The canonical solutions to $A\vec{x} = \vec{0}$ can readily be seen from $R\vec{x} = 0$ where *R* is the RREF of *A*. Moreover, these form a basis for null(*A*).

- **1** The non-zero rows of the REF of A form a basis for row(A)
- Interpretation of the REF of A correspond to a basis for col(A)
- The canonical solutions to $A\vec{x} = \vec{0}$ can readily be seen from $R\vec{x} = 0$ where *R* is the RREF of *A*. Moreover, these form a basis for null(*A*).

The last remaining fundamental space of a matrix is $null(A^T)$. This can also be determined by find the REF.

If A is an $m \times n$ matrix, then the following procedure produces a basis for null(A^{T}).

If A is an $m \times n$ matrix, then the following procedure produces a basis for null(A^{T}).

• Adjoin the $m \times m$ identity matrix I_m to A to create the augmented matrix $(A|I_m)$
If A is an $m \times n$ matrix, then the following procedure produces a basis for null(A^{T}).

- Adjoin the m × m identity matrix I_m to A to create the augmented matrix (A|I_m)
- **2** Row reduce $(A|I_m)$ to (U|E) where U is the REF of A

If A is an $m \times n$ matrix, then the following procedure produces a basis for null(A^{T}).

- Adjoin the m × m identity matrix I_m to A to create the augmented matrix (A|I_m)
- **2** Row reduce $(A|I_m)$ to (U|E) where U is the REF of A
- We know that U may have some rows of zeroes. So repartition (U|E) into $\begin{pmatrix} V & E_1 \\ 0 & E_2 \end{pmatrix}$

If A is an $m \times n$ matrix, then the following procedure produces a basis for null(A^{T}).

- Adjoin the m × m identity matrix I_m to A to create the augmented matrix (A|I_m)
- **2** Row reduce $(A|I_m)$ to (U|E) where U is the REF of A
- We know that U may have some rows of zeroes. So repartition (U|E)into $\begin{pmatrix} V & E_1 \\ 0 & E_2 \end{pmatrix}$
- The row vectors of E_2 now form a basis for null(A^T).

Example

Find null(A^T) for

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & 4 & 2 & -5 & -4 \end{bmatrix}$$

Example

Find null(A^{T}) for

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & 4 & 2 & -5 & -4 \end{bmatrix}$$

Step 1: Adjoin I_4 to A:

 $(A|I_4)$

Example

Find null(A^{T}) for

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & 4 & 2 & -5 & -4 \end{bmatrix}$$

Step 1: Adjoin I₄ to A:

$$(A|I_4) = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\ 2 & -6 & 9 & -1 & 8 & 2 & 0 & 1 & 0 & 0 \\ 2 & -6 & 9 & -1 & 9 & 7 & 0 & 0 & 1 & 0 \\ -1 & 3 & 4 & 2 & -5 & -4 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Example Continued

Step 2: Row reduce A to REF

$$(U|E) = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & -2 & 6 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 5 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Step 2: Row reduce A to REF

$$(U|E) = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & -2 & 6 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 5 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Step 3: Repartition it into

$$\begin{pmatrix} V & | & E_1 \\ 0 & | & E_2 \end{pmatrix} = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & -2 & 6 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 5 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Step 2: Row reduce A to REF

$$(U|E) = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & -2 & 6 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 5 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Step 3: Repartition it into

$$\begin{pmatrix} V & | & E_1 \\ 0 & | & E_2 \end{pmatrix} = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & -2 & 6 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 5 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Hence, we see that $\{(1, 0, 0, 1)\}$ is a basis for null (A^T) .