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Topics for Today

@ Bases and Dimension
@ Building Bases out of Linearly Independent Sets
© Building Bases out of Spanning Sets
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Recollections
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Recollections

For any set of vectors vi, ..., Vi, we define

span{\71,...,\7k}:{t1\71+---+tk\7k:tl,...,tkeR}.
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Recollections

For any set of vectors vi, ..., Vi, we define
span{vi,..., Vi) = {tiVi + -+ tyVi o t1,..., t € R}
For any vector space, V, we say that {vq,..., Vk} is a spanning set of V if

V =span{w,..., vk}

Patrick Meisner (KTH) Lecture 12 3/25
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For any set of vectors vi, ..., Vi, we define

span{\71,...,\7k}:{t1\71+---+tk\7k:tl,...,tkeR}.

For any vector space, V, we say that {vq,..., Vk} is a spanning set of V if

V =span{w,..., vk}

We may also say that the set of {V},..., vk} spans V.
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Recollections

For any set of vectors vi, ..., Vi, we define
span{vi,..., Vi) = {tiVi + -+ tyVi o t1,..., t € R}
For any vector space, V, we say that {vq,..., Vk} is a spanning set of V if

V =span{w,..., vk}
We may also say that the set of {V},..., vk} spans V.

Moreover, we say that vi, ..., Vi are linearly independent if none of the
vectors can be written as a linear combination of the others
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Recollections

For any set of vectors Vi, ..., Vi, we define
span{vi,..., Vi) = {tiVi + -+ tyVi o t1,..., t € R}
For any vector space, V, we say that {vq,..., Vk} is a spanning set of V if

V =span{w,..., vk}
We may also say that the set of {V},..., vk} spans V.

Moreover, we say that vi, ..., Vi are linearly independent if none of the
vectors can be written as a linear combination of the others

Finally, we know this is equivalent to saying that every vector in the span
of Vi,..., Vi can be written uniquely as a linear combination of the ;.
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Definition

We say that a set of vectors {Vi,..., Vk} is a basis for a vector space V if
it is linearly independent and spans V.
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Definition

We say that a set of vectors {Vi,..., Vk} is a basis for a vector space V if
it is linearly independent and spans V.

That is, a set of vectors is a basis for a vector space if everyvector in the
space can be written uniquely as a linear combination of the vectors.
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Definition

We say that a set of vectors {Vi,..., Vk} is a basis for a vector space V if
it is linearly independent and spans V.

That is, a set of vectors is a basis for a vector space if every vector in the
space can be written uniquely as a linear combination of the vectors.

Example:
1 0 0
of,|1],]0 is a basis for R3
0 0 1
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Definition

We say that a set of vectors {Vi,..., Vk} is a basis for a vector space V if
it is linearly independent and spans V.

That is, a set of vectors is a basis for a vector space if every vector in the
space can be written uniquely as a linear combination of the vectors.

Example:
[17 [0] [O]
' of,|1],]0 is a basis for R3 ===
%\fe/‘of S - _O_ _O_ _1_
Qow K (1] [4] [7]
(s o LA & 21,1(5],18 is a basis for R3 —_—
3 6 9
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Existence of Bases

If V' is a non-zero subspace of Kthen V has a basis consisting of fewer
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From Linearly Independent Set to Basis

We saw in the proof that if we have a set of linearly independent vectors,

then we can systematically add in vectors that are not already in the span
to form a basis.
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From Linearly Independent Set to Basis

We saw in the proof that if we have a set of linearly independent vectors,

then we can systematically add in vectors that are not already in the span
to form a basis.

Exercise

Expand the set of vectors
1 5
2 6
37 |7
4 8
to a basis for R* )
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From Linearly Independent Set to Basis

We saw in the proof that if we have a set of linearly independent vectors,

then we can systematically add in vectors that are not already in the span
to form a basis.

Exercise

Expand the set of vectors

0 N o o

to a basis for R*

v

First, we note that the two vectors are linearly independent so this is good.
So, we need to find a vector that is not in the span.
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From Linearly Independent Set to Basis 2

A vector b will be in the span if and only if there is a t7, t» such that

1 5 b1
2 6

t 3 + b 7 = Z
4 8 by
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From Linearly Independent Set to Basis 2

A vector b will be in the span if and only if there is a t7, t» such that

by
b
bs
by

1 5
2 6
t1 3 + b 7
4 8

—,

if and only the augmented matrix (A|b) is consistent where the columns of
A are the vectors of our set.

Patrick Meisner (KTH) Lecture 12 7/25



From Linearly Independent Set to Basis 2

A vector b will be in the span if and only if there is a t7, t» such that

by
b
bs
by

1 5
2 6
|, +t 7
4 8
if and only the augmented matrix (A|b) is consistent where the columns of

A are the vectors of our set. Partially row reducing the augmented matrix
we find

E OO RN Ol
0 N O O
&
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From Linearly Independent Set to Basis 2

A vector b will be in the span if and only if there is a t7, t» such that

by
b
bs
ba

1 5

2 6
t1 3 + b 71 =
4 8

if and only the augmented matrix (A|b) is consistent where the columns of
A are the vectors of our set. Partially row reducing the augmented matrix

we find s E

by 1 s by
Swch,  TH
by 0 —4| by—2b S
>

by O | bs—3b+2b1) =5 °°
_——t

E OO RN Ol
0 N O O
&
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From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some b such
that either bs — 2by + by # 0 or by — 3by + 2b; # 0.
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From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some b such
that either bs — 2by 4+ by # 0 or by — 3by + 2b; # 0. So any of

9
10
11
13

b=
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From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some b such
that either bs — 2by 4+ by # 0 or by — 3by + 2b; # 0. So any of

9 2
- |10 9
b=111] o |4
13 5
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From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some b such
that either bs — 2by 4+ by # 0 or by — 3by + 2b; # 0. So any of

9 2 0
E = 10 or 9 or 0
11 4 1
13 5 0
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From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some b such
that either bs — 2by 4+ by # 0 or by — 3by + 2b; # 0. So any of

9 2 0 1
E = 10 or 9 or 0 or 0
11 4 1 0
13 5 0 0
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From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some b such
that either bs — 2by 4+ by # 0 or by — 3by + 2b; # 0. So any of

9 2 0 1 9
b= 10 or 9 or 0 or 0 but not |

11 4 1 0 11

13 5 0 0 12
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From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some b such
that either bs — 2by 4+ by # 0 or by — 3by + 2b; # 0. So any of

9 2 0 1 9
= 10 9 0 0 10
b= 1] © {a] ° 1] © 0 but not 1
13 5 0 0 12
Do the same process but now with the set
1 5 2
2 6 9
3(717]7 |4
4 8 5
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From Linearly Independent Set to Basis 3

RiJ T
] ) P E
e see that, for example Sb @—( b 5

0 17 [5] [2 IS pob

1 2| |6] |9 Qs feaf
of #Pnq I3]{7] " |4

0 4| |8] |5
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From Linearly Independent Set to Basis 3

We see that, for example

0
é ¢ span
0
And so
1
2
3 b
4

is a linearly independent set.
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From Linearly Independent Set to Basis 4

Finally, we see that since the columns are linearly independent, the matrix

A W NN
0O N O O
bk ON

O O = O

is invertible.
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From Linearly Independent Set to Basis 4

Finally, we see that since the columns are linearly independent, the matrix

A W NN
0O N O O
bk ON

O O = O

is invertible. Therefore, for ever be R?, there is a solution to AX = b.
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From Linearly Independent Set to Basis 4

Finally, we see that since the columns are linearly independent, the matrix

A W NN
0 N O O
1B ODN
O O = O

is invertible. Therefore, for ever be R?, there is a solution to AX = b. In
other words every vector in R* can be written as a linear combination of
the vectors and so

5 2 0
6 9 1
) 7 ) 4 Y 0
8 5 0

A W N

spans R* and is a basis.
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From Spanning Set to Basis

We can also go backwards. Suppose we have a linearly dependent set of

vectors. Then we can systemically remove them to find a basis for the
span of the vectors.
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From Spanning Set to Basis

We can also go backwards. Suppose we have a linearly dependent set of
vectors. Then we can systemically remove them to find a basis for the
span of the vectors.

Exercise

Find a basis for the subspace of R® given by AWM
7 1 JYJC@ VLC\L‘VSPOQMQ
5 3 R (W i
\f-.a span{ |7, 2|, & Ao S
7 -2 = 42 ,
0 1
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From Spanning Set to Basis

We can also go backwards. Suppose we have a linearly dependent set of

vectors. Then we can systemically remove them to find a basis for the
span of the vectors.

Exercise

Find a basis for the subspace of R® given by

7 1 9 6
5 3 11 2
span T, 21|,|11],] 5
7 -2 3 9
0 1 2 1

First we check to see if they are linearly independent

Patrick Meisner (KTH) Lecture 12

11/25



From Spanning Set to Basis 2

To do this, we put the vectors in a matrix and row reduce

7 1 9 6
5 3 11 2
7 2 11 5
7 -2 3 9
o 1 2 -1
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From Spanning Set to Basis 2

To do this, we put the vectors in a matrix and row reduce

7 1 9 6 101 1
5 3 11 2 012 -1
7 2 11 5 = |0 0 0 O
7 -2 3 9 0 00 O
0o 1 2 -1 000 O
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From Spanning Set to Basis 2

To do this, we put the vectors in a matrix and row reduce

-ﬁ
7 1 9 6 101 1\[g -
5 3 11 2 012 -1||¢/_|e
7 2 11 5 =1]000 0||c o
7 -2 3 9 000 0 ) _
01 2 -1 000 o)L™ o

Hence, we see that

1 —t—->s
C —2t+s
2| = *
Cc3 t
Cy4 S
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From Spanning Set to Basis 2

To do this, we put the vectors in a matrix and row reduce

7 1 9 6 1 01 1
5 3 11 2 01 2 -1
7 2 11 5 — (0 0 0 O
7 -2 3 9 000 O
0o 1 2 -1 000 O
Hence, we see that
o P 7 1 9 6
&) —2t+s > 3 1 2 ~
e = ¢ — q|l|+ol| 2|+ |1l 4+ | 5| =0
a < 7 -2 3 9
0 1 2 -1
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From Spanning Set to Basis 3

Settingt=1,s=0wegetcg=-1, o =-2,c3=1, ¢4 =0 and
9 7 1
11 5 3
11| =7 +2| 2
3 7 -2
2 0 1
\J\} = \}\ ;: 5\\/\\
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From Spanning Set to Basis 3

Settingt=1,s=0wegetci =-1, o =-2,c3=1, ¢ =0 and
9 7 1
11 5 3
11| =71 +2] 2
3 7 -2
2 0 1
I S TS

Hence, we may remove this vector without affecting the span.
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From Spanning Set to Basis 3

Settingt=1,s=0wegetci =-1, o =-2,c3=1, ¢ =0 and
9 7 1
5 3
= |7 +2]| 2
7 -2
2 0 1
Hence, we may remove this vector without affecting the span. Further,
settingt=0ands=1,wegetcg=-1, =1, c3=0, ¢4 =0 and so
6 7 1
2 5 3
51 =17 -1 2
9 7 -2
-1 0 1
- — ~\
W = Ve — vy
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From Spanning Set to Basis 3

Settingt=1,s=0wegetci =-1, o =-2,c3=1, ¢ =0 and
(o W g B vomredly

9 7 1
b b 11 5 3
Sy el bobeno 11| = |7| +2] 2
FHs ore \nea Jepordie 3 7 5
Sk b2 bz, 4 - e 2 0 1
girs oot ond pon, V> T U <« >V
Hence, we may remove this vector without affecting the span. Further,
settingt=0ands=1,wegetcg=-1, =1, c3=0, ¢4 =0 and so
6 7 1 S can
2 5 3 fEouw v Ly
5(0=17-12 . “
biflet Aoy,
9 7 — He g
-1 0 1 <P
(/\c( - v, — VA
Hence we may remove this vector as well.
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From Spanning Set to Basis 4

Thus we may conclude that

7 1 9 6 7 1

5 3 11 2 5 3 \)
\J= spanq |7|, | 2|, |11}, |5 =span{ [7],| 2 =

7 -2 3 9 7 -2

0 1 2 -1 0 1
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From Spanning Set to Basis 4

vep’®
Thus we may conclude that SJ
7 1 9 6 7 1
5 3 11 2 5 3
span T\, 21|,[11|,] 5 = span 7,1 2 =V
7 -2 3 9 7 -2
0 1 2 -1 0 1

Moreover, the latter two are linearly independent and so form a basis.
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Let V be a subspace of R". Then if {vi,...,Vi} and {w,..., Wn} are two
bases for V then k = m. That is, the size of the basis is always the same.

S\é@l‘d\ c/g— QQ\OCX— " Vi, - VK@V"/ SW’\(V/‘“,_ \A/n,,)
e ¢ 87
Vs G Wk R A ey A AN e o
s Uy b G W -
4 |

\f% = Y W & 72 E2NTS

(8) -3 = SR
[dm;?%g -
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Dimension

Definition

For any subspace V of R”, we define the dimension of V' to be the
number of vectors in any basis. We typically denote it dim(V/).
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Dimension

Definition

For any subspace V of R”, we define the dimension of V' to be the
number of vectors in any basis. We typically denote it dim(V/).

Examples:

dim(R") = n since €, ..., €, always forms a basis
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Dimension

Definition

For any subspace V of R”, we define the dimension of V' to be the
number of vectors in any basis. We typically denote it dim(V/).

Examples:
dim(R") = n since €, ..., €, always forms a basis
If V =span{v,...,Vk}, then dim(V) < k. If the Vi, ...,V are linearly

independent then dim(V) = k.
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Dimension

Definition

For any subspace V of R”, we define the dimension of V' to be the
number of vectors in any basis. We typically denote it dim(V/).

Examples:
dim(R") = n since €, ..., €, always forms a basis
If V =span{v,...,Vk}, then dim(V) < k. If the Vi, ...,V are linearly

independent then dim(V) = k.

If Lis a line, then dim(L) =1, since L = {tV: t € R} = span{v}.

Patrick Meisner (KTH) Lecture 12 16 /25



Dimension

Definition

For any subspace V of R”, we define the dimension of V' to be the
number of vectors in any basis. We typically denote it dim(V/).

Examples:
dim(R") = n since €, ..., €, always forms a basis
If V =span{v,...,Vk}, then dim(V) < k. If the Vi, ...,V are linearly

independent then dim(V) = k.
If Lis a line, then dim(L) =1, since L = {tV: t € R} = span{v}.

Similarly, if P is a plane, then dim(P) = 2.
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Basis for the Zero-Subspace

What is the basis for the zero-subspace, V = {0}?
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Basis for the Zero-Subspace

What is the basis for the zero-subspace, V = {6}7 First, we need a
spanning set of vectors for {0}:

V = span{0}

Patrick Meisner (KTH) Lecture 12 17 /25



Basis for the Zero-Subspace

What is the basis for the zero-subspace, V = {6}7 First, we need a
spanning set of vectors for {0}:

V = span{0}

However, we have already seen that no set involving 0 can be linearly
independent.
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Basis for the Zero-Subspace

What is the basis for the zero-subspace, V = {6}7 First, we need a
spanning set of vectors for {0}:

V = span{0}

However, we have already seen that no set involving 0 can be linearly
independent. So the set {0} is not a basis for the zero-subspace.
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Basis for the Zero-Subspace

What is the basis for the zero-subspace, V = {6}7 First, we need a
spanning set of vectors for {0}:

V = span{0}

However, we have already seen that no set involving 0 can be linearly
independent. So the set {0} is not a basis for the zero-subspace.

As we saw, if we have a linearly dependent spanning set, we can remove
some vectors and get a linearly independent spanning set, i.e. a basis.

Patrick Meisner (KTH) Lecture 12 17 /25



Basis for the Zero-Subspace

What is the basis for the zero-subspace, V = {6}7 First, we need a
spanning set of vectors for {0}:

V = span{0}

However, we have already seen that no set involving 0 can be linearly
independent. So the set {0} is not a basis for the zero-subspace.

As we saw, if we have a linearly dependent spanning set, we can remove
some vectors and get a linearly independent spanning set, i.e. a basis.

So, what can we remove from the spanning set {0} and what is left?
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Basis for the Zero-Subspace

What is the basis for the zero-subspace, V = {6}7 First, we need a
spanning set of vectors for {0}:

V = span{0}

However, we have already seen that no set involving 0 can be linearly
independent. So the set {0} is not a basis for the zero-subspace.

As we saw, if we have a linearly dependent spanning set, we can remove
some vectors and get a linearly independent spanning set, i.e. a basis.

So, what can we remove from the spanning set {0} and what is left? We
remove {0} and we are left with the empty set (.
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Basis for the Zero-Subspace

What is the basis for the zero-subspace, V = {6}7 First, we need a
spanning set of vectors for {0}:

V = span{0}

However, we have already seen that no set involving 0 can be linearly
independent. So the set {0} is not a basis for the zero-subspace.

As we saw, if we have a linearly dependent spanning set, we can remove
some vectors and get a linearly independent spanning set, i.e. a basis.

So, what can we remove from the spanning set {0} and what is left? We
remove {0} and we are left with the empty set (.

Definition

The basis of the zero subspace is the empty set.
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Dimension of Zero Subspace

What is the dimension of the zero subspace?
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Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any
subspace is the size of it's basis.
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Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any

subspace is the size of it's basis. And we have just determined that the
basis for the zero-space is the empty set ().
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Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any

subspace is the size of it's basis. And we have just determined that the
basis for the zero-space is the empty set ().

So, what is the size of the empty set?
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Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any

subspace is the size of it's basis. And we have just determined that the
basis for the zero-space is the empty set ().

So, what is the size of the empty set? 0
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Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any
subspace is the size of it's basis. And we have just determined that the
basis for the zero-space is the empty set ().

So, what is the size of the empty set? 0

Definition

dim({0}) =0
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Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any
subspace is the size of it's basis. And we have just determined that the
basis for the zero-space is the empty set ().

So, what is the size of the empty set? 0

dim({0}) =0

Theorem

If V is a subspace of R" then dim(V) = 0 if and only if V is the zero
subspace.
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Dimension of Null Space

Recall that to find the subspace of homogeneous solutions (or null space)
of a matrix A, we use Gauss-Jordan elimination and then find vectors so
that the solution space is of the form span{vi,..., Vk} where k is the

number of free variables.

al (= 7 X A_;tgﬁj

< *x

o“( A @’{ZE@ | ; ! »
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Dimension of Null Space

Recall that to find the subspace of homogeneous solutions (or null space)
of a matrix A, we use Gauss-Jordan elimination and then find vectors so
that the solution space is of the form span{vi,..., Vk} where k is the

number of free variables.

Show that if we obtain these vectors from the RREF of A, then they are

linearly independent.
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Dimension of Null Space

Recall that to find the subspace of homogeneous solutions (or null space)
of a matrix A, we use Gauss-Jordan elimination and then find vectors so
that the solution space is of the form span{vi,..., Vk} where k is the
number of free variables.

Show that if we obtain these vectors from the RREF of A, then they are
linearly independent.

Therefore, we can conclude that {vi,..., Vk} is a basis for the null space
of A
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Dimension of Null Space

Recall that to find the subspace of homogeneous solutions (or null space)
of a matrix A, we use Gauss-Jordan elimination and then find vectors so
that the solution space is of the form span{vi,..., Vk} where k is the
number of free variables.

Show that if we obtain these vectors from the RREF of A, then they are
linearly independent.

Therefore, we can conclude that {vi,..., Vk} is a basis for the null space
of A and hence

dim(null(A)) = k = number of free of variables = Me(4
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Dimension of Null Space

Recall that to find the subspace of homogeneous solutions (or null space)
of a matrix A, we use Gauss-Jordan elimination and then find vectors so
that the solution space is of the form span{vi,..., Vk} where k is the
number of free variables.

Show that if we obtain these vectors from the RREF of A, then they are
linearly independent.

Therefore, we can conclude that {vi,..., Vk} is a basis for the null space
of A and hence

dim(null(A)) = k = number of free of variables > t4(4)

Moreover, if Vi,..., Vi are obtained from the RREF of A, then we call this
the canonical basis for the null space of A.
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Maximal Linear Independence

If V is a non-zero subspace of R", then dim(V) is the maximum number
of linearly independent vectors in V.

Recall, we already showed that any set of strictly more than n vectors in
R"” will be linearly dependent. This is due to the fact that dim(R") = n.
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Subsapces and Dimensions

Let V and W be subspaces of R". If V' is a subspace of W, then

Q 0 <dim(V) <dim(W) <n Wac 1p o font
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Theorem

Let V be a &dimensional subspace of R"
© Any set of k linearly independent vectors of V is a basis for V (in
particular, they span V)
@ Any set of k vectors that span V is a basis for V (in particular, they
are linearly independent)
Any set of strictly fewer than k vectors of V' cannot span W |/

o
@ Any set of more than k vectors of V' cannot be linearly independent
7
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Corollary

Corollary

@ A set of n vectors in R" is linearly independent if and only if they are
a basis for R"
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Corollary

Corollary

@ A set of n vectors in R" is linearly independent if and only if they are
a basis for R"

@ A set of n vectors in R" spans R" if and only if they are a basis for R"

© A set of n vectors in R" is linearly independent if and only if they
span R"

Proof.

Follows immediately from the previous theorem and the fact that
dim(R") = n. O
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Major Theorem

Let A be an n x n matrix. The the following are equivalent

Q@ AX = b has a unique solution
for every b

AX = 0 has a unique solution
rk(A) =n
The RREF of A is I,

A is invertible

© 0000

The columns of A are linearly
independent

[ <]

The rows of A are linearly
independent

Q det(A) #£0

© 0 is not an eigenvalue of A
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Major Theorem

Theorem

Let A be an n x n matrix. The the following are equivalent
© AX=b has a unique solution @ T, is invertible
for every b @ T, is one-to-one
@ AxX =0 has a unique solution @ T, is onto
Q rk(A)=n /\@ The columns of A span R"
Q The RREF of A'is I, @ The rows of A span R"
Q A is invertible @ The columns of A form a basis
@ The columns of A are linearly for R"
independent @ The rows of A form a basis for
@ The rows of A are linearly |/ R"
independent —_——=
@ det(A) £0
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