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Topics for Today

1 Bases and Dimension

2 Building Bases out of Linearly Independent Sets

3 Building Bases out of Spanning Sets
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Recollections

For any set of vectors ~v1, . . . , ~vk , we define

span{~v1, . . . , ~vk} = {t1~v1 + · · ·+ tk~vk : t1, . . . , tk ∈ R}.

For any vector space, V , we say that {~v1, . . . , ~vk} is a spanning set of V if

V = span{~v1, . . . , ~vk}

We may also say that the set of {~v1, . . . , ~vk} spans V .

Moreover, we say that ~v1, . . . , ~vk are linearly independent if none of the
vectors can be written as a linear combination of the others

Finally, we know this is equivalent to saying that every vector in the span
of ~v1, . . . , ~vk can be written uniquely as a linear combination of the ~vi .
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Basis

Definition

We say that a set of vectors {~v1, . . . , ~vk} is a basis for a vector space V if
it is linearly independent and spans V .

That is, a set of vectors is a basis for a vector space if every vector in the
space can be written uniquely as a linear combination of the vectors.

Example: 
1

0
0

 ,

0
1
0

 ,

0
0
1

 is a basis for R3


1

2
3

 ,

4
5
6

 ,

7
8
9

 is a basis for R3
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Existence of Bases

Theorem

If V is a non-zero subspace of Rn then V has a basis consisting of fewer
then n vectors.
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From Linearly Independent Set to Basis

We saw in the proof that if we have a set of linearly independent vectors,
then we can systematically add in vectors that are not already in the span
to form a basis.

Exercise

Expand the set of vectors 


1
2
3
4

 ,


5
6
7
8




to a basis for R4

First, we note that the two vectors are linearly independent so this is good.
So, we need to find a vector that is not in the span.
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From Linearly Independent Set to Basis 2

A vector ~b will be in the span if and only if there is a t1, t2 such that

t1


1
2
3
4

 + t2


5
6
7
8

 =


b1
b2
b3
b4



if and only the augmented matrix (A|~b) is consistent where the columns of
A are the vectors of our set. Partially row reducing the augmented matrix
we find 

1 5 b1
2 6 b2
3 7 b3
4 8 b4

 =⇒


1 5 b1
0 −4 b2 − 2b1
0 0 b3 − 2b2 + b1
0 0 b4 − 3b2 + 2b1


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From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some ~b such
that either b3 − 2b2 + b1 6= 0 or b4 − 3b2 + 2b1 6= 0.

So any of

~b =


9

10
11
13

 or


2
9
4
5

 or


0
0
1
0

 or


1
0
0
0

 but not


9

10
11
12


Do the same process but now with the set


1
2
3
4

 ,


5
6
7
8

 ,


2
9
4
5




.
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From Linearly Independent Set to Basis 3

We see that, for example
0
1
0
0

 6∈ span




1
2
3
4

 ,


5
6
7
8

 ,


2
9
4
5




And so 


1
2
3
4

 ,


5
6
7
8

 ,


2
9
4
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From Linearly Independent Set to Basis 4

Finally, we see that since the columns are linearly independent, the matrix

A =


1 5 2 0
2 6 9 1
3 7 4 0
4 8 5 0


is invertible.

Therefore, for ever ~b ∈ R4, there is a solution to A~x = ~b. In
other words every vector in R4 can be written as a linear combination of
the vectors and so 
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From Spanning Set to Basis

We can also go backwards. Suppose we have a linearly dependent set of
vectors. Then we can systemically remove them to find a basis for the
span of the vectors.

Exercise

Find a basis for the subspace of R5 given by

span




7
5
7
7
0

 ,


1
3
2
−2
1

 ,


9

11
11
3
2

 ,


6
2
5
9
−1




First we check to see if they are linearly independent

Patrick Meisner (KTH) Lecture 12 11 / 25



From Spanning Set to Basis

We can also go backwards. Suppose we have a linearly dependent set of
vectors. Then we can systemically remove them to find a basis for the
span of the vectors.

Exercise

Find a basis for the subspace of R5 given by

span




7
5
7
7
0

 ,


1
3
2
−2
1

 ,


9

11
11
3
2

 ,


6
2
5
9
−1




First we check to see if they are linearly independent

Patrick Meisner (KTH) Lecture 12 11 / 25



From Spanning Set to Basis

We can also go backwards. Suppose we have a linearly dependent set of
vectors. Then we can systemically remove them to find a basis for the
span of the vectors.

Exercise

Find a basis for the subspace of R5 given by

span




7
5
7
7
0

 ,


1
3
2
−2
1

 ,


9

11
11
3
2

 ,


6
2
5
9
−1




First we check to see if they are linearly independent

Patrick Meisner (KTH) Lecture 12 11 / 25



From Spanning Set to Basis 2

To do this, we put the vectors in a matrix and row reduce
7 1 9 6
5 3 11 2
7 2 11 5
7 −2 3 9
0 1 2 −1



=⇒


1 0 1 1
0 1 2 −1
0 0 0 0
0 0 0 0
0 0 0 0


Hence, we see that


c1
c2
c3
c4

 =


−t − s
−2t + s

t
s

 =⇒ c1


7
5
7
7
0

 + c2


1
3
2
−2
1

 + c3


9

11
11
3
2

 + c4


6
2
5
9
−1

 = ~0
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From Spanning Set to Basis 3

Setting t = 1, s = 0 we get c1 = −1, c2 = −2, c3 = 1, c4 = 0 and
9

11
11
3
2

 =


7
5
7
7
0

 + 2


1
3
2
−2
1



Hence, we may remove this vector without affecting the span. Further,
setting t = 0 and s = 1, we get c1 = −1, c2 = 1, c3 = 0, c4 = 0 and so

6
2
5
9
−1

 =


7
5
7
7
0

−


1
3
2
−2
1


Hence we may remove this vector as well.
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From Spanning Set to Basis 4

Thus we may conclude that

span




7
5
7
7
0

 ,


1
3
2
−2
1

 ,


9

11
11
3
2

 ,


6
2
5
9
−1


 = span




7
5
7
7
0
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
1
3
2
−2
1




Moreover, the latter two are linearly independent and so form a basis.
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Size of Basis

Theorem

Let V be a subspace of Rn. Then if {~v1, . . . , ~vk} and {~w1, . . . , ~wm} are two
bases for V then k = m. That is, the size of the basis is always the same.
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Dimension

Definition

For any subspace V of Rn, we define the dimension of V to be the
number of vectors in any basis. We typically denote it dim(V ).

Examples:

dim(Rn) = n since ~e1, . . . , ~en always forms a basis

If V = span{~v1, . . . , ~vk}, then dim(V ) ≤ k . If the ~v1, . . . , ~vk are linearly
independent then dim(V ) = k.

If L is a line, then dim(L) = 1, since L = {t~v : t ∈ R} = span{~v}.

Similarly, if P is a plane, then dim(P) = 2.
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independent then dim(V ) = k.

If L is a line, then dim(L) = 1, since L = {t~v : t ∈ R} = span{~v}.

Similarly, if P is a plane, then dim(P) = 2.
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Basis for the Zero-Subspace

What is the basis for the zero-subspace, V = {~0}?

First, we need a
spanning set of vectors for {~0}:

V = span{~0}

However, we have already seen that no set involving ~0 can be linearly
independent. So the set {~0} is not a basis for the zero-subspace.

As we saw, if we have a linearly dependent spanning set, we can remove
some vectors and get a linearly independent spanning set, i.e. a basis.

So, what can we remove from the spanning set {~0} and what is left? We
remove {~0} and we are left with the empty set ∅.

Definition

The basis of the zero subspace is the empty set.
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Dimension of Zero Subspace

What is the dimension of the zero subspace?

The dimension of any
subspace is the size of it’s basis. And we have just determined that the
basis for the zero-space is the empty set ∅.

So, what is the size of the empty set? 0

Definition

dim({~0}) = 0

Theorem

If V is a subspace of Rn then dim(V ) = 0 if and only if V is the zero
subspace.
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Dimension of Null Space

Recall that to find the subspace of homogeneous solutions (or null space)
of a matrix A, we use Gauss-Jordan elimination and then find vectors so
that the solution space is of the form span{~v1, . . . , ~vk} where k is the
number of free variables.

Exercise

Show that if we obtain these vectors from the RREF of A, then they are
linearly independent.

Therefore, we can conclude that {~v1, . . . , ~vk} is a basis for the null space
of A and hence

dim(null(A)) = k = number of free of variables

Moreover, if ~v1, . . . , ~vk are obtained from the RREF of A, then we call this
the canonical basis for the null space of A.
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Maximal Linear Independence

Theorem

If V is a non-zero subspace of Rn, then dim(V ) is the maximum number
of linearly independent vectors in V .

Recall, we already showed that any set of strictly more than n vectors in
Rn will be linearly dependent. This is due to the fact that dim(Rn) = n.
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Subsapces and Dimensions

Theorem

Let V and W be subspaces of Rn. If V is a subspace of W , then

1 0 ≤ dim(V ) ≤ dim(W ) ≤ n

2 V = W if and only if dim(V ) = dim(W ).
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Theorem

Theorem

Let V be a k-dimensional subspace of Rn

1 Any set of k linearly independent vectors of V is a basis for V (in
particular, they span V )

2 Any set of k vectors that span V is a basis for V (in particular, they
are linearly independent)

3 Any set of strictly fewer than k vectors of V cannot span W

4 Any set of more than k vectors of V cannot be linearly independent
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Proof
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Corollary

Corollary

1 A set of n vectors in Rn is linearly independent if and only if they are
a basis for Rn

2 A set of n vectors in Rn spans Rn if and only if they are a basis for Rn

3 A set of n vectors in Rn is linearly independent if and only if they
span Rn

Proof.

Follows immediately from the previous theorem and the fact that
dim(Rn) = n.
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Major Theorem

Theorem

Let A be an n × n matrix. The the following are equivalent

1 A~x = ~b has a unique solution
for every ~b

2 A~x = 0 has a unique solution

3 rk(A) = n

4 The RREF of A is In
5 A is invertible

6 The columns of A are linearly
independent

7 The rows of A are linearly
independent

8 det(A) 6= 0

9 0 is not an eigenvalue of A

10 TA is invertible

11 TA is one-to-one

12 TA is onto

13 The columns of A span Rn

14 The rows of A span Rn

15 The columns of A form a basis
for Rn

16 The rows of A form a basis for
Rn
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