SF 1684 Algebra and Geometry Lecture 12

Patrick Meisner

KTH Royal Institute of Technology

Topics for Today

(1) Bases and Dimension
(2) Building Bases out of Linearly Independent Sets
(3) Building Bases out of Spanning Sets

Recollections

Recollections

For any set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we define
$\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\left\{t_{1} \vec{v}_{1}+\cdots+t_{k} \vec{v}_{k}: t_{1}, \ldots, t_{k} \in \mathbb{R}\right\}$.

Recollections

For any set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we define

$$
\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\left\{t_{1} \vec{v}_{1}+\cdots+t_{k} \vec{v}_{k}: t_{1}, \ldots, t_{k} \in \mathbb{R}\right\} .
$$

For any vector space, V, we say that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a spanning set of V if

$$
V=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}
$$

Recollections

For any set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we define

$$
\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\left\{t_{1} \vec{v}_{1}+\cdots+t_{k} \vec{v}_{k}: t_{1}, \ldots, t_{k} \in \mathbb{R}\right\} .
$$

For any vector space, V, we say that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a spanning set of V if

$$
V=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}
$$

We may also say that the set of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ spans V.

Recollections

For any set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we define

$$
\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\left\{t_{1} \vec{v}_{1}+\cdots+t_{k} \vec{v}_{k}: t_{1}, \ldots, t_{k} \in \mathbb{R}\right\} .
$$

For any vector space, V, we say that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a spanning set of V if

$$
V=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}
$$

We may also say that the set of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ spans V.

Moreover, we say that $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly independent if none of the vectors can be written as a linear combination of the others

Recollections

For any set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we define

$$
\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\left\{t_{1} \vec{v}_{1}+\cdots+t_{k} \vec{v}_{k}: t_{1}, \ldots, t_{k} \in \mathbb{R}\right\} .
$$

For any vector space, V, we say that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a spanning set of V if

$$
V=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}
$$

We may also say that the set of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ spans V.
Moreover, we say that $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly independent if none of the vectors can be written as a linear combination of the others

Finally, we know this is equivalent to saying that every vector in the span of $\vec{v}_{1}, \ldots, \vec{v}_{k}$ can be written uniquely as a linear combination of the \vec{v}_{i}.

Basis

Definition

We say that a set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a basis for a vector space V if it is linearly independent and spans V.

Basis

Definition

We say that a set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a basis for a vector space V if it is linearly independent and spans V.

That is, a set of vectors is a basis for a vector space if every vector in the space can be written uniquely as a linear combination of the vectors.

Basis

Definition

We say that a set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a basis for a vector space V if it is linearly independent and spans V.

That is, a set of vectors is a basis for a vector space if every vector in the space can be written uniquely as a linear combination of the vectors.

Example:

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \text { is a basis for } \mathbb{R}^{3}
$$

Basis

Definition

We say that a set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a basis for a vector space V if it is linearly independent and spans V.

That is, a set of vectors is a basis for a vector space if every vector in the space can be written uniquely as a linear combination of the vectors.

Example:

Exercise:
$\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for \mathbb{R}^{3}
$\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]\right\}$ is a basis for \mathbb{R}^{3}

slow this
is an basis.

Existence of Bases

Theorem
If V is a non-zero subspace of \mathbb{n} then V has a basis consisting of fewer then n vectors.
proofs, let $\vec{V}_{1} \in V \quad \vec{V}_{1} \notin \vec{O} . \quad \operatorname{span}\left(\vec{V}_{1}\right)=\left\{t V_{1} ; t \in \mathbb{R}\right\}$, is a subspace of V.
If $V=\operatorname{span}\left(\vec{V}_{1}\right)$ the $\left\{\vec{V}_{1}\right\}$ is a basis
if $V \notin \operatorname{span}\left(\vec{V}_{1}\right)$ then therexits, $\vec{V}_{L} \in V$ such that $\vec{V}_{1} \& \operatorname{spa}\left(\vec{V}_{1}\right)$ the necessarily, $V_{1} \& V_{l}$ on lin iuboperdet.
if $V=\operatorname{span}\left(v_{1}, v_{2}\right)$ then $\left.\int \vec{V}_{11}, \vec{v}_{2}\right\}$ is a basis.
if $V \neq \operatorname{Span}\left(v_{1,} v_{2}\right)$ then find v_{\perp}, —.
We know that dry set of $n+1$ vectors will he linearly leperdat. So this or oses) stops eventually.

From Linearly Independent Set to Basis

We saw in the proof that if we have a set of linearly independent vectors, then we can systematically add in vectors that are not already in the span to form a basis.

From Linearly Independent Set to Basis

We saw in the proof that if we have a set of linearly independent vectors, then we can systematically add in vectors that are not already in the span to form a basis.

Exercise

Expand the set of vectors

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]\right\}
$$

to a basis for \mathbb{R}^{4}

From Linearly Independent Set to Basis

We saw in the proof that if we have a set of linearly independent vectors, then we can systematically add in vectors that are not already in the span to form a basis.

Exercise

Expand the set of vectors

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]\right\}
$$

to a basis for \mathbb{R}^{4}
First, we note that the two vectors are linearly independent so this is good. So, we need to find a vector that is not in the span.

From Linearly Independent Set to Basis 2

A vector \vec{b} will be in the span if and only if there is a t_{1}, t_{2} such that

$$
t_{1}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]+t_{2}\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

From Linearly Independent Set to Basis 2

A vector \vec{b} will be in the span if and only if there is a t_{1}, t_{2} such that

$$
t_{1}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]+t_{2}\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

if and only the augmented matrix $(A \mid \vec{b})$ is consistent where the columns of A are the vectors of our set.

From Linearly Independent Set to Basis 2

A vector \vec{b} will be in the span if and only if there is a t_{1}, t_{2} such that

$$
t_{1}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]+t_{2}\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

if and only the augmented matrix $(A \mid \vec{b})$ is consistent where the columns of A are the vectors of our set. Partially row reducing the augmented matrix we find

$$
\left(\begin{array}{ll|l}
1 & 5 & b_{1} \\
2 & 6 & b_{2} \\
3 & 7 & b_{3} \\
4 & 8 & b_{4}
\end{array}\right)
$$

From Linearly Independent Set to Basis 2

A vector \vec{b} will be in the span if and only if there is a t_{1}, t_{2} such that

$$
t_{1}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]+t_{2}\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

if and only the augmented matrix $(A \mid \vec{b})$ is consistent where the columns of A are the vectors of our set. Partially row reducing the augmented matrix we find

$$
\left(\begin{array}{ll|l}
1 & 5 & b_{1} \\
2 & 6 & b_{2} \\
3 & 7 & b_{3} \\
4 & 8 & b_{4}
\end{array}\right) \Longrightarrow\left(\begin{array}{cc|c}
1 & 5 & b_{1} \\
0 & -4 & b_{2}-2 b_{1} \\
0 & 0 & \left.\begin{array}{cc}
\text { Find a } \vec{b} \\
\text { such that } \\
b_{3}-2 b_{2}+b_{1} \\
b_{4}-3 b_{2}+2 b_{1}
\end{array}\right) \neq 0 \text { or } \neq 0 \text { or } 10
\end{array}\right.
$$

From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some \vec{b} such that either $b_{3}-2 b_{2}+b_{1} \neq 0$ or $b_{4}-3 b_{2}+2 b_{1} \neq 0$.

From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some \vec{b} such that either $b_{3}-2 b_{2}+b_{1} \neq 0$ or $b_{4}-3 b_{2}+2 b_{1} \neq 0$. So any of

$$
\vec{b}=\left[\begin{array}{c}
9 \\
10 \\
11 \\
13
\end{array}\right]
$$

From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some \vec{b} such that either $b_{3}-2 b_{2}+b_{1} \neq 0$ or $b_{4}-3 b_{2}+2 b_{1} \neq 0$. So any of

$$
\vec{b}=\left[\begin{array}{c}
9 \\
10 \\
11 \\
13
\end{array}\right] \text { or }\left[\begin{array}{l}
2 \\
9 \\
4 \\
5
\end{array}\right]
$$

From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some \vec{b} such that either $b_{3}-2 b_{2}+b_{1} \neq 0$ or $b_{4}-3 b_{2}+2 b_{1} \neq 0$. So any of

$$
\vec{b}=\left[\begin{array}{c}
9 \\
10 \\
11 \\
13
\end{array}\right] \text { or }\left[\begin{array}{l}
2 \\
9 \\
4 \\
5
\end{array}\right] \text { or }\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some \vec{b} such that either $b_{3}-2 b_{2}+b_{1} \neq 0$ or $b_{4}-3 b_{2}+2 b_{1} \neq 0$. So any of

$$
\vec{b}=\left[\begin{array}{c}
9 \\
10 \\
11 \\
13
\end{array}\right] \text { or }\left[\begin{array}{l}
2 \\
9 \\
4 \\
5
\end{array}\right] \text { or }\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \text { or }\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some \vec{b} such that either $b_{3}-2 b_{2}+b_{1} \neq 0$ or $b_{4}-3 b_{2}+2 b_{1} \neq 0$. So any of

$$
\vec{b}=\left[\begin{array}{c}
9 \\
10 \\
11 \\
13
\end{array}\right] \text { or }\left[\begin{array}{l}
2 \\
9 \\
4 \\
5
\end{array}\right] \text { or }\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \text { or }\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \text { but not }\left[\begin{array}{c}
9 \\
10 \\
11 \\
12
\end{array}\right]
$$

From Linearly Independent Set to Basis 3

Hence to find something not in the span, it is enough to find some \vec{b} such that either $b_{3}-2 b_{2}+b_{1} \neq 0$ or $b_{4}-3 b_{2}+2 b_{1} \neq 0$. So any of

$$
\vec{b}=\left[\begin{array}{c}
9 \\
10 \\
11 \\
13
\end{array}\right] \text { or }\left[\begin{array}{l}
2 \\
9 \\
4 \\
5
\end{array}\right] \text { or }\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \text { or }\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \text { but not }\left[\begin{array}{c}
9 \\
10 \\
11 \\
12
\end{array}\right]
$$

Do the same process but now with the set

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right],\left[\begin{array}{l}
2 \\
9 \\
4 \\
5
\end{array}\right]\right\}
$$

From Linearly Independent Set to Basis 3

We see that, for example

$$
\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \notin \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right],\left[\begin{array}{l}
2 \\
9 \\
4 \\
5
\end{array}\right]\right\}
$$

Find \bar{b} sa ($A(\vec{b})$
is nut
consist tent

From Linearly Independent Set to Basis 3

We see that, for example

$$
\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \notin \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right],\left[\begin{array}{l}
2 \\
9 \\
4 \\
5
\end{array}\right]\right\}
$$

And so

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right],\left[\begin{array}{l}
2 \\
9 \\
4 \\
5
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

is a linearly independent set.

From Linearly Independent Set to Basis 4

Finally, we see that since the columns are linearly independent, the matrix

$$
A=\left(\begin{array}{llll}
1 & 5 & 2 & 0 \\
2 & 6 & 9 & 1 \\
3 & 7 & 4 & 0 \\
4 & 8 & 5 & 0
\end{array}\right)
$$

is invertible.

From Linearly Independent Set to Basis 4

Finally, we see that since the columns are linearly independent, the matrix

$$
A=\left(\begin{array}{llll}
1 & 5 & 2 & 0 \\
2 & 6 & 9 & 1 \\
3 & 7 & 4 & 0 \\
4 & 8 & 5 & 0
\end{array}\right)
$$

is invertible.Therefore, for ever $\vec{b} \in \mathbb{R}^{4}$, there is a solution to $A \vec{x}=\vec{b}$.

From Linearly Independent Set to Basis 4

Finally, we see that since the columns are linearly independent, the matrix

$$
A=\left(\begin{array}{llll}
1 & 5 & 2 & 0 \\
2 & 6 & 9 & 1 \\
3 & 7 & 4 & 0 \\
4 & 8 & 5 & 0
\end{array}\right)
$$

is invertible. Therefore, for ever $\vec{b} \in \mathbb{R}^{4}$, there is a solution to $A \vec{x}=\vec{b}$. In other words every vector in \mathbb{R}^{4} can be written as a linear combination of the vectors and so

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right],\left[\begin{array}{l}
2 \\
9 \\
4 \\
5
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

spans \mathbb{R}^{4} and is a basis.

From Spanning Set to Basis

We can also go backwards. Suppose we have a linearly dependent set of vectors. Then we can systemically remove them to find a basis for the span of the vectors.

From Spanning Set to Basis

We can also go backwards. Suppose we have a linearly dependent set of vectors. Then we can systemically remove them to find a basis for the span of the vectors.

Exercise

Find a basis for the subspace of \mathbb{R}^{5} given by Nate:

$$
V:=\operatorname{span}\left\{\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
9 \\
11 \\
11 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
2 \\
5 \\
9 \\
-1
\end{array}\right]\right\} \begin{aligned}
& \text { the vector space ne } \\
& \text { an cos erin } \\
& \text { is not } \mathbb{R}^{S}
\end{aligned}
$$

From Spanning Set to Basis

We can also go backwards. Suppose we have a linearly dependent set of vectors. Then we can systemically remove them to find a basis for the span of the vectors.

Exercise

Find a basis for the subspace of \mathbb{R}^{5} given by

$$
\operatorname{span}\left\{\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
9 \\
11 \\
11 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
2 \\
5 \\
9 \\
-1
\end{array}\right]\right\}
$$

First we check to see if they are linearly independent

From Spanning Set to Basis 2

To do this, we put the vectors in a matrix and row reduce

$$
\left(\begin{array}{cccc}
7 & 1 & 9 & 6 \\
5 & 3 & 11 & 2 \\
7 & 2 & 11 & 5 \\
7 & -2 & 3 & 9 \\
0 & 1 & 2 & -1
\end{array}\right)
$$

From Spanning Set to Basis 2

To do this, we put the vectors in a matrix and row reduce

$$
\left(\begin{array}{cccc}
7 & 1 & 9 & 6 \\
5 & 3 & 11 & 2 \\
7 & 2 & 11 & 5 \\
7 & -2 & 3 & 9 \\
0 & 1 & 2 & -1
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

From Spanning Set to Basis 2

To do this, we put the vectors in a matrix and row reduce

$$
\left(\begin{array}{cccc}
7 & 1 & 9 & 6 \\
5 & 3 & 11 & 2 \\
7 & 2 & 11 & 5 \\
7 & -2 & 3 & 9 \\
0 & 1 & 2 & -1
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left[\begin{array}{l}
c_{1} \\
c_{1} \\
c_{1} \\
c_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Hence, we see that
$*\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]=\left[\begin{array}{c}-t-s \\ -2 t+s \\ t \\ s\end{array}\right]$

From Spanning Set to Basis 2

To do this, we put the vectors in a matrix and row reduce

$$
\left(\begin{array}{cccc}
7 & 1 & 9 & 6 \\
5 & 3 & 11 & 2 \\
7 & 2 & 11 & 5 \\
7 & -2 & 3 & 9 \\
0 & 1 & 2 & -1
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Hence, we see that

$$
\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{c}
-t-s \\
-2 t+s \\
t \\
s
\end{array}\right] \Longrightarrow c_{1}\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{c}
9 \\
11 \\
11 \\
3 \\
2
\end{array}\right]+c_{4}\left[\begin{array}{c}
6 \\
2 \\
5 \\
9 \\
-1
\end{array}\right]=\overrightarrow{0}
$$

From Spanning Set to Basis 3

Setting $t=1, s=0$ we get $c_{1}=-1, c_{2}=-2, c_{3}=1, c_{4}=0$ and

$$
\begin{aligned}
& {\left[\begin{array}{c}
9 \\
11 \\
11 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right]+2\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right]} \\
& V_{3}=V_{1}+2 V
\end{aligned}
$$

From Spanning Set to Basis 3

Setting $t=1, s=0$ we get $c_{1}=-1, c_{2}=-2, c_{3}=1, c_{4}=0$ and

$$
\begin{aligned}
& {\left[\begin{array}{c}
9 \\
11 \\
11 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right]+2\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right]} \\
& V_{3}=\gamma v_{2}
\end{aligned}
$$

Hence, we may remove this vector without affecting the span.

From Spanning Set to Basis 3

Setting $t=1, s=0$ we get $c_{1}=-1, c_{2}=-2, c_{3}=1, c_{4}=0$ and

$$
\left[\begin{array}{c}
9 \\
11 \\
11 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right]+2\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right]
$$

Hence, we may remove this vector without affecting the span. Further, setting $t=0$ and $s=1$, we get $c_{1}=-1, c_{2}=1, c_{3}=0, c_{4}=0$ and so

$$
\begin{aligned}
& {\left[\begin{array}{c}
6 \\
2 \\
5 \\
9 \\
-1
\end{array}\right]=\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right]-\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right]} \\
& \overrightarrow{V_{4}}=\overrightarrow{V_{1}}-\overrightarrow{V_{2}}
\end{aligned}
$$

From Spanning Set to Basis 3

Setting $t=1, s=0$ we get $c_{1}=-1, c_{2}=-2, c_{3}=1, c_{4}=0$ and of re han many free veriaklyg $t_{1}, . . t_{k}$
Setting $b=1, b_{i=1}=b_{c}=0$ gives ore linear cleperdna Setting $t_{1}=0, t=1, t-t_{c}=0$ gives rotter and so on. $V_{>}=V_{1} \leqslant 2 V_{2}$
Hence, we may remove this vector without affecting the span. Further, setting $t=0$ and $s=1$, we get $c_{1}=-1, c_{2}=1, c_{3}=0, c_{4}=0$ and so

$$
\begin{gathered}
{\left[\begin{array}{c}
6 \\
2 \\
5 \\
9 \\
-1
\end{array}\right]} \\
v_{4}
\end{gathered}=\underset{v_{1}}{\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right]}-\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { so can } \\
& \text { rumpus } y_{y} \& L_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { withat atfering } \\
& \text { the span }
\end{aligned}
$$

span.

Hence we may remove this vector as well.

From Spanning Set to Basis 4

Thus we may conclude that

$$
V=\operatorname{span}\left\{\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
9 \\
11 \\
11 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
2 \\
5 \\
9 \\
-1
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right]\right\}=V
$$

From Spanning Set to Basis 4

$$
V \subseteq \mathbb{R}^{s} \operatorname{dim}(V)=2
$$

Thus we may conclude that

$$
\operatorname{span}\left\{\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
9 \\
11 \\
11 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
2 \\
5 \\
9 \\
-1
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
7 \\
5 \\
7 \\
7 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
3 \\
2 \\
-2 \\
1
\end{array}\right]\right\}=V
$$

Moreover, the latter two are linearly independent and so form a basis.
Big note: I am not claiming that they form a basis for $\mathbb{R}^{s}!!!$

Size of Basis

Theorem
Let V be a subspace of \mathbb{R}^{n}. Then if $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ and $\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\}$ are two bases for V then $k=m$. That is, the size of the basis is always the same.

Sketch of prof: $v_{1}, \ldots v_{k} \in V=\operatorname{span}\left(w_{1} \ldots w_{m}\right)$

$$
\begin{array}{cc}
v_{1}=a_{11} w_{1}+\cdots+a_{1 m} w_{n} \\
v_{2}=a_{n} w_{1}+\cdots+c_{2 m} w_{n} & \vdots \\
\vdots & \\
v_{k}=c_{k_{1}} w_{1}+\cdots+c_{k n} w_{n} & A=\left(\begin{array}{ccc}
a_{11} & \cdots & c_{1 n} \\
1 & & \vdots \\
a_{k_{1}} & \cdots & a_{k n}
\end{array}\right) \rightarrow \\
{\left[\begin{array}{c}
\text { claim: }
\end{array}\right.} & A\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\overrightarrow{0} \Rightarrow
\end{array}
$$

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & c_{1 n} \\
\vdots & & \vdots \\
a_{k_{1}} & \cdots & a_{k n}
\end{array}\right) \xrightarrow{\operatorname{ARGR}}\left[\begin{array}{ccc}
1 & 0 & r_{1} \\
\ddots & 0 & \vdots \\
0 & 1 & \vdots
\end{array}\right]
$$

Exercic: prove

But $v_{1} \ldots w_{n}$ or lin ind. $\Rightarrow C_{i} \ldots=c_{m}=6$
Therefore, 1 deedelce that the only worn solution to A is $\overrightarrow{0}$ $\Rightarrow k \leq m$. Swapping th vs wis. gins $m \leq h$ and so boom

Dimension

Definition

For any subspace V of \mathbb{R}^{n}, we define the dimension of V to be the number of vectors in any basis. We typically denote it $\operatorname{dim}(V)$.

Dimension

Definition

For any subspace V of \mathbb{R}^{n}, we define the dimension of V to be the number of vectors in any basis. We typically denote it $\operatorname{dim}(V)$.

Examples:
$\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$ since $\vec{e}_{1}, \ldots, \vec{e}_{n}$ always forms a basis

Dimension

Definition

For any subspace V of \mathbb{R}^{n}, we define the dimension of V to be the number of vectors in any basis. We typically denote it $\operatorname{dim}(V)$.

Examples:
$\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$ since $\vec{e}_{1}, \ldots, \vec{e}_{n}$ always forms a basis
If $V=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$, then $\operatorname{dim}(V) \leq k$. If the $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly independent then $\operatorname{dim}(V)=k$.

Dimension

Definition

For any subspace V of \mathbb{R}^{n}, we define the dimension of V to be the number of vectors in any basis. We typically denote it $\operatorname{dim}(V)$.

Examples:
$\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$ since $\vec{e}_{1}, \ldots, \vec{e}_{n}$ always forms a basis
If $V=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$, then $\operatorname{dim}(V) \leq k$. If the $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly independent then $\operatorname{dim}(V)=k$.

If L is a line, then $\operatorname{dim}(L)=1$, since $L=\{t \vec{v}: t \in \mathbb{R}\}=\operatorname{span}\{\vec{v}\}$.

Dimension

Definition

For any subspace V of \mathbb{R}^{n}, we define the dimension of V to be the number of vectors in any basis. We typically denote it $\operatorname{dim}(V)$.

Examples:
$\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$ since $\vec{e}_{1}, \ldots, \vec{e}_{n}$ always forms a basis
If $V=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$, then $\operatorname{dim}(V) \leq k$. If the $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly independent then $\operatorname{dim}(V)=k$.

If L is a line, then $\operatorname{dim}(L)=1$, since $L=\{t \vec{v}: t \in \mathbb{R}\}=\operatorname{span}\{\vec{v}\}$.
Similarly, if P is a plane, then $\operatorname{dim}(P)=2$.

Basis for the Zero-Subspace

What is the basis for the zero-subspace, $V=\{\overrightarrow{0}\}$?

Basis for the Zero-Subspace

What is the basis for the zero-subspace, $V=\{\overrightarrow{0}\}$? First, we need a spanning set of vectors for $\{\overrightarrow{0}\}$:

$$
V=\operatorname{span}\{\overrightarrow{0}\}
$$

Basis for the Zero-Subspace

What is the basis for the zero-subspace, $V=\{\overrightarrow{0}\}$? First, we need a spanning set of vectors for $\{\overrightarrow{0}\}$:

$$
V=\operatorname{span}\{\overrightarrow{0}\}
$$

However, we have already seen that no set involving $\overrightarrow{0}$ can be linearly independent.

Basis for the Zero-Subspace

What is the basis for the zero-subspace, $V=\{\overrightarrow{0}\}$? First, we need a spanning set of vectors for $\{\overrightarrow{0}\}$:

$$
V=\operatorname{span}\{\overrightarrow{0}\}
$$

However, we have already seen that no set involving $\overrightarrow{0}$ can be linearly independent. So the set $\{\overrightarrow{0}\}$ is not a basis for the zero-subspace.

Basis for the Zero-Subspace

What is the basis for the zero-subspace, $V=\{\overrightarrow{0}\}$? First, we need a spanning set of vectors for $\{\overrightarrow{0}\}$:

$$
V=\operatorname{span}\{\overrightarrow{0}\}
$$

However, we have already seen that no set involving $\overrightarrow{0}$ can be linearly independent. So the set $\{\overrightarrow{0}\}$ is not a basis for the zero-subspace.

As we saw, if we have a linearly dependent spanning set, we can remove some vectors and get a linearly independent spanning set, i.e. a basis.

Basis for the Zero-Subspace

What is the basis for the zero-subspace, $V=\{\overrightarrow{0}\}$? First, we need a spanning set of vectors for $\{\overrightarrow{0}\}$:

$$
V=\operatorname{span}\{\overrightarrow{0}\}
$$

However, we have already seen that no set involving $\overrightarrow{0}$ can be linearly independent. So the set $\{\overrightarrow{0}\}$ is not a basis for the zero-subspace.

As we saw, if we have a linearly dependent spanning set, we can remove some vectors and get a linearly independent spanning set, i.e. a basis.

So, what can we remove from the spanning set $\{\overrightarrow{0}\}$ and what is left?

Basis for the Zero-Subspace

What is the basis for the zero-subspace, $V=\{\overrightarrow{0}\}$? First, we need a spanning set of vectors for $\{\overrightarrow{0}\}$:

$$
V=\operatorname{span}\{\overrightarrow{0}\}
$$

However, we have already seen that no set involving $\overrightarrow{0}$ can be linearly independent. So the set $\{\overrightarrow{0}\}$ is not a basis for the zero-subspace.

As we saw, if we have a linearly dependent spanning set, we can remove some vectors and get a linearly independent spanning set, i.e. a basis.

So, what can we remove from the spanning set $\{\overrightarrow{0}\}$ and what is left? We remove $\{\overrightarrow{0}\}$ and we are left with the empty set \emptyset.

Basis for the Zero-Subspace

What is the basis for the zero-subspace, $V=\{\overrightarrow{0}\}$? First, we need a spanning set of vectors for $\{\overrightarrow{0}\}$:

$$
V=\operatorname{span}\{\overrightarrow{0}\}
$$

However, we have already seen that no set involving $\overrightarrow{0}$ can be linearly independent. So the set $\{\overrightarrow{0}\}$ is not a basis for the zero-subspace.

As we saw, if we have a linearly dependent spanning set, we can remove some vectors and get a linearly independent spanning set, i.e. a basis.

So, what can we remove from the spanning set $\{\overrightarrow{0}\}$ and what is left? We remove $\{\overrightarrow{0}\}$ and we are left with the empty set \emptyset.

Definition

The basis of the zero subspace is the empty set.

Dimension of Zero Subspace

What is the dimension of the zero subspace?

Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any subspace is the size of it's basis.

Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any subspace is the size of it's basis. And we have just determined that the basis for the zero-space is the empty set \emptyset.

Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any subspace is the size of it's basis. And we have just determined that the basis for the zero-space is the empty set \emptyset.

So, what is the size of the empty set?

Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any subspace is the size of it's basis. And we have just determined that the basis for the zero-space is the empty set \emptyset.

So, what is the size of the empty set? 0

Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any subspace is the size of it's basis. And we have just determined that the basis for the zero-space is the empty set \emptyset.

So, what is the size of the empty set? 0

Definition

$$
\operatorname{dim}(\{\overrightarrow{0}\})=0
$$

Dimension of Zero Subspace

What is the dimension of the zero subspace? The dimension of any subspace is the size of it's basis. And we have just determined that the basis for the zero-space is the empty set \emptyset.

So, what is the size of the empty set? 0

Definition

$$
\operatorname{dim}(\{\overrightarrow{0}\})=0
$$

Theorem

If V is a subspace of \mathbb{R}^{n} then $\operatorname{dim}(V)=0$ if and only if V is the zero subspace.

Dimension of Null Space

Recall that to find the subspace of homogeneous solutions (or null space) of a matrix A, we use Gauss-Jordan elimination and then find vectors so that the solution space is of the form $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ where k is the number of free variables.

$$
\begin{aligned}
& \operatorname{null}(A)=\{\vec{x}: A \vec{x}=\overrightarrow{0}\} \\
& A=\left[\begin{array}{cc}
a_{11} & \cdots \\
\vdots & a_{1 n} \\
a_{m l} & a_{m n}
\end{array}\right] \xrightarrow{2 R E E}\left[\begin{array}{cccc}
1 & k & * & * \\
0 & 1 & 1 \\
0 & 1 \\
0 & 0 & \ldots & 0
\end{array}\right] \\
&
\end{aligned}
$$

$k=$ Hot leading $1 s$ or $\operatorname{rb}(A)$ of a at free variables

Dimension of Null Space

Recall that to find the subspace of homogeneous solutions (or null space) of a matrix A, we use Gauss-Jordan elimination and then find vectors so that the solution space is of the form $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ where k is the number of free variables.

Exercise

Show that if we obtain these vectors from the RREF of A, then they are linearly independent.

Dimension of Null Space

Recall that to find the subspace of homogeneous solutions (or null space) of a matrix A, we use Gauss-Jordan elimination and then find vectors so that the solution space is of the form $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ where k is the number of free variables.

Exercise

Show that if we obtain these vectors from the RREF of A, then they are linearly independent.

Therefore, we can conclude that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a basis for the null space of A

Dimension of Null Space

Recall that to find the subspace of homogeneous solutions (or null space) of a matrix A, we use Gauss-Jordan elimination and then find vectors so that the solution space is of the form $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ where k is the number of free variables.

Exercise

Show that if we obtain these vectors from the RREF of A, then they are linearly independent.

Therefore, we can conclude that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a basis for the null space of A and hence

$$
\operatorname{dim}(\operatorname{null}(A))=k=\text { number of free of variables }=\operatorname{rk}(A)
$$

Dimension of Null Space

Recall that to find the subspace of homogeneous solutions (or null space) of a matrix A, we use Gauss-Jordan elimination and then find vectors so that the solution space is of the form $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ where k is the number of free variables.

Exercise

Show that if we obtain these vectors from the RREF of A, then they are linearly independent.

Therefore, we can conclude that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a basis for the null space of A and hence

$$
\operatorname{dim}(\operatorname{null}(A))=k=\text { number of free of variables }=\operatorname{sk}(A)
$$

Moreover, if $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are obtained from the RREF of A, then we call this the canonical basis for the null space of A.

Maximal Linear Independence
Theorem
If V is a non-zero subspace of \mathbb{R}^{n}, then $\operatorname{dim}(V)$ is the maximum number of linearly independent vectors in V.

Recall, we already showed that any set of strictly more than n vectors in \mathbb{R}^{n} will be linearly dependent. This is due to the fact that $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.

Proof supple $\operatorname{din} V=k$ and we have $V_{1} \ldots V_{m}$ lin independent vectors in $V^{\text {will } m>\text {. }}$. The $\operatorname{span}\left(V_{l}, \ldots, V_{n}\right)$ wale be a Subspace of V. Moreger, we have seen that we expand any lin inclipendert set to a basis. That is find $w_{1} \ldots w_{t}$ such that the set $\left\{v_{1} . . . v_{m}, w_{1} \ldots w_{6}\right)$ is a basis for V. This implies the that $\operatorname{dim} V=m+t>k \quad$ contradiction.

Subsapces and Dimensions

Theorem
Let V and W be subspaces of \mathbb{R}^{n}. If V is a subspace of W, then
(1) $0 \leq \operatorname{dim}(V) \leq \operatorname{dim}(W) \leq n$ very important
(2) $V=W$ if and only if $\operatorname{dim}(V)=\operatorname{dim}(W)$.
(1) at $\left\{b_{1} \ldots b_{n}\right\rangle$ be basis for V. The in porticule, $\left.\sqrt{b_{1} \ldots L_{k}}\right\}$ is a lin ind set in W. So ve ca exp and this to a basis for w. I so $\operatorname{din} w \geq k=\operatorname{din} V$
(2) $(\Rightarrow$ if $V=w$ the dina $V=\operatorname{din} W$
(\Leftrightarrow) if $\operatorname{din} V=\operatorname{din} W$. Then if $\left(b, b_{k}\right)$ is a basis for V. the it is a li- independent subset in W. So re can exp and to a basis. Haweror, since $\operatorname{din} W=\operatorname{din} v=k$, vo know that the expansion process wold stop immediately. Hence $W=\operatorname{spch}\left(b \ldots, h_{c}\right)=V$.

Theorem

Theorem
Let V be a k-dimensional subspace of \mathbb{R}^{n}
(1) Any set of k linearly independent vectors of V is a basis for V (in particular, they span V)
(2) Any set of k vectors that span V is a basis for V (in particular, they are linearly independent)
(3) Any set of strictly fewer than k vectors of V cannot span
(4) Any set of more than k vectors of V cannot be linearly independent
first theorem
proof: (1) let $\left(V_{1} \ldots V_{e}\right)$ be a set of linearly independent

$$
\begin{aligned}
& \text { vectors in } V \text {. } W=\operatorname{span}\left(V_{1} \ldots V_{k}\right) \text {. We kan that } \\
& W \subseteq V=\underline{d i m} W=\operatorname{dim} V \\
& \text { by previous than: } W=V \text { \& so } V=\operatorname{spch}\left(V_{1} . V_{k}\right) \\
& \text { \& } V_{1} \ldots W_{\text {is }} \text { is basis. }
\end{aligned}
$$ \& $v_{1} \ldots v_{k}$ is a basis.

Proof
(2) Let $v_{1} \ldots v_{k}$ be a set of vectors of V suck that $V=\operatorname{span}\left(V_{i}-V_{k}\right)$. Suppace that $U \ldots$...er is nut linn ind. Then we can remain some of the wis and not mange g the som. That is re cold say
$V=\operatorname{span}\left(V_{1} \ldots V_{k-1}\right) \Rightarrow \operatorname{din} V \leq b_{-1}$ which contricelicff He assumption that $\operatorname{din} V=k$.
(3) Soppece $V_{1} \ldots V_{n}$ spas V with $m<k$.

Then 1 con remove some to form a bess for V
But this implies that $\operatorname{din} V \subseteq m<k$ which contradicts the cossumption that $\operatorname{dim} V=b$.

Corollary

Corollary

(1) A set of n vectors in \mathbb{R}^{n} is linearly independent if and only if they are a basis for \mathbb{R}^{n}

Corollary

Corollary

(1) A set of n vectors in \mathbb{R}^{n} is linearly independent if and only if they are a basis for \mathbb{R}^{n}
(2) A set of n vectors in \mathbb{R}^{n} spans \mathbb{R}^{n} if and only if they are a basis for \mathbb{R}^{n}

Corollary

Corollary

(1) A set of n vectors in \mathbb{R}^{n} is linearly independent if and only if they are a basis for \mathbb{R}^{n}
(2) A set of n vectors in \mathbb{R}^{n} spans \mathbb{R}^{n} if and only if they are a basis for \mathbb{R}^{n}
(3) A set of n vectors in \mathbb{R}^{n} is linearly independent if and only if they $\operatorname{span} \mathbb{R}^{n}$

Corollary

Corollary

(1) A set of n vectors in \mathbb{R}^{n} is linearly independent if and only if they are a basis for \mathbb{R}^{n}
(2) A set of n vectors in \mathbb{R}^{n} spans \mathbb{R}^{n} if and only if they are a basis for \mathbb{R}^{n}
(3) A set of n vectors in \mathbb{R}^{n} is linearly independent if and only if they $\operatorname{span} \mathbb{R}^{n}$

Proof.

Follows immediately from the previous theorem and the fact that $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(5) A is invertible
(The columns of A are linearly independent
(3) The rows of A are linearly independent
(8) $\operatorname{det}(A) \neq 0$
(9) 0 is not an eigenvalue of A

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(10) T_{A} is invertible
(1) T_{A} is one-to-one
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(5) A is invertible
(The columns of A are linearly independent
(1) The rows of A are linearly independent
(8) $\operatorname{det}(A) \neq 0$
(9) 0 is not an eigenvalue of A

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(10) T_{A} is invertible
(1) T_{A} is one-to-one
(2) $A \vec{x}=0$ has a unique solution
(12) T_{A} is onto
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(5) A is invertible
(The columns of A are linearly independent
(1) The rows of A are linearly independent
(8) $\operatorname{det}(A) \neq 0$
(9) 0 is not an eigenvalue of A

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(5) A is invertible
(0) The columns of A are linearly independent
(1) The rows of A are linearly independent
(8) $\operatorname{det}(A) \neq 0$
(9) 0 is not an eigenvalue of A

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(5) A is invertible
(0) The columns of A are linearly independent
(1) The rows of A are linearly independent
(8) $\operatorname{det}(A) \neq 0$
(9) 0 is not an eigenvalue of A

Major Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}
(5) A is invertible
(0) The columns of A are linearly independent
(3) The rows of A are linearly independent
(8) $\operatorname{det}(A) \neq 0$
(9) 0 is not an eigenvalue of A

