SF 1684 Algebra and Geometry Lecture 11

Patrick Meisner

KTH Royal Institute of Technology

Topics for Today

(1) Subspaces Associated to Linear Transformations: Kernel and Range
(2) Compositions of Linear Transformations
(3) Inverses of Linear Transformations

Kernel of a Linear Transformation

Definition

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then we say that the set of vectors in \mathbb{R}^{n} that T maps to $\overrightarrow{0}$ is the kernel of T and denote it $\operatorname{ker}(T)$.

Kernel of a Linear Transformation

Definition

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then we say that the set of vectors in \mathbb{R}^{n} that T maps to $\overrightarrow{0}$ is the kernel of T and denote it $\operatorname{ker}(T)$.

Recall that for every such linear transformation, we can find an $m \times n$ matrix A such that $T(\vec{x})=A \vec{x}$.

Kernel of a Linear Transformation

Definition

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then we say that the set of vectors in \mathbb{R}^{n} that T maps to $\overrightarrow{0}$ is the kernel of T and denote it $\operatorname{ker}(T)$.

Recall that for every such linear transformation, we can find an $m \times n$ matrix A such that $T(\vec{x})=A \vec{x}$. Then we see that the kernel of T will be the set of homogeneous solutions to A.

$$
\begin{array}{r}
T(\vec{x})=0 \Longleftrightarrow A \dot{x}=0 \Longleftrightarrow x \text { is } \\
\text { Homs static } \\
\text { to A. }
\end{array}
$$

Kernel of a Linear Transformation

Definition

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then we say that the set of vectors in \mathbb{R}^{n} that T maps to $\overrightarrow{0}$ is the kernel of T and denote it $\operatorname{ker}(T)$.

Recall that for every such linear transformation, we can find an $m \times n$ matrix A such that $T(\vec{x})=A \vec{x}$. Then we see that the kernel of T will be the set of homogeneous solutions to A. If considering matrices, we will call this the null space of A and denote it null (A).

$$
\text { bet }\left(T_{A}\right)=\operatorname{moll}(A)
$$

Kernel of a Linear Transformation

(f $T(\vec{x})=0$ the \dot{x} is in the kernel af T

Definition

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then we say that the set of vectors in \mathbb{R}^{n} that T maps to $\overrightarrow{0}$ is the kernel of T and denote it $\operatorname{ker}(T)$.

Recall that for every such linear transformation, we can find an $m \times n$ matrix A such that $T(\vec{x})=A \vec{x}$. Then we see that the kernel of T will be the set of homogeneous solutions to A. If considering matrices, we will call this the null space of A and denote it null (A).

Theorem

For any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the kernel of T is a subspace of \mathbb{R}^{n}.

$$
\operatorname{bot}(T A)=\operatorname{noll}(A)=\text { mome saltions of } A \text {. }
$$

Exercise

Find the kernel of the linear transformations:
(1) $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x+y \\ 3 z\end{array}\right]$

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

(2) Rotating by an angle of θ in \mathbb{R}^{2}, T
(1) The tonal is all $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ such that $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left[\begin{array}{c}x+y \\ 3 z\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ $x+y=0$
$3 z 20$$\quad \begin{aligned} x=-y \\ z=0\end{aligned} \quad$ leet $(\tau)=\left\{\left[\begin{array}{c}t \\ -6 \\ 0\end{array}\right]: t \in \mathbb{R}\right\}$
(2)

rotating $k_{2} \theta$ results in $\vec{\theta}$ if coal only if 7 our he gen with δ
So br $(T)=\{\overrightarrow{0}\}=$ zero subspace.

One-to-one Linear Transformations

Definition

We say a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one (or injective) if T maps distinct vectors in \mathbb{R}^{n} to distinct vectors in \mathbb{R}^{m}.

One-to-one Linear Transformations

Definition

We say a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one (or injective) if T maps distinct vectors in \mathbb{R}^{n} to distinct vectors in \mathbb{R}^{m}. i.e.,

$$
\vec{x} \neq \vec{y} \Longrightarrow T(\vec{x}) \neq T(\vec{y})
$$

One-to-one Linear Transformations

Definition

We say a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one (or injective) if T maps distinct vectors in \mathbb{R}^{n} to distinct vectors in \mathbb{R}^{m}. i.e.,

$$
\vec{x} \neq \vec{y} \Longrightarrow T(\vec{x}) \neq T(\vec{y}) \quad \text { or } \quad T(\vec{x})=T(\vec{y}) \Longrightarrow \vec{x}=\vec{y}
$$

One-to-one Linear Transformations
Definition
We say a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one (or infective) if T maps distinct vectors in \mathbb{R}^{n} to distinct vectors in \mathbb{R}^{m}. ie.,

$$
\vec{x} \neq \vec{y} \Longrightarrow T(\vec{x}) \neq T(\vec{y}) \quad \text { or } \quad T(\vec{x})=T(\vec{y}) \Longrightarrow \vec{x}=\vec{y}
$$

$$
\text { T not one-to-are } \Rightarrow \operatorname{ba}(T) \neq\{\overrightarrow{0}\}
$$

Theorem
$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if and only if $\operatorname{ker}(T)=\{\overrightarrow{0}\}$, the zero-subspace. For any matrix $m \times n$ matrix A, T_{A} is one-to-one if and only $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
Suppose T is ant ore to -are. Then Hereciots $\bar{x} \neq \bar{y}$ lot $T(\bar{x})=\Gamma(\bar{c})$ Therefor $T(\vec{x}-\vec{y})=T(\vec{x})-T(\vec{y})=\overrightarrow{0} \rightarrow \overrightarrow{\vec{x}-\bar{y} \in \operatorname{ber}(T)]}$ but $\vec{x}-\vec{y} \neq \overrightarrow{0}$

Range of a Linear Transformation

Definition

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then we say that the set of vectors in \mathbb{R}^{m} that can be written in the form $T(\vec{x})$ is the range of T and denote it $\operatorname{ran}(T)$.

Range of a Linear Transformation

Definition

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then we say that the set of vectors in \mathbb{R}^{m} that can be written in the form $T(\vec{x})$ is the range of T and denote it $\operatorname{ran}(T)$.

If A is the $m \times n$ matrix such that $T(\vec{x})=A \vec{x}$ then $\operatorname{ran}(T)$ is the set of vectors \vec{b} such that there is a solution to $A \vec{x}=\vec{b}$

Range of a Linear Transformation

Definition

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then we say that the set of vectors in \mathbb{R}^{m} that can be written in the form $T(\vec{x})$ is the range of T and denote it $\operatorname{ran}(T)$.

If A is the $m \times n$ matrix such that $T(\vec{x})=A \vec{x}$ then $\operatorname{ran}(T)$ is the set of vectors \vec{b} such that there is a solution to $A \vec{x}=\vec{b}$ or such that augmented matrix $(A \mid \vec{b})$ is consistent.

Range of a Linear Transformation

Definition

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then we say that the set of vectors in \mathbb{R}^{m} that can be written in the form $T(\vec{x})$ is the range of T and denote it $\operatorname{ran}(T)$.

If A is the $m \times n$ matrix such that $T(\vec{x})=A \vec{x}$ then $\operatorname{ran}(T)$ is the set of vectors \vec{b} such that there is a solution to $A \vec{x}=\vec{b}$ or such that augmented matrix $(A \mid \vec{b})$ is consistent. If considering matrices, we will call this the column space of A and denote it $\operatorname{col}(A)$.

Range of a Linear Transformation

Definition

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then we say that the set of vectors in \mathbb{R}^{m} that can be written in the form $T(\vec{x})$ is the range of T and denote it $\operatorname{ran}(T)$.

If A is the $m \times n$ matrix such that $T(\vec{x})=A \vec{x}$ then $\operatorname{ran}(T)$ is the set of vectors \vec{b} such that there is a solution to $A \vec{x}=\vec{b}$ or such that augmented matrix $(A \mid \vec{b})$ is consistent. If considering matrices, we will call this the column space of A and denote it $\operatorname{col}(A)$.

Theorem

For any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the range of T is a subspace of \mathbb{R}^{m}. $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y}) \& \quad T(\bar{x})=c T(\dot{x})$

Exercise

Find the range of the linear transformation

$$
\begin{gathered}
\exists x \text { st } T(E)=\binom{l_{1}}{\text { se }} .
\end{gathered}
$$

(1) $T(\vec{x})=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) \vec{x}$

Ftes ((111) $\vec{x}=\binom{5}{s_{2}}$
(2) Rotating by an angle of θ in \mathbb{R}^{2}
(1) $\vec{b} f\binom{h}{h_{v}}$ is in the vase of T iff $\left(\begin{array}{ll|}1 & 1 \\ 1 & b_{1} \\ 1 & 1\end{array}\right)$ is corsistat

$$
\begin{aligned}
& \left(\begin{array}{ll}
11 & h_{1} \\
11 & l_{1}
\end{array}\right) R_{2}-h_{1}\left(\begin{array}{ll|l}
1 & 1 & b_{1} \\
0 & 0 & b_{2}-b_{1}
\end{array}\right) \quad \text { corsiota iff } b_{1}=b_{2} \\
& \text { pangi }=\left\{\left[\begin{array}{l}
b_{1} \\
b_{1}
\end{array}\right] \text { s.t } b_{1}=b_{n}\right\} \pm\left\{\left[\begin{array}{l}
t \\
t
\end{array}\right], t \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

(2) Any vecto con he obtand by a ratution u_{2} on anegh of \mathbb{R}^{2} so $\operatorname{Ra}(T)=\mathbb{R}^{2}$

Onto Linear Transformations

Definition

We say a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto (or surjective) if every vector in \mathbb{R}^{m} is the image of at least one vector in \mathbb{R}^{n}

Onto Linear Transformations

Definition

We say a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto (or surjective) if every vector in \mathbb{R}^{m} is the image of at least one vector in \mathbb{R}^{n}

Theorem

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}(\square)$ is onto if and only if $\operatorname{ran}(T)=\mathbb{R}^{m}$. If A in an $m \times n$ matrix, then the linear transformation T_{A} is onto if and only $A \vec{x}=\vec{b}$ has a solution for all \vec{b}.

$$
\text { equiclets }(A \mid \bar{b}) \text { is consistat for all } \bar{b} \text {. }
$$

Pigeonhole Principle

Theorem
A linear transformation $T: \mathbb{R}^{(n)} \rightarrow \mathbb{R}^{(1)}$ is one-to-one if and only if it is onto.
Proof: let A he the standard many of T.
$T(\vec{x})=A \vec{x}$. T is are-to-om $\rightarrow A \vec{x}=0$ hes only the trivial solution
$\Leftrightarrow A \bar{x}=b$ has a solution for all \bar{b}
\Leftrightarrow is onto.

Composition of Linear Transformations

Definition

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ be linear transformations. Then we say $S \circ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is the composition of S and T and define it as

$$
(S \circ T)(\vec{x})=S(T(\vec{x}))
$$

Composition of Linear Transformations

Definition

Let $T: \mathbb{R}^{(1)} \rightarrow \mathbb{R}^{(1)}$ and $S: \mathbb{R}^{(3)} \rightarrow \mathbb{R}^{\bigotimes}$ be linear transformations. Then we say $S \circ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is the composition of S and T and define it as

$$
(S \circ T)(\vec{T})=S(\underbrace{T(\vec{x})}_{\mathbb{R}^{\hat{N}}})
$$

NOTE: while $S \circ T$ exists, $T \circ S$ does not necessarily exist since S outputs vectors in \mathbb{R}^{k} while T must $\widehat{\text { have }}$ vectors in \mathbb{R}^{m} input into it.

$$
\Rightarrow n=k
$$

$$
\begin{aligned}
& \text { even it Tos \& sot exists it } \\
& \text { dhes not follom that ToS }=S 01
\end{aligned}
$$

Composition of Linear Transformations

Definition

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ be linear transformations. Then we say $S \circ \bar{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is the composition of S and T and define it as

$$
(S \circ T)(\vec{x})=S(T(\vec{x}))
$$

NOTE: while $S \circ T$ exists, $T \circ S$ does not necessarily exist since S outputs vectors in \mathbb{R}^{k} while T must have vectors in \mathbb{R}^{m} input into it.

Theorem

$S \circ T$ is a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{k}.

$$
\begin{aligned}
& (S \circ T)(\vec{u}+\vec{v})=S(T(\vec{u}+\vec{v})) \stackrel{\stackrel{\rightharpoonup}{v} \text { link }}{=} S(T(\bar{u})+T(\vec{u})) \\
& S \text { linear } \rightarrow=S(T(u))+S(T(v))=(S 0 T)(\vec{u})+(S O T)(\vec{v})
\end{aligned}
$$

Inverse Transformations

Definition

We say that a linear transformation $T: \mathbb{R}(\boxed{1}) \rightarrow \mathbb{R}^{(®)}$ is invertible if there is a linear transformation $S: \mathbb{R}^{(1)} \rightarrow \mathbb{R}^{(®)}$ such that

$$
(S \circ T)(\vec{x})=(T \circ S)(\vec{x})=\vec{x}
$$

for all $\vec{x} \in \mathbb{R}^{n}$.
sot \& tor exist

$$
\begin{aligned}
(\text { SoT })(\bar{x})=\bar{x} \quad & \text { Uecessscify the output } \\
& \text { of sot mast the the } \\
& \text { Sesame space as the input. }
\end{aligned}
$$

Inverse Transformations

Definition

We say that a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible if there is a linear transformation $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
(S \circ T) \vec{x}=(T \circ S) \vec{x}=\vec{x}
$$

for all $\vec{x} \in \mathbb{R}^{n}$. We call S the inverse of T and denote it T^{-1}.

Inverse Transformations

Definition

We say that a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible if there is a linear transformation $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
(S \circ T) \vec{x}=(T \circ S) \vec{x}=\vec{x}
$$

for all $\vec{x} \in \mathbb{R}^{n}$. We call S the inverse of T and denote it T^{-1}.

Note that we know that $T_{I_{n}}$ has the property that $T_{I_{n}}(\vec{x})=\vec{x}$ for all $\vec{x} \in \mathbb{R}^{n}$.

Inverse Transformations

Definition

We say that a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible if there is a linear transformation $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
(S \circ T) \vec{x}=(T \circ S) \vec{x}=\vec{x}
$$

for all $\vec{x} \in \mathbb{R}^{n}$. We call S the inverse of T and denote it T^{-1}.

Note that we know that $T_{I_{n}}$ has the property that $T_{l_{n}}(\vec{x})=\vec{x}$ for all $\vec{x} \in \mathbb{R}^{n}$. So we could rewrite the above statement as

$$
\underline{S \circ T}=T \circ S=\frac{T_{l_{n}}}{\square}
$$

Exercise
Exercise: vie the matrix to show algebraically that $S O T(\bar{x})=\bar{x}$ for all \vec{x}
Find the inverse to the transformation obtained by rotation by an angle of θ.
T,

The inverse operation would necessarily Map
$T(\bar{x})$ to \bar{x}

$$
A=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

$s:$

The duress operation is rotating in tho opposite direction by an angl of θ. or can thank chart as rotating by ch andes of θ.

$$
B=\left[\begin{array}{cc}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (\theta)
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Inverse Transformation Theorem

Theorem
A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible if and only if it is onto.
Theorem: A linen transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible iff it is ore-to one \& onto
prats we need to construct an $S^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \operatorname{such}$ they $\operatorname{SoT}(\bar{x})=\bar{x}$ for \quad.ll \ddot{x}.
If $\vec{\gamma} \in\left(R^{n}\right.$ the there exists an $\vec{x} \in \mathbb{R}^{\prime}$ such that $T(\vec{x})=\vec{y}$ since \vec{F} is onto. Moreover \vec{x} is cenigue since t is onto
So, f debin $s(\vec{y})=\vec{x}$.
And the see that $\operatorname{So} T(\bar{x})=S(T(\vec{x}))=S(\vec{y})=\vec{x}$
$\rightarrow S$ is the inverse of T.

Theorem
A linear transformation $T: \mathbb{R}^{(\longrightarrow)} \rightarrow \mathbb{R}^{(1)}$ is invertible if and only if it is onto.
Recall a linear transformation from $\mathbb{R}(\mathbb{R})$ is is onto if and only it is one-to-one, so one may also check that it is one-to-on to check that it is invertible.

$$
\begin{array}{cc}
T(\vec{x})=2 \vec{x} & S(\vec{y})=\frac{\vec{y}}{2} \\
T\binom{x_{1}}{x_{2}}=\binom{x_{1}+x_{2}}{x_{2}} \quad S\binom{y_{1}}{y_{2}}=\left(\begin{array}{c}
y_{1}-y_{2} \\
x_{2} \\
y_{1}
\end{array}\right) \quad\binom{x_{1}}{x_{2}} \\
k \\
\text { So } T\binom{x_{1}}{x_{2}}=S\left(T\binom{x_{1}}{x_{2}}\right)=S\left(\begin{array}{c}
\ddot{x}_{2}+x_{2} \\
x_{2} \\
p \\
x_{2}
\end{array}\right)=\binom{y_{1}-x_{2}}{x_{2}}=\binom{x_{1}+x_{2}-x_{2}}{x_{2}}
\end{array}
$$

Properties of Inverses

Theorem

(1) If T is invertible then T^{-1} is also invertible with $\left(T^{-1}\right)^{-1}=T$
(2) If T is one-to-one then T^{-1} exists and is also one-to-one
(3) If T is onto then T^{-1} exists and is also onto
(9) If T and S are invertible that $T \circ S$ is also invertible and $(T \circ S)^{-1}=S^{-1} \circ T^{-1}$

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Compositions and Matrix Multiplication

Theorem
Let A be an $m \times n$ matrix, B an $n \times k$ matrix and T_{A}, T_{B} the corresponding linear transformations. Then

$$
\underline{T_{A} \circ} \circ T_{B}=T_{A B}
$$

$$
\hat{T}_{A}(\vec{k})=A \vec{x}
$$

That is, $\left(T_{A} \circ T_{B}\right)(\vec{x})=A B \vec{x}$ for all $\vec{x} \in \mathbb{R}^{k}$.

$$
\begin{aligned}
\left(T_{A}\right. & \left.\circ T_{P}\right)(\vec{x})
\end{aligned}=T_{A}\left(T_{B}(\bar{x})\right)=T_{A}(B \vec{x})=A B \vec{x}
$$

Inverses and Matrix Inverses

Theorem
Let T be a linear transformation and let A be its standard matrix. Then T is invertible (as a transformation) if and only if A is invertible (as a matrix). Moreover,

$$
T^{-1}=\left(T_{A}\right)^{-1}=T_{A^{-1}}
$$

$$
T_{A} \circ T_{A-1}=T_{A A^{-1}}=T_{I_{n}} \Longleftrightarrow T_{A^{r}}=\left(T_{A}\right)^{-1}
$$

Geometric Interpretation in \mathbb{R}^{2}

Recall: we said at the beginning that linear operators "preserves linear structure" ...

Geometric Interpretation in \mathbb{R}^{2}

Recall: we said at the beginning that linear operators "preserves linear structure" ...
Theorem
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an invertible linear operator. Then:
(1) The image of a line is a line
(2) The image of a line passes through the origin if and only if the original line passes through the origin
(3) The images of two lines are parallel if and only the original lines are parallel

Geometric Interpretation in \mathbb{R}^{2} continued

Theorem

(9) The images of three points lie on a line if and only if the original points lie on a line
(The image of the line segment joining two points is the line segment joining the images of those points

