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Topics for Today

1 Subspaces Associated to Linear Transformations: Kernel and Range

2 Compositions of Linear Transformations

3 Inverses of Linear Transformations
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Kernel of a Linear Transformation

Definition

If T : Rn → Rm is a linear transformation, then we say that the set of
vectors in Rn that T maps to ~0 is the kernel of T and denote it ker(T ).

Recall that for every such linear transformation, we can find an m × n
matrix A such that T (~x) = A~x . Then we see that the kernel of T will be
the set of homogeneous solutions to A. If considering matrices, we will call
this the null space of A and denote it null(A).

Theorem

For any linear transformation T : Rn → Rm, the kernel of T is a subspace
of Rn.
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Exercise

Find the kernel of the linear transformations:

1 T

xy
z

 =

[
x + y

3z

]
2 Rotating by an angle of θ in R2
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One-to-one Linear Transformations

Definition

We say a linear transformation T : Rn → Rm is one-to-one (or injective)
if T maps distinct vectors in Rn to distinct vectors in Rm.

i.e.,

~x 6= ~y =⇒ T (~x) 6= T (~y) or T (~x) = T (~y) =⇒ ~x = ~y

Theorem

T : Rn → Rm is one-to-one if and only if ker(T ) = {0}, the
zero-subspace. For any matrix m × n matrix A, TA is one-to-one if and
only A~x = ~0 has only the trivial solution.
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Range of a Linear Transformation

Definition

If T : Rn → Rm is a linear transformation, then we say that the set of
vectors in Rm that can be written in the form T (~x) is the range of T and
denote it ran(T ).

If A is the m × n matrix such that T (~x) = A~x then ran(T ) is the set of
vectors ~b such that there is a solution to A~x = ~b or such that augmented
matrix (A|~b) is consistent.If considering matrices, we will call this the
column space of A and denote it col(A).

Theorem

For any linear transformation T : Rn → Rm, the range of T is a subspace
of Rm.
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Exercise

Find the range of the linear transformation

1 T (~x) =

(
1 1
1 1

)
~x

2 Rotating by an angle of θ in R2
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Onto Linear Transformations

Definition

We say a linear transformation T : Rn → Rm is onto (or surjective) if
every vector in Rm is the image of at least one vector in Rn

Theorem

A linear transformation T : Rn → Rm is onto if and only if ran(T ) = Rm.
If A in an m × n matrix, then the linear transformation TA is onto if and
only A~x = ~b has a solution for all ~b.
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Pigeonhole Principle

Theorem

A linear transformation T : Rn → Rn is one-to-one if and only if it is onto.
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Composition of Linear Transformations

Definition

Let T : Rn → Rm and S : Rm → Rk be linear transformations. Then we
say S ◦ T : Rn → Rk is the composition of S and T and define it as

(S ◦ T )(~x) = S (T (~x))

NOTE: while S ◦T exists, T ◦ S does not necessarily exist since S outputs
vectors in Rk while T must have vectors in Rm input into it.

Theorem

S ◦ T is a linear transformation from Rn to Rk .

Patrick Meisner (KTH) Lecture 11 10 / 18



Composition of Linear Transformations

Definition

Let T : Rn → Rm and S : Rm → Rk be linear transformations. Then we
say S ◦ T : Rn → Rk is the composition of S and T and define it as

(S ◦ T )(~x) = S (T (~x))

NOTE: while S ◦T exists, T ◦ S does not necessarily exist since S outputs
vectors in Rk while T must have vectors in Rm input into it.

Theorem

S ◦ T is a linear transformation from Rn to Rk .

Patrick Meisner (KTH) Lecture 11 10 / 18



Composition of Linear Transformations

Definition

Let T : Rn → Rm and S : Rm → Rk be linear transformations. Then we
say S ◦ T : Rn → Rk is the composition of S and T and define it as

(S ◦ T )(~x) = S (T (~x))

NOTE: while S ◦T exists, T ◦ S does not necessarily exist since S outputs
vectors in Rk while T must have vectors in Rm input into it.

Theorem

S ◦ T is a linear transformation from Rn to Rk .

Patrick Meisner (KTH) Lecture 11 10 / 18



Inverse Transformations

Definition

We say that a linear transformation T : Rn → Rn is invertible if there is a
linear transformation S : Rn → Rn such that

(S ◦ T )~x = (T ◦ S)~x = ~x

for all ~x ∈ Rn.

We call S the inverse of T and denote it T−1.

Note that we know that TIn has the property that TIn(~x) = ~x for all
~x ∈ Rn. So we could rewrite the above statement as

S ◦ T = T ◦ S = TIn
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Exercise

Find the inverse to the transformation obtained by rotation by an angle of
θ.
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Inverse Transformation Theorem

Theorem

A linear transformation T : Rn → Rn is invertible if and only if it is onto.

Recall a linear transformation from Rn to Rn is onto if and only it is
one-to-one, so one may also check that it is one-to-on to check that it is
invertible.

Patrick Meisner (KTH) Lecture 11 13 / 18



Inverse Transformation Theorem

Theorem

A linear transformation T : Rn → Rn is invertible if and only if it is onto.

Recall a linear transformation from Rn to Rn is onto if and only it is
one-to-one, so one may also check that it is one-to-on to check that it is
invertible.

Patrick Meisner (KTH) Lecture 11 13 / 18



Properties of Inverses

Theorem

1 If T is invertible then T−1 is also invertible with (T−1)−1 = T

2 If T is one-to-one then T−1 exists and is also one-to-one

3 If T is onto then T−1 exists and is also onto

4 If T and S are invertible that T ◦ S is also invertible and
(T ◦ S)−1 = S−1 ◦ T−1
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Compositions and Matrix Multiplication

Theorem

Let A be an m × n matrix, B an n × k matrix and TA, TB the
corresponding linear transformations. Then

TA ◦ TB = TAB

That is, (TA ◦ TB)(~x) = AB~x for all ~x ∈ Rk .
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Inverses and Matrix Inverses

Theorem

Let T be a linear transformation and let A be its standard matrix. Then T
is invertible (as a transformation) if and only if A is invertible (as a
matrix). Moreover,

T−1 = (TA)−1 = TA−1
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Geometric Interpretation in R2

Recall: we said at the beginning that linear operators “preserves linear
structure”...

Theorem

Let T : R2 → R2 be an invertible linear operator. Then:

1 The image of a line is a line

2 The image of a line passes through the origin if and only if the
original line passes through the origin

3 The images of two lines are parallel if and only the original lines are
parallel
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Geometric Interpretation in R2 continued

Theorem
4 The images of three points lie on a line if and only if the original

points lie on a line

5 The image of the line segment joining two points is the line segment
joining the images of those points
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