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Topics for Today

@ Subspaces Associated to Linear Transformations: Kernel and Range
@ Compositions of Linear Transformations

© Inverses of Linear Transformations
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Kernel of a Linear Transformation

Definition

If T:R"™ — R™ is a linear transformation, then we say that the set of
vectors in R"” that T maps to O is the kernel of T and denote it ker(T).
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Kernel of a Linear Transformation

Definition

If T:R"™ — R™ is a linear transformation, then we say that the set of
vectors in R"” that T maps to O is the kernel of T and denote it ker(T).

Recall that for every such linear transformation, we can find an m x n
matrix A such that T(X) = AX.
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Kernel of a Linear Transformation

Definition

If T:R"™ — R™ is a linear transformation, then we say that the set of
vectors in R"” that T maps to O is the kernel of T and denote it ker(T).

Recall that for every such linear transformation, we can find an m x n
matrix A such that T(X) = AX. Then we see that the kernel of T will be
the set of homogeneous solutions to A.
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Kernel of a Linear Transformation

Definition

If T:R"™ — R™ is a linear transformation, then we say that the set of
vectors in R"” that T maps to O is the kernel of T and denote it ker(T).

Recall that for every such linear transformation, we can find an m x n
matrix A such that T(X) = AX. Then we see that the kernel of T will be
the set of homogeneous solutions to A. If considering matrices, we will call
this the null space of A and denote it null(A).
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Kernel of a Linear Transformation

(b T®= O He X e b M Vgl LT

Definition

If T:R"™ — R™ is a linear transformation, then we say that the set of
vectors in R"” that T maps to O is the kernel of T and denote it ker(T).

Recall that for every such linear transformation, we can find an m x n
matrix A such that T(X) = AX. Then we see that the kernel of T will be
the set of homogeneous solutions to A. If considering matrices, we will call
this the null space of A and denote it null(A).

For any linear transformation T : R" — R™, the kernel of T is a subspace
of R".
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Exercise

Find the kernel of the linear transformations: /Al" Lo Sha 7
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One-to-one Linear Transformations

We say a linear transformation T : R” — R™ is one-to-one (or injective)

if T maps distinct vectors in R” to distinct vectors in R™.
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One-to-one Linear Transformations

We say a linear transformation T : R” — R™ is one-to-one (or injective)
if T maps distinct vectors in R” to distinct vectors in R™. i.e.,

X#y = T(X)#T()
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One-to-one Linear Transformations

We say a linear transformation T : R” — R™ is one-to-one (or injective)
if T maps distinct vectors in R” to distinct vectors in R™. i.e.,

X#y = TR #TY) o  TER=TY) = X=y
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One-to-one Linear Transformations

We say a linear transformation T : R” — R™ is one-to-one (or injective)
if T maps distinct vectors in R” to distinct vectors in R™. i.e.,

X#y = TR #TY) o  TR=TY) = X=y
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Theorem

T :R" — R™ s one-to-one if and only if ker(T) = {‘0)} the
zero—subspace For any matrix m x n matrix A, TA is one-to-one if and
only AX = 0 has only the trivial solution.
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Range of a Linear Transformation

Definition
If T:R"™ — R™ is a linear transformation, then we say that the set of
vectors in R™ that can be written in the form T(X) is the range of T and

denote it ran(T).
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Range of a Linear Transformation

Definition

If T:R"™ — R™ is a linear transformation, then we say that the set of
vectors in R™ that can be written in the form T(X) is the range of T and
denote it ran(T).

If Ais the m x n matrix such that T(X) = AX then ran(T) is the set of
vectors b such that there is a solution to AX = b
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Range of a Linear Transformation

Definition

If T:R"™ — R™ is a linear transformation, then we say that the set of
vectors in R™ that can be written in the form T(X) is the range of T and
denote it ran(T).

If A'is the m x n matrix such that T(X) = AX then ran(T) is the set of
vectors b such that there is a solution to AX = b or such that augmented
matrix (A|b) is consistent.
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Range of a Linear Transformation

Definition

If T:R"™ — R™ is a linear transformation, then we say that the set of
vectors in R™ that can be written in the form T(X) is the range of T and
denote it ran(T).

If A'is the m x n matrix such that T(X) = AX then ran(T) is the set of
vectors b such that there is a solution to AX = b or such that augmented
matrix (A|b) is consistent.If considering matrices, we will call this the
column space of A and denote it col(A).
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Range of a Linear Transformation

Definition

If T:R"™ — R™ is a linear transformation, then we say that the set of
vectors in R™ that can be written in the form T(X) is the range of T and
denote it ran(T).

If A'is the m x n matrix such that T(X) = AX then ran(T) is the set of
vectors b such that there is a solution to AX = b or such that augmented
matrix (A|b) is consistent.If considering matrices, we will call this the
column space of A and denote it col(A).

For any linear transformation T : R" — R™, the range of T is a subspace
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Exercise

Find the range of the linear transformation .. V)
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Onto Linear Transformations

Definition

We say a linear transformation T : R” — R™ is onto (or surjective) if
every vector in R™ is the image of at least one vector in R”
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Onto Linear Transformations

Definition

We say a linear transformation T : R” — R™ is onto (or surjective) if
every vector in R™ is the image of at least one vector in R”

A linear transformation T : R" — R®js onto if and only if ran(T) = RK7)
If A in an m X n matrix, then the linear transformation T4 is onto if and
only AX = b has a solution for all b.
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Pigeonhole Principle

D

A linear transformation T : RD— R®js one-to-one if and only if it is onto.
————

Dt b A he Tkl wetny A T

T(@: Ai T [ Gk ~fo ~one £ AR =0 s ol 1,
thv; - < 9/41‘ -

&;{) /AVFC > \\% o sylobion :—Uf ol E

—

= \ 0> ok

Patrick Meisner (KTH) Lecture 11 9/18



Composition of Linear Transformations

Let T:R" — R™ and S : R™ — RX be linear transformations. Then we
say So T : R" — R¥ is the composition of S and T and define it as

(S0 T)(X) = S(T(x)
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Composition of Linear Transformations

Let 7 :R® s R and S : R s R€ be linear transformations. Then we
say So T : R" — R¥ is the composition of S and T and define it as

(S0 T)(F) = 5(\/)

&l”‘ rP/

v

NOTE: while So T exists, T o S does not necessarily exist since S outputs
vectors in RX while T must e vectors in R™ input into it.
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Composition of Linear Transformations

Let T:R" - R™and S$:R™ — ]Rk be linear transformations. Then we
say So T: R” - R R¥ is the composntlon of S and T and define it as

(S0 T)(X) = S(T(x)

v

NOTE: while So T exists, T oS does not necessarily exist since S outputs
vectors in R¥ while T must have vectors in R™ input into it.

S o T is a linear transformation from R" to RX.
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Inverse Transformations

Definition

We say that a linear transformation T : RZ — R® s invertible if there is a
linear transformation S : R? — R® such that
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Inverse Transformations

Definition

We say that a linear transformation T : R” — R” is invertible if there is a
linear transformation S : R" — R” such that

(SoT)x=(ToS)x=x

for all X € R". We call S the inverse of T and denote it T 1.
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Inverse Transformations

Definition

We say that a linear transformation T : R” — R” is invertible if there is a
linear transformation S : R" — R” such that

(SoT)x=(ToS)x=x

for all X € R". We call S the inverse of T and denote it T 1.

Note that we know that T;, has the property that T, (x) = x for all
X e Rn e ——— =N
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Inverse Transformations

Definition

We say that a linear transformation T : R” — R” is invertible if there is a
linear transformation S : R" — R” such that

(So T!)?:(ToS))?:)?

for all X € R". We call S the inverse of T and denote it T 1.

Note that we know that T;, has the property that T, (x) = x for all
X € R™. So we could rewrite the above statement as
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Exercise
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Inverse Transformation Theorem

A linear transformation T : R" — R" js invertible if and only if it is onto.
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Inverse Transformation Theorem

A linear transformation T : ’— R®js invertible if and only if it is onto.

Recall a linear transformation from E2to B®is onto if and only it is
one-to-one, so one may also check that it is one-to-on to check that it is

invertiEIe.
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Properties of Inverses

@ If T is invertible then T~ is also invertible with (T~1)~1 =T

@ If T is one-to-one then T~ exists and is also one-to-one

@ If T is onto then T~ exists and is also onto

Q@ If T and S are invertible that T o S is also invertible and
(ToS)1=S5"1oT1
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Compositions and Matrix Multiplication

Theorem

Let A be an m x n matrix, B an n x k matrix and Tp, Tg the
corresponding linear transformations. Then

1
TA o TB = TAB TA—(-E}: A\?

That is, (Tao Tg)(X) = ABX for all X € RX.
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Inverses and Matrix Inverses

Let T be a linear transformation and let A be its standard matrix. Then T

is invertible (as a transformation) if and only if A is invertible (as a
matrix). Moreover,
T =(Ta) ' =Ta
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Geometric Interpretation in R?

Recall: we said at the beginning that linear operators “preserves linear
structure” ...
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Geometric Interpretation in R?

Recall: we said at the beginning that linear operators “preserves linear

structure” ...

Theorem
Let T : R? — R? be an invertible linear operator. Then:

© The image of a line is a line

@ The image of a line passes through the origin if and only if the
original line passes through the origin

© The images of two lines are parallel if and only the original lines are
parallel
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Geometric Interpretation in R? continued

@ The images of three points lie on a line if and only if the original
points lie on a line

© The image of the line segment joining two points is the line segment
joining the images of those points
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