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Topics for Today

@ Linear Transformations
@ Eigenvalues and Eigenvectors

© Orthogonal Transformations
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Linear Transformation

A function T : R” — R™ s called a linear transformation (or linear
map) if for all X,y € R” and c € R

Q@ T(X+y)=TK)+ T()

Q@ T(cx)=cT(X)
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Linear Transformation

Definition
A function T : R” — R™ s called a linear transformation (or linear
map) if for all X,y € R” and c € R

QO T(X+y)=T(x)+ T(y)

Q@ T(cX)=cT(x)
In general we can define linear transformation between any two vector
space V and W in the same way.
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Linear Transformation

Definition
A function T : R” — R™ s called a linear transformation (or linear
map) if for all X,y € R” and c € R

QO T(X+y)=T(x)+ T(y)

Q@ T(cX)=cT(x)
In general we can define linear transformation between any two vector
space V and W in the same way. Then we can think of linear

transformation as functions that “preserving the linear structure of V in
w".
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Some Linear Transformations

o X + by
o (()-[%
Y y
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Some Linear Transformations

x + by
o (()-[%
Y y
Rotating each vector in R? by 7/2
Reflecting each vector in R? in the line y = x
Projecting the vectors onto the x-axis
“Strecthing” by a factor of 2 in the x-direction
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Four Basic Linear Transformations

Linear transformations come in four basic categories:
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Four Basic Linear Transformations

Linear transformations come in four basic categories:

© Rotation about the origin
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Four Basic Linear Transformations

Linear transformations come in four basic categories:
© Rotation about the origin

@ Reflection about a line
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Four Basic Linear Transformations

Linear transformations come in four basic categories:
© Rotation about the origin
@ Reflection about a line

© Projection onto a line
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Four Basic Linear Transformations

Linear transformations come in four basic categories:
© Rotation about the origin
@ Reflection about a line
© Projection onto a line

@ Stretching in the direction of a line
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Four Basic Linear Transformations

Linear transformations come in four basic categories:
© Rotation about the origin
@ Reflection about a line
© Projection onto a line

@ Stretching in the direction of a line

All linear transformations can be broken up into components coming from
these four basic categories.
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Properties of Linear Tansformations

Let T be any linear transformation. Then
Q@ T(0)=0
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Matrices as Linear Transformations

Any m x n matrix, A, can define a linear transformation, T, from R" to
R™ by setting

Patrick Meisner (KTH) Lecture 10 7/27



Matrices as Linear Transformations

Any m x n matrix, A, can define a linear transformation, T, from R" to
R™ by setting

T(X) = AR

We will typically denote this transformation as Ta.
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Matrices as Linear Transformations

Any m x n matrix, A, can define a linear transformation, T, from R" to
R™ by setting

T(X) = AR

We will typically denote this transformation as Ta.

For example: let

1 5
A=12 -3
0 1
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Matrices as Linear Transformations

Any m x n matrix, A, can define a linear transformation, T, from R" to
R™ by setting
T(xX) = AX

We will typically denote this transformation as Ta.

For example: let

1 5
A=12 -3
0 1

then the linear transformation we get from A will be

()
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Matrices as Linear Transformations

Any m x n matrix, A, can define a linear transformation, T, from R" to
R™ by setting
T(xX) = AX

We will typically denote this transformation as Ta.

For example: let

1 5
A=12 -3
0 1

then the linear transformation we get from A will be

5

()~ (= ) [

Patrick Meisner (KTH) Lecture 10 7/27



Matrices as Linear Transformations

Any m x n matrix, A, can define a linear transformation, T, from R" to
R™ by setting
T(xX) = AX

We will typically denote this transformation as Ta.

For example: let

1 5
A=12 -3
0 1

then the linear transformation we get from A will be

. 1 5 . X + by
TA([ D —[2 3 H = |x-3y

y 0o 1/ )
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Matrices as Linear Transformations

Any m x n matrix, A, can define a linear transformation, T, from R" to
R™ by setting
T(xX) = AX

We will typically denote this transformation as Ta.

For example: let

1 5
A=12 -3
0 1

then the linear transformation we get from A will be

. 1 5 . X + by

() -( 8-
y 0o 1/ W y

Notice: this is the same linear transformation as the example on slide 4.
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Matrices as Linear Transformations

Any m x n matrix, A, can define a linear transformation, T, from R" to
R™ by setting
T(xX) = AX

We will typically denote this transformation as Ta.

For example: let

1 5
A=12 -3
0 1

then the linear transformation we get from A will be

. 1 5 . X + by

TA<[ D — (2 3 H ~ J2x 3y
y 0 1 y y

Notice: this is the same linear transformation as the example on slide 4.

Can we always find a matrix that defines the linear transformation?
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Linear Transformations as Matrices

Let T be any linear transformation from R™ to R".
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Linear Transformations as Matrices

Let T be any linear transformation from R™ to R". Define the matrix

A= (T(&) T(&) ... T(&nm))
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Linear Transformations as Matrices

Let T be any linear transformation from R™ to R". Define the matrix
A= (T(&) T(&) ... T(&nm))
Then for all X € R™,
T(x) = AX (or T=Ty)

This matrix A is often called the standard matrix of T.
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Exercise

Find the matrices that correspond to the linear transformations
@ Rotating each vector in R? by 7/2
@ Reflecting each vector in R? in the line y = x
© Projecting the vectors onto the x-axis

@ Stretching by a factor of 2 in the x-direction
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More Work Space
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Exercise

Find the matrix that corresponds to the linear transformation of rotating
each vector in R? by an angle 6.

Cos & -Sih
AYC Sin @ Con co.
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Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the

transformation that correspond to diagonal matrices are the simplest and
easiest as well.
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Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the

transformation that correspond to diagonal matrices are the simplest and
easiest as well. Let

i 0 ... 0
0 d ... 0
0 0 ... d,
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Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the

transformation that correspond to diagonal matrices are the simplest and
easiest as well. Let

d 0 ... 0
0 d ... 0
0 0 ... dp

Then the linear transformation that corresponds to D would be
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Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the

transformation that correspond to diagonal matrices are the simplest and
easiest as well. Let

d 0 ... 0
0 d ... 0
0 0 ... dp

Then the linear transformation that corresponds to D would be

X1 dq 0 ... 0 X1
X2 0 d2 SN 0 X2
Tp | |. =1. . . :
Xn 0O 0 ... d, Xn
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Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the

transformation that correspond to diagonal matrices are the simplest and
easiest as well. Let

d 0 ... 0
0 d ... 0
0 0 ... dp

Then the linear transformation that corresponds to D would be

X1 d1 0 PN 0 .il. d1X1
X2 0 d2 ce 0 X2 2X2
To||. = - Tl ==
Xn 0 0 e Cig Xn ann
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Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the

transformation that correspond to diagonal matrices are the simplest and
easiest as well. Let

d 0 ... 0
0 d ... 0
0 0 ... dp

Then the linear transformation that corresponds to D would be

X1 d1 0 PN 0 X1 qlxl
X2 0 d ... 0 XD quZ
Tp . = o : =1
Xn 0O 0 ... d, Xn dnxn
In particular, we see that T, (X) = x for all X € R" T, deoy
—_— 7
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Simplest Action of a Linear Transformation

In particular, we note that
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Simplest Action of a Linear Transformation

In particular, we note that

0
d 0 ... o\ |

) 0 d ... 0]}
To(e) = R : 1
o 0 .. d/)|°

_O_
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Simplest Action of a Linear Transformation

In particular, we note that

B .bw p«_»f”:h
d O 0 0
1 oo . .
. 0 d ... 0 : A l : .
TD(EI) = : : _p{\_ : 1 = d,' = d,'i
0 0 ... d) | :
_O_ _0_
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Simplest Action of a Linear Transformation

In particular, we note that

o o]
d 0 ... 0 . }
. 0 d ... 0]} : )
TD(e,-): : : . : 1| = d,' :d,-e,-
0 0 ... dJ|° :
_O_ _0_

That is, we see that Tp acts on €; in the simplest way it can:
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Simplest Action of a Linear Transformation

In particular, we note that

o o]
d 0 ... 0 . }
. 0 d ... 0]} : )
TD(e,-): : : . : 1| = d,' :d,-e,-
0 0 ... dJ|° :
_O_ _0_

That is, we see that Tp acts on €; in the simplest way it can: by just

multiplying by d.
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Simplest Action of a Linear Transformation

In particular, we note that

0] 0
d 0 ... 0
- 0 & ... 0 : : .
TD(e,-): : : . : 1| = d,' :d,-e,-
o 0 .. d/)|° :
_O_ _0_

That is, we see that Tp acts on €; in the simplest way it can: by just

multiplying by d.
Can this be extended too other matrices?
13/27
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Eigenvalues and Eigenvectors

For any n x n matrix, A, we define A to be an eigenvalue of A if there
exists an non-zero vector v such that

AV = \V.
- Z—
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Eigenvalues and Eigenvectors

Definition

For any n x n matrix, A, we define A to be an eigenvalue of A if there
exists an non-zero vector ¥ such that \, Ae

AV = V.
Mk — T sealor
Moreover, we call such an v an eige’[lvector of A with eigenvalue \.

\l v
oA~ Cag A }_ M\N ?d\ 9(( \7
Ky e 39 -

Patrick Meisner (KTH) Lecture 10 14 /27



Eigenvalues and Eigenvectors

Definition

For any n x n matrix, A, we define A to be an eigenvalue of A if there
exists an non-zero vector v such that

AV = AV.

Moreover, we call such an v an eigenvector of A with eigenvalue \.

(o 5)

Example:
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Eigenvalues and Eigenvectors

Definition

For any n x n matrix, A, we define A to be an eigenvalue of A if there
exists an non-zero vector v such that

AV = AV.

Moreover, we call such an v an eigenvector of A with eigenvalue \.

(& 9H-E

Example:
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Eigenvalues and Eigenvectors

Definition

For any n x n matrix, A, we define A to be an eigenvalue of A if there
exists an non-zero vector v such that

AV = AV.

Moreover, we call such an v an eigenvector of A with eigenvalue \.

Example:
o N[ _[2] _,[t
6 5/ |2| T |4] TZ2
—— = -
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Eigenvalues and Eigenvectors

Definition
For any n x n matrix, A, we define A to be an eigenvalue of A if there
exists an non-zero vector v such that

AV = AV.

Moreover, we call such an v an eigenvector of A with eigenvalue \.

(o 5) 1] =[] 2]

And so we say that 2 is an eigenvalue of 0 1

Example:
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Eigenvalues and Eigenvectors

Definition

For any n x n matrix, A, we define A to be an eigenvalue of A if there
exists an non-zero vector v such that
Ac= A5

AV = AV.

Moreover, we call such an v an eigenvector of A with eigenvalue \.

0 1)\ |1 2 1
(% 5 bl -2 —2»[4
1 L 1
And so we say that 2 is an eigenvalue of with eigenvector 5

(2 D) ETe ) =
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Geometric Interpretation of Eigenvalues and Eigenvectors

Recall we stated that linear transformation have 4 basic forms
© Rotation
@ Reflection about a line
© Projection onto a line

@ Stretching in the direction of a line
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Geometric Interpretation of Eigenvalues and Eigenvectors

Recall we stated that linear transformation have 4 basic forms
© Rotation
@ Reflection about a line
© Projection onto a line

@ Stretching in the direction of a line

Therefore, if V is an eigenvector of A with eigenvalues A, then we can think
of the linear transformation T,4, that corresponds by A, has a component
corresponding to stretching by a factor of \ in the direction of V.

U e epeds o A with ek A
T = AV LV ko dfret ch{’ % o Fator
[9) .
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Condition for Eigenvalues 1

Let A be an n x n matrix. Then X is an eigenvalue of A if and only if the
matrix -

A— A,
—
has a non-trivial homogeneous solution. Moreover, all non-trivial
homogeneous solutions to A — \l,, will be eigenvectors of A with
eigenvalue \.

@7) A o eiginale  He  Hnoeew,  v=o
g Sk A Qv = Ay - dvso = Av- ATV =0

=) A—‘ &}\q VvV =0 - V4 & ot oo colbofi o 4_?}1\7
) b ovs e Vo sddion  h A AT =>
(%’ Q\}n>\[;o S> /‘\~\I: ﬂ\/
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Condition for Eigenvalues 2

Let A be an n x n matrix. Then the following are equivalent

@ ) is an eigenvalue of A

@ A — )\, has a non-trivial homogeneous solution
©@ A — )\l is not invertible

Q det(A— X)) =0

Wl Seo e A-QTo liw pon- 4 ows st

= A O®a b e i
== A A- AT =0

s @met b A ey Ly,
NN ok ()Bf ‘({* YO\7N"““”/,
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Major Theorem

Let A be an n x n matrix. The the following are equivalent
O AX=b has a unique solution for every b
@ AxX =0 has a unique solution
@ rk(A)=n
@ The RREF of A is I,
© A is invertible

e
@ The columns of A are linearly independent

@ The row vectors of A are linearly independent

Q det(A) £0
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Major Theorem

Let A be an n x n matrix. The the following are equivalent
O AX=b has a unique solution for every b
@ AxX =0 has a unique solution
@ rk(A)=n
@ The RREF of A is I,
© A is invertible
@ The columns of A are linearly independent
@ The row vectors of A are linearly independent
Q det(A) #0

O 0 /s not an eigenvalue of A

O T on t??M./r-L (Q‘-Y" o= w‘( A\‘— O_':/\\ ~ &4/"(4—}
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Find the eigenvalues of eigenvectors of

1= (5% 5)

Tid N gul W M A-dB)E o

Sl N TR EHE

Jh( A A=K is E)(S—2 ~ (ne)
ﬂl —Sk ~0n
~2) (A
- A=y L 4=3




More Work Space

phevi oy ec onfb vt Seye _g\; Z()' 9‘[‘”
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)@ -
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Orthogonal Transformations

We have seen that eigenvalues can describe the component of a linear
operation that corresponds to stretching in a direction.

Patrick Meisner (KTH) Lecture 10 21/27



Orthogonal Transformations

We have seen that eigenvalues can describe the component of a linear

operation that corresponds to stretching in a direction. But what about
the other components?
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Orthogonal Transformations

We have seen that eigenvalues can describe the component of a linear
operation that corresponds to stretching in a direction. But what about
the other components?

Definition

We say a linear transformation T : R” — R" is orthogonal if
ITG) = 11X

for all X € R".
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Orthogonal Transformations

We have seen that eigenvalues can describe the component of a linear
operation that corresponds to stretching in a direction. But what about
the other components?

Definition

We say a linear transformation T : R” — R" is orthogonal if
ITG) = 11X

for all X € R". We sometimes call this property norm preserving
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Dot-Product Preserving

A linear transformation, T : R" — R", is orthogonal if and only if
T(X)- T(y)=x-y forall X,y € R".

Hence, we sometimes call orthogonal transformations dot-product
preserving.

(5 T
@ - T e <- X

(
[T

W) = K-v ¥0’ al( 35;
L
(

= {x-

Patrick Meisner (KTH) Lecture 10 22/27



Examples of Orthogonal Transformation

For any 6, the linear transformation given by T(X) = AX is orthogonal

(50 )

GQQV\ ex cov(% /¥ CQ[Q\@@/UJJ M “h'} [/)é;- N 0;/7&
O&’ > ond So Aesrot= C,h’/mgf coy g s

e (G 20 fon gy

ﬂ(@s Shx R@wﬂ @m SKeeno)y) ]ML S




Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation
T(x) = AX is orthogonal.

Theorem

The following statements are equivalent
© A is orthogonal
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Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation
T(x) = AX is orthogonal.

Theorem

The following statements are equivalent
© A is orthogonal
Q ||AX|| = ||X|| for all X € R"
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Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation
T(x) = AX is orthogonal.

Theorem

The following statements are equivalent —

© A is orthogonal mey K Tl = AR
@ ||A%|| = |IR]| for all X € R” e Ve whou

O (AR) - (Ay) =% 7 forall X,y € R
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Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation
T(x) = AX is orthogonal.

Theorem

The following statements are equivalent
© A is orthogonal
Q ||AX|| = ||X|| for all X € R"
Q (AX)-(Ay)=x-y forall X,y € R"
Q ATA=1,
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Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation
T(x) = AX is orthogonal.

Theorem

The following statements are equivalent
© A is orthogonal
Q ||AX|| = ||X|| for all X € R"
Q (AX)-(Ay)=x-y forall X,y € R"

Ta_ i
gﬁTA__Ai (S by i on A A
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Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation
T(x) = AX is orthogonal.

The following statements are equivalent

© A is orthogonal

Q ||AX|| = ||X|| for all X € R"
719 (AX) - (Ay) =X-y forall X,y € R"
(70 ATA =1,

Q@ AT =A"

@ Any two column vectors of A are orthogonal and unit vectors
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Sketch of Proof
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Properties of Orthogonal Matrices 1

If A is an orthogonal matrix that det(A) =1 or —1.

AU h= T so el bk e nmb
M/p\\ A,\: Ay @’\) = ,_/_\/ /\\>/
dw;(; dHE - M) - D = e (H : 1

T\ L G




Properties of Orthogonal Matrices 2

© The product of two orthogonal matrices is orthogonal

@ The inverse of an orthogonal matrix is orthogonal
© The transpose of an orthogonal matrix is orthogonal

@ A is orthogonal if and only if it's row vectors are orthonormal
—_———

L odhg =5 . Ao ot MK@W(

A gy = 4 ontle Loat

Lokl =7 AT oot 4 Wl
Lmed: A P

< ot }({/‘f?
%%y <\) s E X/ p‘\?J/If)'y M/L‘
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