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Topics for Today

1 Linear Transformations

2 Eigenvalues and Eigenvectors

3 Orthogonal Transformations
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Linear Transformation

Definition

A function T : Rn → Rm s called a linear transformation (or linear
map) if for all ~x , ~y ∈ Rn and c ∈ R

1 T (~x + ~y) = T (~x) + T (~y)

2 T (c~x) = cT (~x)

In general we can define linear transformation between any two vector
space V and W in the same way. Then we can think of linear
transformation as functions that “preserving the linear structure of V in
W ”.
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Some Linear Transformations

1 T

([
x
y

])
=

 x + 5y
2x − 3y

y



2 Rotating each vector in R2 by π/2

3 Reflecting each vector in R2 in the line y = x

4 Projecting the vectors onto the x-axis

5 “Strecthing” by a factor of 2 in the x-direction
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Four Basic Linear Transformations

Linear transformations come in four basic categories:

1 Rotation about the origin

2 Reflection about a line

3 Projection onto a line

4 Stretching in the direction of a line

Fact

All linear transformations can be broken up into components coming from
these four basic categories.
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Properties of Linear Tansformations

Theorem

Let T be any linear transformation. Then

1 T (~0) = ~0

2 T (−~v) = −T (~v)

3 T (~u − ~v) = T (~u − ~v)
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Matrices as Linear Transformations

Any m × n matrix, A, can define a linear transformation, T , from Rn to
Rm by setting

T (~x) = A~x

We will typically denote this transformation as TA.

For example: let

A =

1 5
2 −3
0 1


then the linear transformation we get from A will be

TA

([
x
y

])
=

1 5
2 −3
0 1

[x
y

]
=

 x + 5y
2x − 3y

y


Notice: this is the same linear transformation as the example on slide 4.

Can we always find a matrix that defines the linear transformation?
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Linear Transformations as Matrices

Theorem

Let T be any linear transformation from Rm to Rn.

Define the matrix

A =
(
T (~e1) T (~e2) . . . T (~em)

)
Then for all ~x ∈ Rm,

T (~x) = A~x (or T = TA)

This matrix A is often called the standard matrix of T.
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Exercise

Find the matrices that correspond to the linear transformations

1 Rotating each vector in R2 by π/2

2 Reflecting each vector in R2 in the line y = x

3 Projecting the vectors onto the x-axis

4 Stretching by a factor of 2 in the x-direction
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More Work Space
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Exercise

Find the matrix that corresponds to the linear transformation of rotating
each vector in R2 by an angle θ.
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Simplest Linear Transformations

Similar to how diagonal matrices are the simplest and easiest matrices, the
transformation that correspond to diagonal matrices are the simplest and
easiest as well.

Let

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn


Then the linear transformation that corresponds to D would be

TD



x1
x2
...
xn


 =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn



x1
x2
...
xn

 =


d1x1
d2x2

...
dnxn


In particular, we see that TIn(~x) = ~x for all ~x ∈ Rn
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Simplest Action of a Linear Transformation

In particular, we note that

TD(~ei )

=


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn




0
...
1
...
0

 =


0
...
di
...
0

 = di~ei

That is, we see that TD acts on ~ei in the simplest way it can: by just
multiplying by di .

Can this be extended too other matrices?
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Eigenvalues and Eigenvectors

Definition

For any n × n matrix, A, we define λ to be an eigenvalue of A if there
exists an non-zero vector ~v such that

A~v = λ~v .

Moreover, we call such an ~v an eigenvector of A with eigenvalue λ.

Example: (
0 1
−6 5

)[
1
2

]
=

[
2
4

]
= 2

[
1
2

]
And so we say that 2 is an eigenvalue of

(
0 1
−6 5

)
with eigenvector

[
1
2

]
.
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Geometric Interpretation of Eigenvalues and Eigenvectors

Recall we stated that linear transformation have 4 basic forms

1 Rotation

2 Reflection about a line

3 Projection onto a line

4 Stretching in the direction of a line

Therefore, if ~v is an eigenvector of A with eigenvalues λ, then we can think
of the linear transformation TA, that corresponds by A, has a component
corresponding to stretching by a factor of λ in the direction of ~v .
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Condition for Eigenvalues 1

Theorem

Let A be an n × n matrix. Then λ is an eigenvalue of A if and only if the
matrix

A− λIn
has a non-trivial homogeneous solution. Moreover, all non-trivial
homogeneous solutions to A− λIn will be eigenvectors of A with
eigenvalue λ.
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Condition for Eigenvalues 2

Theorem

Let A be an n × n matrix. Then the following are equivalent

1 λ is an eigenvalue of A

2 A− λIn has a non-trivial homogeneous solution

3 A− λIn is not invertible

4 det(A− λIn) = 0

Patrick Meisner (KTH) Lecture 10 17 / 27



Major Theorem

Theorem

Let A be an n × n matrix. The the following are equivalent

1 A~x = ~b has a unique solution for every ~b

2 A~x = 0 has a unique solution

3 rk(A) = n

4 The RREF of A is In
5 A is invertible

6 The columns of A are linearly independent

7 The row vectors of A are linearly independent

8 det(A) 6= 0

9 0 is not an eigenvalue of A
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Example

Find the eigenvalues of eigenvectors of

A =

(
0 1
−6 5

)
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More Work Space
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Orthogonal Transformations

We have seen that eigenvalues can describe the component of a linear
operation that corresponds to stretching in a direction.

But what about
the other components?

Definition

We say a linear transformation T : Rn → Rn is orthogonal if

‖T (~x)‖ = ‖~x‖

for all ~x ∈ Rn. We sometimes call this property norm preserving
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Dot-Product Preserving

Theorem

A linear transformation, T : Rn → Rn, is orthogonal if and only if
T (~x) · T (~y) = ~x · ~y for all ~x , ~y ∈ Rn.

Hence, we sometimes call orthogonal transformations dot-product
preserving.
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Examples of Orthogonal Transformation

For any θ, the linear transformation given by T (~x) = A~x is orthogonal

A :=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
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Orthogonal Matrices

Definition

We say a square matrix A is orthogonal if the linear transformation
T (~x) = A~x is orthogonal.

Theorem

The following statements are equivalent

1 A is orthogonal

2 ‖A~x‖ = ‖~x‖ for all ~x ∈ Rn

3 (A~x) · (A~y) = ~x · ~y for all ~x , ~y ∈ Rn

4 ATA = In
5 AT = A−1

6 Any two column vectors of A are orthogonal and unit vectors
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Sketch of Proof
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Properties of Orthogonal Matrices 1

Theorem

If A is an orthogonal matrix that det(A) = 1 or −1.
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Properties of Orthogonal Matrices 2

Theorem
1 The product of two orthogonal matrices is orthogonal

2 The inverse of an orthogonal matrix is orthogonal

3 The transpose of an orthogonal matrix is orthogonal

4 A is orthogonal if and only if it’s row vectors are orthonormal
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