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Topics for Today

1 Using Determinants to Solve Matrix Equations: Cramer’s Rule

2 Geometric Interpretation of Determinants

3 Cross Products and Determinants
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Solving Matrix Equations

We now know that if A is an invertible matrix then there is always a
unique solution to

A~x = ~b

for every ~b, namely A−1~b.

We have an algorithm for finding the inverse but can we find a formula?
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Adjoint of a Matrix

Recall, for a matrix A, we define the (i , j)-th cofactor, Ci ,j to be the signed
determinant of the matrix obtained by removing i-th row and j-th column
from A.

Definition

For any matrix A, we define the matrix of cofactors of A to be

C =


C1,1 C1,2 . . . C1,n

C2,1 C2,2 . . . C2,n
...

...
. . .

...
Cn,1 Cn,2 . . . Cn,n


We define the adjoint of A (denoted adj(A)) to be

adj(A) = CT
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Formula for Inverse

Theorem

If A is an invertible matrix then

A−1 =
1

det(A)
adj(A)

Sketch of Proof.

Use the definition of adj(A) to show that

1

det(A)
A · adj(A) =

1

det(A)
adj(A) · A = In
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Example

Let

A =

3 2 −1
1 6 3
2 −4 0



Then
C1,1 = 12 C1,2 = 6 C1,3 = −16

C2,1 = 4 C2,2 = 2 C2,3 = 16

C3,1 = 12 C3,2 = −10 C3,3 = 16

and so

det(A) = 3 ∗ 12 + 2 ∗ 6 + (−1) ∗ (−16)

= 1 ∗ 4 + 6 ∗ 2 + 3 ∗ 16

= 2 ∗ 12 + (−4) ∗ (−10) + 0 ∗ 16

= 2 ∗ 6 + 6 ∗ 2 + (−4) ∗ (−10)

= 64
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Example Continued

C =

12 6 −16
4 2 16

12 −10 16



adj(A) = CT =

 12 4 12
6 2 −10
−16 16 16



A−1 =
1

64

 12 4 12
6 2 −10
−16 16 16


Exercise

Check that

1

64

3 2 −1
1 6 3
2 −4 0

 12 4 12
6 2 −10
−16 16 16

 =

1 0 0
0 1 0
0 0 1



Patrick Meisner (KTH) Lecture 9 7 / 26



Example Continued

C =

12 6 −16
4 2 16

12 −10 16

 adj(A) = CT =

 12 4 12
6 2 −10
−16 16 16



A−1 =
1

64

 12 4 12
6 2 −10
−16 16 16


Exercise

Check that

1

64

3 2 −1
1 6 3
2 −4 0

 12 4 12
6 2 −10
−16 16 16

 =

1 0 0
0 1 0
0 0 1



Patrick Meisner (KTH) Lecture 9 7 / 26



Example Continued

C =

12 6 −16
4 2 16

12 −10 16

 adj(A) = CT =

 12 4 12
6 2 −10
−16 16 16



A−1 =
1

64

 12 4 12
6 2 −10
−16 16 16



Exercise

Check that

1

64

3 2 −1
1 6 3
2 −4 0

 12 4 12
6 2 −10
−16 16 16

 =

1 0 0
0 1 0
0 0 1



Patrick Meisner (KTH) Lecture 9 7 / 26



Example Continued

C =

12 6 −16
4 2 16

12 −10 16

 adj(A) = CT =

 12 4 12
6 2 −10
−16 16 16



A−1 =
1

64

 12 4 12
6 2 −10
−16 16 16


Exercise

Check that

1

64

3 2 −1
1 6 3
2 −4 0

 12 4 12
6 2 −10
−16 16 16

 =

1 0 0
0 1 0
0 0 1


Patrick Meisner (KTH) Lecture 9 7 / 26



Cramer’s Rule

We now have a formula for finding the inverse and hence for solving
A~x = ~b.

However, it is still fairly computationally taxing as you have to
find all the cofactors and so compute n2 determinants. So, it begs the
question: Can we find a solution without finding the inverse?

Theorem (Cramer’s Rule)

Let A be an invertible matrix and ~b any vector. Define Aj as the matrix

obtained by replacing the j-th column of A by ~b. Then the unique solution
to A~x = ~b is given by

x1 =
det(A1)

det(A)
x2 =

det(A2)

det(A)
. . . xn =

det(An)

det(A)

We see here that we can find a solution by only taking n + 1 determinants!
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Example

Solve the system
x1 + 2x3 = 6

−3x1 + 4x2 + 6x3 = 30

−x1 − 2x2 + 3x3 = 8

A =

 1 0 2
−3 4 6
−1 −2 3

 ~b =

 6
30
8



A1 =

 6 0 2
30 4 6
8 −2 3

 A2 =

 1 6 2
−3 30 6
−1 8 3

 A3 =

 1 0 6
−3 4 30
−1 −2 8


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Example Continued

Computing, we find that

det(A) = 44 det(A1) = −40 det(A2) = 72 det(A3) = 152

Hence,

~x =

det(A1)/ det(A)
det(A2)/ det(A)
det(A3)/ det(A)

 =

−40/44
72/44

152/44

 =

−10/11
18/11
38/11


is the unique solution to the system of linear equations.

Exercise

Prove Cramer’s Rule. Hint: use the adjoint formula for the inverse.
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Geometric Interpretation of Determinants

Theorem
1 If A is a 2× 2 matrix, then | det(A)| represents the area of the

parallelogram determined by the two column vectors of A.

2 If A is a 3× 3 matrix, then | det(A)| represents the volume of the
parallelepiped determined the by the three columns of A.

3 In general, | det(A)| can be thought of as an “n-dimensional volume”
of the n-dimensional object determined by the columns of A.
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More Work Space
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Geometric Interpretation of Determinant Zero

Question

What is the geometric interpretation of a matrix having determinant 0?

Answer: the n-dimensional objects determined by the columns of A
actually lives in an n − 1-dimensional space and thus has 0 “n-dimensional
volume”.

That is, the determinant of a 2× 2 matrix is 0 if and only if its columns
are proportional if and only if the “parallelogram” determined by its
columns is a line and hence has 0 area.
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Brief Aside to Linear Functions

We can think of an m × n matrix as a function from Rn to Rm. Indeed:

Rn → Rm

~x 7→ A~x

If A is a square matrix then it is a function from Rn to Rn. Then the
determinant tells us by how much shapes in Rn expand (or shrink if
det(A) < 1). That is, it would take a shape of “volume” V and map it to
a shape of “volume” | det(A)|V .

Moreover, A would take a shape of “perimeter” L and map it to a shape
of “perimeter” |Tr(A)|L.
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det(A) < 1). That is, it would take a shape of “volume” V and map it to
a shape of “volume” | det(A)|V .

Moreover, A would take a shape of “perimeter” L and map it to a shape
of “perimeter” |Tr(A)|L.
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Cross Product as Determinant

Recall, for vectors in R3, we define the cross product

~u × ~v =

u1u2
u3

×
v1v2
v3

 =

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1



This definition should now evoke notions of determinants. Indeed:

~u × ~v =

(
det

(
u2 u3
v2 v3

)
,− det

(
u1 u3
v1 v3

)
, det

(
u1 u2
v1 v2

))
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Cross Product as Determinant

A good way to remember the formula for the cross product is as the
determinant of a “formal matrix”:

~u × ~v = det

~e1 ~e2 ~e3
u1 u2 u3
v1 v2 v3


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Example

Use the “formal matrix” to calculate 1
2
−2

×
3

0
1


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Cross Product Theorem

We can now use this notation of cross product to prove many properties of
the cross product easily

Theorem

Let ~u and ~v be two vectors in R3 and c and real number. Then

1 ~u × ~v = −~v × ~u
2 c(~u × ~v) = (c~u)× ~v = ~u × (c~v)

3 ~u ×~0 = ~0× ~u = ~0

4 ~u × ~u = ~0
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More Work Space

Patrick Meisner (KTH) Lecture 9 19 / 26



The Standard Basis Vectors i, j, k

Oftein in R3, we write we write ~e1 = i, ~e2 = j and ~e3 = k.

Then it is fairly
easy to see that we have the following relations

i× j = k j× k = i k× i = j

j× i = −k k× j = −i i× k = −j

i× i = ~0 j× j = ~0 k× k = ~0

Now, any vector in R3 can be written as linear combination of ~e1, ~e2 and
~e3 and hence of i,j and k. Therefore, to cross multiply two vectors it is
enough to “expand the product”:

~u × ~v = (u1i + u2j + u3k)× (v1i + v2j + v3k)
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Example

“Expand the product” to calculate 1
2
−2

×
3

0
1


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Big Caution

Note that:
i× (j× j) = i×~0 = ~0

while
(i× j)× j = k× j = −i 6= ~0

Hence, it is not true in general that

(~u × ~v)× ~w = ~u × (~v × ~w)

The cross product is NOT associative. So writing something like

~u × ~v × ~w

does NOT make sense as it depends on the order you are (cross)
multiplying them in.
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Dot Product with i,j,k

We see also that we can get the dot products of i,j and k

i · i = 1 j · j = 1 k · k = 1

i · j = j · i = i · k = k · i = j · k = k · j = 0

Then we can define dot product of two vectors by “expanding the product”

~u · ~v = (u1i + u2j + u3k) · (v1i + v2j + v3k)

Exercise

Use the “expand the product” idea to prove

1 ~u × (~v + ~w) = ~u × ~v + ~u × ~w

2 (~u + ~v)× ~w = ~u × ~w + ~v × ~w

3 ~u · (~u × ~v) = 0 (i.e. ~u is orthogonal to ~u × ~v)

4 ~v · (~u × ~v) = 0 (i.e. ~v is orthogonal to ~u × ~v)
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Cross Product as an Area

We have already seen that the cross product is related to the determinant,
which is related to areas and volumes.

So it makes sense that the cross
product of the two vectors would be related to an area.

Theorem

Let ~u and ~v be non-zero vectors in R3 and let θ be the angle between
them. Then

1 ‖~u × ~v‖ = ‖~u‖ ‖~v‖ sin(θ)

2 ‖~u × ~v‖ is the area of the parallelogram that has ~u and ~v as adjacent
sides.
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Proof
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More Work Space
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