SF 1684 Algebra and Geometry Lecture 7

Patrick Meisner
KTH Royal Institute of Technology

Topics for Today

(1) Easily Invertible Matrices
(2) Functions on Matrices: Transpose and Trace
(3) Subspaces
(9) Linear Dependence

Easily Invertible Matrices: Diagonal Matrices

Let

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

be a diagonal matrix.

Easily Invertible Matrices: Diagonal Matrices

Let

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

be a diagonal matrix. Then D is invertible if and only all of the d_{i} are non-zero

Easily Invertible Matrices: Diagonal Matrices

Let

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)
$$

be a diagonal matrix. Then D is invertible if and only all of the d_{i} are non-zero with inverse

$$
D^{-1}=\left(\begin{array}{cccc}
\frac{1}{d_{1}} & 0 & \ldots & 0 \\
0 & \frac{1}{d_{2}} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \frac{1}{d_{n}}
\end{array}\right)
$$

check that

$$
D D^{-1}=I_{n}
$$

Easily Ivertible Matrices: 2×2 Matrix

In general, it is difficult to calculate the inverse of a given matrix.

Easily Ivertible Matrices: 2×2 Matrix
In general, it is difficult to calculate the inverse of a given matrix.
However, in the 2×2 case, there is a simple formula:
Theorem
If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then A is invertible if and only if $a d-b c \neq 0$ with inverse

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Functions on Matrices

As well as multiplying and inverting matrices there are some other functions on matrices that we care about

Functions on Matrices

As well as multiplying and inverting matrices there are some other functions on matrices that we care about

Definition

Let A be an $m \times n$ matrix, then the transpose of A, denoted A^{T} is an $n \times m$ matrix, where the rows and columns are "flipped":

Functions on Matrices

As well as multiplying and inverting matrices there are some other functions on matrices that we care about

Definition

Let A be an $m \times n$ matrix, then the transpose of A, denoted A^{T} is an $n \times m$ matrix, where the rows and columns are "flipped":

$$
A=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
\frac{a_{2,1}}{} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right) \Longrightarrow A^{T}=\left(\begin{array}{c}
a_{1,1} \\
a_{1,2} \\
\vdots \\
a_{1, n}
\end{array}\left(\begin{array}{ccc}
a_{2,1} & \ldots & a_{m, 1} \\
a_{2,2} & \cdots & a_{m, 2} \\
\vdots & \ddots & \vdots \\
a_{2, n} & \cdots & a_{m, n}
\end{array}\right)\right.
$$

Functions on Matrices

As well as multiplying and inverting matrices there are some other functions on matrices that we care about

Definition

Let A be an $m \times n$ matrix, then the transpose of A, denoted A^{T} is an $n \times m$ matrix, where the rows and columns are "flipped":

$$
A=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right) \Longrightarrow A^{T}=\left(\begin{array}{cccc}
a_{1,1} & a_{2,1} & \ldots & a_{m, 1} \\
a_{1,2} & a_{2,2} & \ldots & a_{m, 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1, n} & a_{2, n} & \ldots & a_{m, n}
\end{array}\right)
$$

Example:

$$
A:=\binom{1}{4}\left(\begin{array}{ll}
2 & 3 \\
5 & 6
\end{array}\right) \Longrightarrow A^{T}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number

Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number
(1) $\left(A^{T}\right)^{T}=A$

Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number
(1) $\left(A^{T}\right)^{T}=A$
(2) $(A+B)^{T}=A^{T}+B^{T}$

Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number
(1) $\left(A^{T}\right)^{T}=A$
(2) $(A+B)^{T}=A^{T}+B^{T}$
(3) $(c A)^{T}=c\left(A^{T}\right)$

Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number
(1) $\left(A^{T}\right)^{T}=A$
c $(A+B)^{T}=A^{T}+B^{T}$

- $(c A)^{T}=c\left(A^{T}\right)$
- $(A B)^{T}=B^{T} A^{T}$

Exercise: prove this Hut: expand out each product carefully.

Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number
(1) $\left(A^{T}\right)^{T}=A$
(2) $(A+B)^{T}=A^{T}+B^{T}$
(3) $(c A)^{T}=c\left(A^{T}\right)$
© $(A B)^{T}=B^{T} A^{T}$
© $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

$$
\begin{aligned}
A^{\top}\left(A^{\top}\right)^{\top} \stackrel{(4)}{=} & \left(A^{-1} A\right)^{\top} \\
& =(I)^{\top}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)^{\top}=I
\end{aligned}
$$

Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number
(1) $\left(A^{T}\right)^{T}=A$
(2) $(A+B)^{T}=A^{T}+B^{T}$
(3) $(c A)^{T}=c\left(A^{T}\right)$
(9) $(A B)^{T}=B^{T} A^{T}$
(6) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

IMPORTANT!!!!

Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number
(1) $\left(A^{T}\right)^{T}=A$
(2) $(A+B)^{T}=A^{T}+B^{T}$
(3) $(c A)^{T}=c\left(A^{T}\right)$
(9) $(A B)^{T}=B^{T} A^{T}$
(6) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

IMPORTANT!!!!
$(A B)^{T}=B^{T} A^{T}$ and NOT $A^{T} B^{T}$

Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number
(1) $\left(A^{T}\right)^{T}=A$
(2) $(A+B)^{T}=A^{T}+B^{T}$
A is $m \times n$
so that

- $(c A)^{T}=c\left(A^{T}\right)$
- $(A B)^{T}=B^{T} A^{T}$
- $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
B is $n \times k$
AD mokes sense

BT is ban
may not
makes sense

IMPORTANT!!!!

$(A B)^{T}=B^{T} A^{T}$ and NOT $A^{T} B^{T}$ just like $(A B)^{-1}=B^{-1} A^{-1}$ and NOT $A^{-1} B^{-1}$.

Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number
(1) $\left(A^{T}\right)^{T}=A$
(2) $(A+B)^{T}=A^{T}+B^{T}$
(3) $(c A)^{T}=c\left(A^{T}\right)$
(9) $(A B)^{T}=B^{T} A^{T}$
(5) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

IMPORTANT!!!!
$(A B)^{T}=B^{T} A^{T}$ and NOT $A^{T} B^{T}$ just like $(A B)^{-1}=B^{-1} A^{-1}$ and NOT $A^{-1} B^{-1}$.

The Dot Product as a Matrix Product

Let \vec{v} be a vector in \mathbb{R}^{n}.

The Dot Product as a Matrix Product

Let \vec{v} be a vector in \mathbb{R}^{n}. Then we can think about it as an $n \times 1$ matrix.

The Dot Product as a Matrix Product

Let \vec{v} be a vector in \mathbb{R}^{n}. Then we can think about it as an $n \times 1$ matrix. Thus \vec{v}^{\top} is a $1 \times n$ matrix and their dimensions work out that we can multiply them.

$$
\vec{V}=\left[\begin{array}{c}
V_{1} \\
\vdots \\
\vdots \\
V_{n}
\end{array}\right]
$$

$$
\stackrel{\rightharpoonup}{V}^{T}=\left(\begin{array}{ll}
V_{1} \ldots & V_{n}
\end{array}\right)
$$

The Dot Product as a Matrix Product

Let \vec{v} be a vector in \mathbb{R}^{n}. Then we can think about it as an $n \times 1$ matrix. Thus \vec{v}^{T} is a $1 \times n$ matrix and their dimensions work out that we can multiply them.

Aside

The Trace Function

Definition

For a square matrix $A=\left(a_{i, j}\right)$, we define the trace of the matrix as the sum of its diagonal entries:

$$
\operatorname{Tr}(A)=a_{1,1}+a_{2,2}+\cdots+a_{n, n}
$$

The Trace Function

Definition

For a square matrix $A=\left(a_{i, j}\right)$, we define the trace of the matrix as the sum of its diagonal entries:

$$
\operatorname{Tr}(A)=a_{1,1}+a_{2,2}+\cdots+a_{n, n}
$$

Example:

$$
\operatorname{Tr}\left(\left(\begin{array}{cccc}
3 & 6 & -1000 & 2 \\
9001 & 1 & 44 & 54 \\
0 & 789134 & (1) & 98 \\
-578 & 913 & 1 & 2
\end{array}\right)\right)=(3)+(1)+(1)+(2)=7
$$

Properties of the Trace

Theorem
 Let A and B be $n \times n$ square matrices and c any real number

Properties of the Trace

Theorem
 Let A and B be $n \times n$ square matrices and c any real number
 (1) $\operatorname{Tr}(c A)=c \operatorname{Tr}(A)$

Properties of the Trace

Theorem

Let A and B be $n \times n$ square matrices and c any real number
(1) $\operatorname{Tr}(c A)=c \operatorname{Tr}(A)$
(2) $\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B)$

Properties of the Trace

Theorem

Let A and B be $n \times n$ square matrices and c any real number
(1) $\operatorname{Tr}(c A)=c \operatorname{Tr}(A)$
(2) $\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B)$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{\top}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

Properties of the Trace

Theorem
Let A and B be $n \times n$ square matrices and c any real number
(1) $\operatorname{Tr}(c A)=c \operatorname{Tr}(A)$
(2) $\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B)$
(3) $\operatorname{Tr}\left(A^{T}\right)=\operatorname{Tr}(A)$
(a) $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ Exoreic:
pron this hint: expand ewything with matrix multiplication.

Properties of the Trace

Theorem

Let A and B be $n \times n$ square matrices and c any real number
(1) $\operatorname{Tr}(c A)=c \operatorname{Tr}(A)$
(2) $\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B)$
(3) $\operatorname{Tr}\left(A^{T}\right)=\operatorname{Tr}(A)$
(9) $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$

Note: While it is almost never true that $A B=B A$, it happens that it is always true that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.

Dot Product as a Trace

Recall that if \vec{u}, \vec{v} are vectors in \mathbb{R}^{n}, then we can think of them as $n \times 1$ matrix and \vec{v}^{\top} as a $1 \times n$ matrix.

Dot Product as a Trace

Recall that if \vec{u}, \vec{v} are vectors in \mathbb{R}^{n}, then we can think of them as $n \times 1$ matrix and \vec{v}^{T} as a $1 \times n$ matrix. $\vec{v}^{T} \vec{u}$ then makes sense and is the dot product.

Dot Product as a Trace

Recall that if \vec{u}, \vec{v} are vectors in \mathbb{R}^{n}, then we can think of them as $n \times 1$ matrix and \vec{v}^{\top} as a $1 \times n$ matrix. $\vec{v}^{\top} \vec{u}$ then makes sense and is the dot product. But $\vec{v} \vec{u}^{T}$ also makes sense. What is this?

$$
\begin{array}{cc}
T & T \\
n \times 1 & l_{s} \times n
\end{array}
$$

Dot Product as a Trace
Recall that if \vec{u}, \vec{v} are vectors in \mathbb{R}^{n}, then we can think of them as $n \times 1$ matrix and \vec{v}^{T} as a $1 \times n$ matrix. $\vec{v}^{T} \vec{u}$ then makes sense and is the dot product. But $\vec{v} \vec{u}^{T}$ also makes sense. What is this?

Theorem
Let \vec{u}, \vec{v} be two matrices in \mathbb{R}^{n}. Then $\vec{v} \vec{u}^{T}$ is a square $n \times n$ matrix and

$$
\begin{aligned}
& \operatorname{Tr}\left(\vec{v} \vec{u}^{T}\right)=\vec{v} \cdot \vec{u}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tr}\left(V u^{\top}\right)=\underset{\sim}{u_{1} v_{1}}+U_{2} V_{2}+\cdots+u_{n} v_{n} \\
& =\vec{u} \cdot \vec{v}=\vec{V} \cdot \vec{u}
\end{aligned}
$$

Subspaces

Definition

A nonempty subset W of vectors in \mathbb{R}^{n} is called a subsapce of \mathbb{R}^{n} if it is closed under scalar multiplication and additions.

Subspaces

Definition

A nonempty subset W of vectors in \mathbb{R}^{n} is called a subsapce of \mathbb{R}^{n} if it is closed under scalar multiplication and additions. That is,
(1) If $\vec{u} \in W$ and $c \in \mathbb{R}$, then $c \vec{u} \in W \subset$ closed

$$
W \subseteq \mathbb{R}^{n}
$$

under scaler
multiplication.

Subspaces

Definition

A nonempty subset W of vectors in \mathbb{R}^{n} is called a subsapce of \mathbb{R}^{n} if it is closed under scalar multiplication and additions. That is,
(1) If $\vec{u} \in W$ and $c \in \mathbb{R}$, then $c \vec{u} \in W \longleftarrow c$ Cosed unde socear wult.
(2) If $\vec{u}, \vec{v} \in W$ then $\vec{u}+\vec{w} \in W$. Є closed under cuddition

Subspaces
Definition
A nonempty subset W of vectors in \mathbb{R}^{n} is called a subsapce of \mathbb{R}^{n} if it is closed under scalar multiplication and additions. That is,
(1) If $\vec{u} \in W$ and $c \in \mathbb{R}$, then $c \vec{u} \in W$
(2) If $\vec{u}, \vec{v} \in W$ then $\vec{u}+\vec{w} \in W$.

Remark: if W is a subspace of \mathbb{R}^{n} then it is also a vector space.
Exereice: go through the unions and prove this.

Subspaces
Definition
A nonempty subset W of vectors in \mathbb{R}^{n} is called a subsapce of \mathbb{R}^{n} if it is closed under scalar multiplication and additions. That is,
(1) If $\vec{u} \in W$ and $c \in \mathbb{R}$, then $c \vec{u} \in W$
(2) If $\vec{u}, \vec{v} \in W$ then $\vec{u}+\vec{w} \in W$.

Remark: if W is a subspace of \mathbb{R}^{n} then it is also a vector space.
Exercise
If W is a subspace of \mathbb{R}^{n}, then show that $\overrightarrow{0} \in W$.
W is nomempto so Her exits a $\vec{u} \in W$
w is closed under scaler multiplication so $(-1) \cdot \vec{u} \in W$
W is closed under addition so $\vec{u}+(-1) \cdot \vec{u} \in W$
Bat reive seen previnuly that $(-1) \vec{u}=-\vec{u}$ as so

$$
\vec{o}=u_{+}-\vec{u} \in w
$$

Smallest Subspace

Definition

Let $W=\{\overrightarrow{0}\}$ be the set containing only the zero vector of \mathbb{R}^{n}. W is called the zero subspace.

Smallest Subspace

Definition
Let $W=\{\overrightarrow{0}\}$ be the set containing only the zero vector of \mathbb{R}^{n}. W is called the zero subspace.

Exercise
Show that the zero subspace actually is a subspace of \mathbb{R}^{n}.
Cleek: W is nonempty: $\vec{O} \in W$
check: closed una sacelor melt: $C \in \mathbb{R} \vec{V} \in W \Rightarrow \vec{V}=\overrightarrow{0}$
Ind sou $C \cdot \vec{V}=C-\overrightarrow{0}=\overrightarrow{0} G W$
cheek: closed crude addition: in, $\vec{v} \in W \Rightarrow \vec{u}>\vec{v}=\bar{\delta}$

$$
\vec{u}+\vec{v}=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} \sigma w
$$

Homogenous Subspace

Theorem

The set of homogeneous solutions to a matrix A is a subspace of \mathbb{R}^{n}.

Theorem
The set of homogeneous solutions to a matrix A is a subspace of \mathbb{R}^{n}. A is invertible, this subspace is the zero subspace.
chacte: non-imaty. \vec{O} is clucuys a homogeneras solction.
chack: scelor mult. \bar{x} hom. sil $\quad C \in \mathbb{R} \quad A(C \vec{x})=C(A \vec{x})=C \cdot \dot{0}=\overrightarrow{0}$ so $C \bar{\infty}$ is home. solutid.
cheek: addition: \vec{x}, \vec{y} an komo sx. $A(\bar{x}+\vec{y})=A \vec{x}+A \bar{y}=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}$
so $\vec{x}+\hat{y}$ in nomo salution
\Rightarrow He set af hom soutions is a saspa,
chaved last closs Hest A is insuttibe iff $A_{\vec{x}}=0$ has a uniger Sontion noml $\vec{\lambda}=\overrightarrow{0}$.

Characterisation of Zero Matrix

Theorem

If A is a matrix with n columns then the subspace of homogeneous solutions is all of \mathbb{R}^{n} if and only if $A=0$, the zero matrix.

Characterisation of Zero Matrix

Theorem
If A is a matrix with n columns then the subspace of homogeneous solutions is all of \mathbb{R}^{n} if and only if $A=0$, the zero matrix. ie. $A \vec{x}=0$ for all $\vec{x} \in \mathbb{R}^{n}$ if and only if $A=0$.
$A=\left[\begin{array}{ccc}c_{11} & a_{1} & \cdots \\ \vdots \\ a_{n} & a_{1 n} \\ 0 & \cdots & a_{m}\end{array}\right]$

Characterisation of Matrices

Theorem
If A and B are matrices with n columns, then $A \vec{x}=B \vec{x}$ for all $\vec{x} \in \mathbb{R}^{n}$ if and only if $A=B$.

$$
\begin{aligned}
& \text { If } A \bar{x}=B \vec{y} \text { for all } x \in\left(2^{n}\right. \text { then } \\
& \left(A-B \mid \bar{x}=A x-b x=\overrightarrow{0} \text { for } \because 1 x \in(1)^{n}\right. \\
& \Rightarrow A-B=O \Rightarrow A=B \text {. }
\end{aligned}
$$

Next Simplest Subspace

Theorem
Let $\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{k}}$ be vectors in \mathbb{R}^{n}, then the set of all linear combinations of them

$$
W=\left\{\vec{x}=t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}: t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{R}\right\}
$$

is a subspace of \mathbb{R}^{n}
check: w is non-eupty: obvious as chalk an $6_{\ldots} \ldots t_{k} \in \mathbb{R}$ cheek: Scaler multiplication! $\vec{x} \in W \quad c \in d$

$$
c \cdot \vec{x}=c\left(t_{1} \bar{v}_{1}+t_{2} \overrightarrow{v_{1}}+\rightarrow t_{k}\left(\overrightarrow{v_{w}}\right)\right)=\frac{\left(t_{0}\right) \vec{v}_{1}+\cdots+\left(t_{t_{2}}\right) \vec{k}_{k}}{G W}
$$

check: addition: $\quad \dot{x}, \bar{y} \in W$

$$
\begin{aligned}
\vec{x}+\vec{y}_{y}=\left(t_{1} \bar{v}_{1}+\cdots+t_{c} \vec{v}_{k}\right)+\left(s_{1} \vec{v}_{1}+\cdots+s_{k}+\vec{v}_{k}\right) & =\left(t_{1}+s_{1}\right) \vec{v}_{1}+\cdots+\left(\underset{e}{ }+s_{k}\right) \vec{v}_{k} \\
& \in W .
\end{aligned}
$$

Span of Set of Vectors

The example in the previous slide is called the span of the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$. We often denote it

$$
\begin{aligned}
W & =\left\{\vec{x}=t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}: t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{R}\right\} \\
& =\operatorname{span}_{\mathbb{R}}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\} \quad \rightarrow \text { span ore the field } \\
& =\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\} \quad \text { of the real number. }
\end{aligned}
$$

and we call the set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ a spanning set of vectors for W.

Span of Set of Vectors

The example in the previous slide is called the span of the vectors $\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots, \vec{v}_{k}$. We often denote it

$$
\begin{aligned}
W & =\left\{\vec{x}=t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}: t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{R}\right\} \\
& =\operatorname{span}_{\mathbb{R}}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\} \\
& =\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}
\end{aligned}
$$

and we call the set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ a spanning set of vectors for W.

Spanning Set of Vectors for \mathbb{R}^{n}

Recall we have the standard normal vectors of \mathbb{R}^{n}

$$
\vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \vec{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right] \quad \ldots \quad \vec{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

Spanning Set of Vectors for \mathbb{R}^{n}

Recall we have the standard normal vectors of \mathbb{R}^{n}

$$
\vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \vec{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right] \quad \ldots \quad \vec{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

then we can write

$$
\mathbb{R}^{n}=\operatorname{span}\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}
$$

Spanning Set of Vectors for \mathbb{R}^{n}

Recall we have the standard normal vectors of \mathbb{R}^{n}

$$
\vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \vec{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right] \quad \ldots \quad \vec{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

then we can write

$$
\mathbb{R}^{n}=\operatorname{span}\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}
$$

So $\vec{e}_{1}, \ldots, \vec{e}_{n}$ is a spanning set of vectors for \mathbb{R}^{n}

Exercise

Exercise

Find the subspace of homogeneous solutions of

$$
A=\left(\begin{array}{cccccc}
1 & 3 & -2 & 0 & 2 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 \\
0 & 0 & 5 & 10 & 0 & 15 \\
2 & 6 & 0 & 8 & 4 & 18
\end{array}\right)
$$

and write it as a span of vectors.

Exercise

Exercise

Find the subspace of homogeneous solutions of

$$
A=\left(\begin{array}{cccccc}
1 & 3 & -2 & 0 & 2 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 \\
0 & 0 & 5 & 10 & 0 & 15 \\
2 & 6 & 0 & 8 & 4 & 18
\end{array}\right)
$$

and write it as a span of vectors.
We know that set of homogeneous solutions will all those \vec{x} that satisfy $A \vec{x}=\overrightarrow{0}$.

Exercise

Exercise

Find the subspace of homogeneous solutions of

$$
A=\left(\begin{array}{cccccc}
1 & 3 & -2 & 0 & 2 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 \\
0 & 0 & 5 & 10 & 0 & 15 \\
2 & 6 & 0 & 8 & 4 & 18
\end{array}\right)
$$

and write it as a span of vectors.
We know that set of homogeneous solutions will all those \vec{x} that satisfy $A \vec{x}=\overrightarrow{0}$. To solve this we reduce A down to RREF

$$
\left(\begin{array}{cccccc}
1 & 3 & -2 & 0 & 2 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 \\
0 & 0 & 5 & 10 & 0 & 15 \\
2 & 6 & 0 & 8 & 4 & 18
\end{array}\right)
$$

Exercise

Exercise

Find the subspace of homogeneous solutions of

$$
A=\left(\begin{array}{cccccc}
1 & 3 & -2 & 0 & 2 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 \\
0 & 0 & 5 & 10 & 0 & 15 \\
2 & 6 & 0 & 8 & 4 & 18
\end{array}\right)
$$

and write it as a span of vectors.
We know that set of homogeneous solutions will all those \vec{x} that satisfy $A \vec{x}=\overrightarrow{0}$. To solve this we reduce A down to RREF

$$
\left(\begin{array}{cccccc}
1 & 3 & -2 & 0 & 2 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 \\
0 & 0 & 5 & 10 & 0 & 15 \\
2 & 6 & 0 & 8 & 4 & 18
\end{array}\right) \Longrightarrow\left(\begin{array}{llllll}
1 & 3 & 0 & 4 & 2 & 0 \\
0 & 0 & 1 & 2 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Exercise Continued

Hence, we need to find the set of \vec{x} such that

$$
\left(\begin{array}{cccccc}
& x_{L} & x_{4} & x_{3} \\
0 & 3 & 0 & 4 & 2 & 0 \\
0 & 0 & 1 & 2 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\\
\\
\\
\\
\epsilon_{1}
\end{array}\right.
$$

Exercise Continued

Hence, we need to find the set of \vec{x} such that

Exercise Continued

Therefore, we can conclude that the subspace of homogeneous solutions to A is

$$
\begin{gathered}
\left\{\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] t_{1}+\left[\begin{array}{c}
-4 \\
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right] t_{2}+\left[\begin{array}{c}
-2 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right] t_{3}: t_{1}, t_{2}, t_{3} \in \mathbb{R}\right\} \\
=\operatorname{span}\left\{\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]\right\}
\end{gathered}
$$

Different Spanning Set of Vectors

We saw that

$$
\mathbb{R}^{n}=\operatorname{span}\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}
$$

so that $\vec{e}_{1}, \ldots, \vec{e}_{n}$ is a spanning set of vectors.

Different Spanning Set of Vectors

We saw that

$$
\mathbb{R}^{n}=\operatorname{span}\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}
$$

so that $\vec{e}_{1}, \ldots, \vec{e}_{n}$ is a spanning set of vectors. However, we can find many different spanning sets of vectors for the same vector space

$$
\mathbb{R}^{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

Different Spanning Set of Vectors

We saw that

$$
\mathbb{R}^{n}=\operatorname{span}\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}
$$

so that $\vec{e}_{1}, \ldots, \vec{e}_{n}$ is a spanning set of vectors. However, we can find many different spanning sets of vectors for the same vector space

$$
\begin{array}{r}
\text { exercis: check this } \\
\mathbb{R}^{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\}
\end{array}
$$

Different Spanning Set of Vectors

We saw that

$$
\mathbb{R}^{n}=\operatorname{span}\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}
$$

so that $\vec{e}_{1}, \ldots, \vec{e}_{n}$ is a spanning set of vectors. However, we can find many different spanning sets of vectors for the same vector space

$$
\mathbb{R}^{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

Different Spanning Set of Vectors

We saw that

$$
\mathbb{R}^{n}=\operatorname{span}\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}
$$

so that $\vec{e}_{1}, \ldots, \vec{e}_{n}$ is a spanning set of vectors. However, we can find many different spanning sets of vectors for the same vector space

$$
\mathbb{R}^{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

However, we see there is some redundancy in that last example

Redundancy in Spanning Sets

In the last example we had

$$
\mathbb{R}^{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

Redundancy in Spanning Sets

In the last example we had

$$
\mathbb{R}^{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

However, we see that

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Redundancy in Spanning Sets

In the last example we had

$$
\mathbb{R}^{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

However, we see that

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

so any linear combination of all three of the vectors can easily be written as a linear combination of first two:

Redundancy in Spanning Sets

In the last example we had

$$
\mathbb{R}^{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

However, we see that

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

so any linear combination of all three of the vectors can easily be written as a linear combination of first two:

$$
t_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+t_{3}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Redundancy in Spanning Sets

In the last example we had

$$
\mathbb{R}^{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

However, we see that

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

so any linear combination of all three of the vectors can easily be written as a linear combination of first two:

$$
t_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+t_{3}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=t_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+t_{3}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
$$

Redundancy in Spanning Sets

In the last example we had

$$
\mathbb{R}^{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

However, we see that

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

so any linear combination of all three of the vectors can easily be written as a linear combination of first two:

$$
\begin{aligned}
t_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] & +t_{3}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=t_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+t_{3}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \\
& =\left(t_{1}+t_{3}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left(t_{2}+t_{3}\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

We then say that these three vectors are linearly dependent.

Linearly Dependent and Independent

Definition

We say that a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly dependent if there is a \vec{v}_{i} that can be written as a linear combination of the rest of the vectors:

$$
\vec{v}_{i}=t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{i-1} \vec{v}_{i-1}+t_{i+1} \vec{v}_{i+1}+\cdots+t_{k} \vec{v}_{k}
$$

$$
v_{i} \text { da not appear an }
$$

the RHS.

Linearly Dependent and Independent

Definition

We say that a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly dependent if there is a \vec{v}_{i} that can be written as a linear combination of the rest of the vectors:

$$
\vec{v}_{i}=t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{i-1} \vec{v}_{i-1}+t_{i+1} \vec{v}_{i+1}+\cdots+t_{k} \vec{v}_{k}
$$

If no such relationship exists we say the vectors are linearly independent.

Linearly Dependent and Independent

Definition

We say that a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly dependent if there is a \vec{v}_{i} that can be written as a linear combination of the rest of the vectors:

$$
\vec{v}_{i}=t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{i-1} \vec{v}_{i-1}+t_{i+1} \vec{v}_{i+1}+\cdots+t_{k} \vec{v}_{k}
$$

If no such relationship exists we say the vectors are linearly independent.

Fact

Any set of vectors containing $\overrightarrow{0}$ is linearly dependent.

$$
\begin{aligned}
& \vec{V}_{1} \ldots \vec{V}_{v_{0}} \quad \text { and } \quad \vec{V}_{i}=\overrightarrow{0} \text { then } \\
& \vec{V}_{v}=\vec{O}=0 \cdot v_{1}+0 \cdot v_{2}+\cdots+0 \cdot v_{i-1}+0 \cdot v_{i+1}+\cdots+0 \cdot v_{v}
\end{aligned}
$$

Creating Linearly Independence out of Linearly Dependence

If $\vec{v}_{1}, \ldots, \vec{v}_{k}$ is a linearly dependent set of vectors with \vec{v}_{i} being able to be written as a linear combination of the rest of the vectors, then we get

$$
\begin{gathered}
\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_{k}\right\} \\
t_{l} v_{1}+\cdots+t_{i} v_{i}+\cdots t_{n} v_{n}=t_{1} v_{1}+\ldots t_{i}\left(s_{1} v_{1}+\ldots+s_{n} v_{n}\right)+\cdots+t_{n} v_{n} \\
=\left(t_{1}+t_{i} s_{1}\right) v_{l}+\cdots+\left(t_{n}+t_{i} \cdot s_{n}\right) v_{n}
\end{gathered}
$$

V_{i} dnosent appear

Creating Linearly Independence out of Linearly Dependence

If $\vec{v}_{1}, \ldots, \overrightarrow{v_{k}}$ is a linearly dependent set of vectors with \vec{v}_{i} being able to be written as a linear combination of the rest of the vectors, then we get

$$
\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_{k}\right\}
$$

Hence, as long as the remaining vectors are still linearly dependent, then we can keep removing one vector without affecting the span of the vectors.

Creating Linearly Independence out of Linearly Dependence

If $\vec{v}_{1}, \ldots, \overrightarrow{v_{k}}$ is a linearly dependent set of vectors with \vec{v}_{i} being able to be written as a linear combination of the rest of the vectors, then we get

$$
\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_{k}\right\}
$$

Hence, as long as the remaining vectors are still linearly dependent, then we can keep removing one vector without affecting the span of the vectors.

Theorem

For any set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we can find a subset of the vectors $\vec{v}_{i_{1}}, \ldots, \vec{v}_{i_{\ell}}$ such that

$$
\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\operatorname{span}\left\{\vec{v}_{i_{1}}, \ldots, \vec{v}_{i_{\ell}}\right\}
$$

and $\vec{v}_{i_{1}}, \ldots, \vec{v}_{i_{\ell}}$ is linearly independent.

Linearly Independent Theorem

Theorem

The following statements are equivalent

Linearly Independent Theorem

Theorem

The following statements are equivalent
(1) The set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in \mathbb{R}^{n} are linearly independent

Linearly Independent Theorem

Theorem

The following statements are equivalent
(1) The set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in \mathbb{R}^{n} are linearly independent
(2) The only solution to

$$
t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}=\overrightarrow{0}
$$

$$
\text { is } t_{1}=t_{2}=\cdots=t_{k}=0
$$

Linearly Independent Theorem

Theorem

The following statements are equivalent
(1) The set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in \mathbb{R}^{n} are linearly independent
(2) The only solution to

$$
t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}=\overrightarrow{0}
$$

is $t_{1}=t_{2}=\cdots=t_{k}=0$
(3) Any vector in the span of $\vec{v}_{1}, \ldots, \vec{v}_{k}$ can be expressed as a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in a unique way

Linearly Independent Theorem

Theorem

The following statements are equivalent
(1) The set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in \mathbb{R}^{n} are linearly independent
(2) The only solution to

$$
t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}=\overrightarrow{0}
$$

is $t_{1}=t_{2}=\cdots=t_{k}=0$
(3) Any vector in the span of $\vec{v}_{1}, \ldots, \vec{v}_{k}$ can be expressed as a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in a unique way
(9) The matrix $A=\left(\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{k}\end{array}\right)$ has rank k

Linearly Independent Theorem

Theorem

The following statements are equivalent
(1) The set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in \mathbb{R}^{n} are linearly independent
(2) The only solution to

$$
t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}=\overrightarrow{0}
$$

$$
\text { is } t_{1}=t_{2}=\cdots=t_{k}=0
$$

(3) Any vector in the span of $\vec{v}_{1}, \ldots, \vec{v}_{k}$ can be expressed as a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in a unique way
(9) The matrix $A=\left(\begin{array}{llll}\overrightarrow{v_{1}} & \vec{v}_{2} & \ldots & \vec{v}_{k}\end{array}\right)$ has rank k
(6) The matrix equation $A \vec{x}=\overrightarrow{0}$ has only the trivial solution, $\vec{x}=\overrightarrow{0}$.

Proof

$$
(l) \Rightarrow(2) \quad(\text { not }(4) \Rightarrow \operatorname{not}(1))
$$

supnona then is a solution $t_{1} v_{1}+\cdots+t_{c} V_{c_{c}} 20$ with act all $t_{c}=0$ The chona ore of the ti's that an mut dand boing it to fits:

$$
\begin{aligned}
& t_{1} v_{1}+\cdots+t_{i-1} v_{i n}+t_{i+1} v_{i+1} \cdots+t_{k} V_{k}=-t_{i} V_{i} \\
& v_{i}=-\frac{t_{1}}{b_{i}} v_{1}+\cdots+\frac{-t_{i-1}}{t_{i}} t_{i-1}+\frac{-t_{i+1}}{t_{i}} v_{i+1}+\cdots+\frac{-t_{k}}{t_{i}} v_{k} \\
& \text { corly incle perdent. }
\end{aligned}
$$

not lineorly inclependert.
$(2) \Rightarrow(3)$ (not $(M) \Rightarrow$ not (2)) we span ($\left.v_{1}-v_{k}\right)$ and ca be expressed in two differst woiys $w=t_{1} v_{1}+\cdots+t_{k} V_{k}=s_{1} v_{1}+\cdots+s_{c c} v_{c}$ vener out $a l l$ ti are equed t, S_{i}.

$$
\vec{O}=w-w=t_{1} v_{1}+\cdots+t_{k} v_{c k}-s_{1} v_{1} \cdots-s_{k} v_{\varepsilon}=\left(t_{1}-s_{1}\right) v_{1}+\cdots+\left(t_{c}-s_{k}\right) v_{c}
$$

$t_{1}-s_{1} \ldots t_{k}-s_{u}$ as. ret all 0 .
(3) \Rightarrow (2) obvinus. if evey veltor ca be writte misuel Iten \bar{O} can k writte unigely

More Proof

$(4) \Rightarrow(4) \quad \overrightarrow{0}$ is writtan wiqely $\Rightarrow A=\left(V_{1} \cdots V_{c}\right)$ has rakk. $A\binom{t_{i}}{i_{i}}\left(\begin{array}{c}v_{1}\end{array} \cdots v_{k}\right)\left(\begin{array}{c}t_{1} \\ \vdots \\ t_{k}\end{array}\right)=V_{1} t_{1}+\cdots+V_{k} b_{k}$. Claimiry thet the metrix A hea a unigue homagereruy solction (i-1. $A \bar{x}=0 \Rightarrow \dot{x}=0$) \# fre vorichler of $A=H$ calcums $-r k(A) \Rightarrow r k(A)=H$ eolumers $=k$. | 4 |
| :--- |

$(c) \Rightarrow C(S)$ if A has rank k the Afre variahles $=0$ and so has a ulisee homegereves solutios.
$(5) \Rightarrow(1)$ A has unigu homs sald $\Rightarrow v_{1} \cdots k_{k}$ an lin ind. $(n c t(1) \Rightarrow \operatorname{not}(s))$ if $v_{1} \cdots k_{k}$ wre ret lin ind the ther enaists o a v_{i} st. $v_{i}=t_{1} v_{1}+\cdots+t_{i-1} v_{i-1}+t_{i+1} v_{i+1}+\cdots+t_{i c} v_{c}$
$0=t_{i} v_{1}+\ldots+t_{i-1} v_{i r}-v_{i}+t_{i+1} v_{i+1}+\cdots+t_{i} v_{k}$
$A\left(\begin{array}{c}t_{1} \\ -1 \\ t_{k}\end{array}\right)=\overrightarrow{0}$
So $\left(\begin{array}{c}t_{1} \\ \vdots \\ \vdots \\ t_{w}\end{array}\right)$
is a hompgerem sal but rot

$$
k=n
$$

Theorem
The set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ in \mathbb{R}^{n} are linearly independent if and only if the matrix $A=\left(\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right)$ is invertible.
$v_{1} \ldots v_{n}$ are lin inkle $\Leftrightarrow A$ has rack n
previnus
than
$\stackrel{\text { tm }}{\Leftrightarrow} A$ has RREF I_{n}
$\Leftrightarrow A$ is invertible.

$$
k>n
$$

Theorem
Suppose $k>n$. Then any set of k vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in \mathbb{R}^{n} are linearly dependent.
($>$ veeturs in \mathbb{R}^{2} will aluraes be (inecly depthat)

$$
A=\left[{ }^{6 \text { caross }}\right] \text { n raws }
$$

$$
\begin{aligned}
& \text { FK(A) } \leq n<k \quad \Rightarrow \quad \begin{array}{c}
n K(A) \neq k \\
\text { vecturs an and so }
\end{array} \\
& \hline H \text { pree variakeorlL dependert. }
\end{aligned}
$$

$A=[[\operatorname{lef}] \cdots]$ so vill alweres ham mon than one hom. solution.

Geometric Interpretation

What does it mean geometrically for the set of two vectors \vec{v}, \vec{w} in \mathbb{R}^{n} to be linearly dependent?

$$
\vec{v}=t \vec{W} \Rightarrow \text { stow are in the }
$$

or colinear ar parallel or proportional

What does it mean geometrically for the set of three vectors $\vec{u}, \vec{v}, \vec{w}$ in \mathbb{R}^{n} to be linearly dependent?
$\vec{u}=t_{1} \vec{v}+t_{\iota} \vec{w} \Rightarrow \vec{u}$ lies an the sum glare us $\vec{v} \& \vec{v}$ $\vec{u}, \vec{v}, \vec{w}$ an ceplanon

