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Topics for Today

© Easily Invertible Matrices

@ Functions on Matrices: Transpose and Trace
© Subspaces

© Linear Dependence
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Easily Invertible Matrices: Diagonal Matrices

Let
d O 0
0 oy 0
D = }
0 O d,

be a diagonal matrix.
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Easily Invertible Matrices: Diagonal Matrices

Let
d 0 0
0 oy 0
D = }
0 O d,

be a diagonal matrix. Then D is invertible if and only all of the d; are
non-zero
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Easily Invertible Matrices: Diagonal Matrices

Let
d 0 0
0 d» 0
D= .
0 O dn
be a diagonal matrix. Then D is invertible if and only all of the d; are
non-zero with inverse C/l/l e Hd
1
- 0 ... 0 ~
o 1 .. o LH =1,
D—l _ d>
0 0 e
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Easily lvertible Matrices: 2 x 2 Matrix

In general, it is difficult to calculate the inverse of a given matrix.

Patrick Meisner (KTH) Lecture 7 4/31



Easily lvertible Matrices: 2 x 2 Matrix

In general, it is difficult to calculate the inverse of a given matrix.

However, in the 2 x 2 case, there is a simple formula:

IfA= (a b) then A is invertible if and only if ad — bc # 0 with inverse
Cc S

d

A=l — 1 d —-b
_ad bc \ —

L od —bc ’MB
o' @\( @ e —<d e ted
L Ceal —~\c O _ l O>

<ot &) oA o l
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Functions on Matrices

As well as multiplying and inverting matrices there are some other
functions on matrices that we care about
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Functions on Matrices

As well as multiplying and inverting matrices there are some other
functions on matrices that we care about

Definition

Let A be an m_x n matrix, then the transpose of A, denoted A” is an
n X m matrix, where the rows and columns are “flipped”:
——
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Functions on Matrices

As well as multiplying and inverting matrices there are some other
functions on matrices that we care about

Definition

Let A be an m x n matrix, then the transpose of A, denoted A” is an
n X m matrix, where the rows and columns are “flipped”:

dm,1
am,2

dm,n

Patrick Meisner (KTH) Lecture 7 5/31



Functions on Matrices

As well as multiplying and inverting matrices there are some other
functions on matrices that we care about

Definition

Let A be an m x n matrix, then the transpose of A, denoted A” is an
n X m matrix, where the rows and columns are “flipped”:

31,1 3172 coo 317,7 31,1 32’1 000 am71

a1 4d22 ... dnp T di2 a2 ... admp2

dmal dm,2 --- dmn dl,n a2n dm,n

v
Example:
N /2) 3
A= @ o) = AT =
P 3 6
Patrick Meisner (KTH) Lecture 7

5/31



Properties of Transposes

Let A, B be matrices (of suitable dimensions) and c a real number
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Properties of Transposes

Let A, B be matrices (of suitable dimensions) and c a real number
o (AT)T — A
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Properties of Transposes

Let A, B be matrices (of suitable dimensions) and c a real number
o (AT)T — A
Q@ (A+B)T=AT +BT
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Properties of Transposes

Let A, B be matrices (of suitable dimensions) and c a real number
o (AT)T — A
Q@ (A+B)T=AT +BT
Q (cA)T = c(AT)
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Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number
Q0 (AT =A E,:ﬁ e~ ougl  pPlo e
Q@ (A+B)T=AT+BT Z Hroaks e;c@qu oot ealy
0 (cA)” = c(AT) prodack care My
0 (AB)T =BTAT
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Properties of Transposes

Theorem

Let A, B be matrices (of suitable dimensions) and c a real number
Q@ (A) =A ) Web b s Het AT (K13
Q@ (A+B)T=AT +BT G ]
(cA)T = ¢(AT) OHN’C/P)
C =cC
<~ 7T @ ~ , \U

(46)T = BTAT O (A
(

o
%) -~ r ™
S (A= (AT - @ - (o) =)
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Properties of Transposes

Let A, B be matrices (of suitable dimensions) and c a real number
o (AT)T — A

Q@ (A+B)T =AT + BT

(cA)T = c(AT)

(AB)T BT AT

(AT) = (AT

o
o
o

IMPORTANT!!!!
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Properties of Transposes

Let A, B be matrices (of suitable dimensions) and c a real number
o (AT)T — A

Q@ (A+B)T =AT + BT

(cA)T = c(AT)

(AB)T BT AT

(AT) = (AT

o
o
o

IMPORTANT!!!!
(AB)T = BTAT and NOT ATBT

N—
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Properties of Transposes

Let A, B be matrices (of suitable dimensions) and c a real number
@ (AT =A A s man so ek
Q (A+ B) = AT + BT @ A AN molty Seas
Q (cA)T = c(AT) :
(4 (AB)T BT AT A_: © Axi So -&T /{’T o Ky S
w e A T T
Q@ (AN 1=(A1T AR oy wot
MCes™ Sease
IMPORTANT!!!!

(AB)T = BTAT and NOT ATBT just like (AB)™! = B~1A=! and NOT
A-1BL
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Properties of Transposes

Let A, B be matrices (of suitable dimensions) and c a real number
o (AT)T — A

Q@ (A+B)T =AT + BT

(cA)T = c(AT)

(AB)T BT AT

(AT) = (AT

o
o
o

IMPORTANT!!!!

(AB)T = BTAT and NOT ATBT just like (AB)™! = B~1A=! and NOT
A-1BL
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The Dot Product as a Matrix Product

Let v be a vector in R".
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The Dot Product as a Matrix Product

Let vV be a vector in R". Then we can think about it as an n x 1 matrix.
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The Dot Product as a Matrix Product

Let vV be a vector in R". Then we can think about it as an n x 1 matrix.
Thus VT is a 1 x n matrix and their dimensions work out that we can
multiply them.

(i/”/ Y/ \7T"— (\/{,,. \/,4)
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The Dot Product as a Matrix Product

Let vV be a vector in R". Then we can think about it as an n x 1 matrix.
Thus VT is a 1 x n matrix and their dimensions work out that we can

multiply them. A<y Ao
l
Let i,V be two vectors in R". Then NEvic Ja ¢!
t
ii=v-a I N
(Y 4
v . \f\Y n = C\I‘ V"\ [ V4 x|
UI,\ uq “u & e
N\ Urd o (or mohy.
. U
W = VW e Ve -1 Vi, Jos v
| Mmedle Seney
da s
= VRV
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The Trace Function

Definition

For a square matrix A = (aj ), we define the trace of the matrix as the
sum of its diagonal entries:

Tr(A) =a11+ a2+ -+ ann
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The Trace Function

Definition

For a square matrix A = (a;j), we define the trace of the matrix as the
sum of its diagonal entries:

Tr(A) =a11+ a2+ -+ ann

Example:
3) <6) ~1000 2
9001 (1 4 54
Tl o 7e0134 @ o8 =B+
—578 913 1
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Properties of the Trace

Let A and B be n X n square matrices and c any real number
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Properties of the Trace

Let A and B be n X n square matrices and c any real number

Q Tr(cA) = cTr(A)
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Properties of the Trace

Let A and B be n X n square matrices and c any real number
Q@ Tr(cA) = cTHA)
@ THA+ B) = TrHA) + Tr(B)
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Properties of the Trace

Let A and B be n X n square matrices and c any real number

O TH{(cA) = cTHA) @) b\y\ . (@ <
@ THA+ B) = TH{A) + TH(B) ¢ @ b @

Q@ THAT) = THA)
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Properties of the Trace

Theorem

Let A and B be n X n square matrices and c any real number
Q Tr(cA) = cTHA) N Ex oercie ¢ Plovt K
@ Tr(A+ B) = Tr(A) + Tr(B) lint™ <) e ewytlisy with
© THAT) = T ehvon b ghechrn
QO Tr(AB) = Tr(BA)
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Properties of the Trace

Theorem
Let A and B be n X n square matrices and c any real number
Q@ Tr(cA) = cTHA)
@ THA+ B) = TrHA) + Tr(B)
Q@ THAT) = THA)
QO Tr(AB) = Tr(BA)

Note: While it is almost never true that AB = BA, it happens that it is
always true that Tr(AB) = Tr(BA).
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Dot Product as a Trace

Recall that if i, vV are vectors in R”, then we can think of them as n x 1
matrix and V' as a 1 x n matrix.

Patrick Meisner (KTH) Lecture 7 10 /31



Dot Product as a Trace

Recall that if i, vV are vectors in R”, then we can think of them as n x 1

matrix and V! as a 1 x n matrix. V! & then makes sense and is the dot
product.
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Dot Product as a Trace

Recall that if i, vV are vectors in R”, then we can think of them as n x 1

matrix and V! as a 1 x n matrix. V! & then makes sense and is the dot
product. But vir™ also makes sense. What is this?

7

x| [RSA

p-
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Dot Product as a Trace

Recall that if i, vV are vectors in R”, then we can think of them as n x 1

matrix and V! as a 1 x n matrix. V! & then makes sense and is the dot
product. But vir™ also makes sense. What is this?

Let i, V be two matrices in R". Then Vi" is a square n x_n matrix and
Square n X n ma

THvd") = v d

\J\’; \(/'( \f(,{T: E/( (u Q/\) u(\/l u'\/lf( ’ M"VI
' : e u‘\;\, (/l’\'\/g\ ) B U’\VL
' Un ’l ; |
a ! ‘
U= U, Un Ut _ iy
Ut TV&\} U}\\ = UV sUay oy Vin
- g - VY
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Definition

A nonempty subset W of vectors in R” is called a subsapce of R” if it is
closed under scalar multiplication and additions.
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Definition

A nonempty subset W of vectors in R” is called a subsapce of R” if it is
closed under scalar multiplication and additions. That is,

Q@ Ifie Wand c €R, then cd€ We— clog] W < [Qﬂ
vl seelon

Mo Yl ookion
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Definition

A nonempty subset W of vectors in R” is called a subsapce of R” if it is
closed under scalar multiplication and additions. That is,

Q@ IffeWandceR thencie W & cls) nh eoddor wdl,
Q@ Ifd,ve Wtheni+weW. & clogd vide wdditio,
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Definition

A nonempty subset W of vectors in R” is called a subsapce of R” if it is
closed under scalar multiplication and additions. That is,

Q@ IfieWandceR, thencie W

Q@ Ifd,ve Wthen i+we W.
<
Remark: if W is a subspace of R” then it is also a vector space.

E?Q 20l ﬁ{l wf wih Rt uxc oms e
DS .
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Definition
A nonempty subset W of vectors in R” is called a subsapce of R” if it is
closed under scalar multiplication and additions. That is,

Q If e W and c € R, then cie W

Q@ Ifd,ve Wthen i+we W.

Remark: if W is a subspace of R” then it is also a vector space.

If W is a subspace of R”, then show that 0 € W.

W o M’ﬂﬁ‘“d“? Se Hert oa)s @ d & W
ws o doed onde conle molbipl cbion  so ED-Uely
W coeh onde eddifie 20 iy e w

LA e ceon ?\;\QMHM(»} ek 6‘()(7— — Res Lo
0F Uy v W
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Smallest Subspace

Definition

Let W = {0} be the set containing only the zero vector of R". W is
called the zero subspace.
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Smallest Subspace

Definition

Let W = {0} be the set containing only the zero vector of R". W is
called the zero subspace.

Show that the zero subspace actually is a subspace of R". \

Cede ™ W s vonemty © S W

ek clows ond cogla wmelr:  ce VeW
v

ekt c/(OSIJ U\Aga!?/ M!ﬁcﬂl’d o', a/’\e)eW = tA= \IL\DO
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Homogenous Subspace

The set of homogeneous solutions to a matrix A is a subspace of R".
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Homogenous Subspace

The set of homogeneous solutions to a matrix A is a subspace of R". #f A
is invertible, &n this subspace is the zero subspace.

\1‘T
M-, non _(,4”{7 A 6 i< C/{WOH/S ) L’Hﬂ’q°9@*’\(€ﬂvj Solkter.
hok Scelom pelb K b Sl ced Alei) - «(AR) - <8
so [« NI Worme - sglfio-
ceatt: wdBiom X, ¥ oan Wmo s, A(c\-y A—kk /{‘V - 8 =5

S’B '3\(‘? 2 Y/tdrq.: S0 (u:} U~ 37 w 5(} 7_[_ ;.,M
S0ty e e s,
Qﬂv"‘) (e  clege  Hek Ay bl 7&&\_ Al=0 b o umspe

) 0 - ﬂdMl)_ XS
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Characterisation of Zero Matrix

If A is a matrix with n columns then the subspace of homogeneous
solutions is all of R" if and only if A =0, the zero matrix.
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Characterisation of Zero Matrix

If A is a matrix with n columns then the subspace of homogeneous

solutions is all of R" if and only if A= 0, the zero matrix. i.e. AX =0 for
all)??e_]R" if and only if A= 0.

f
( Q(/ g(/ ~o
Q- %a o ! =/ '
(’ . .
a -~ Umn d QM“ ﬂ’l( -
- ,l < C{[ I —oo ... O"?C 2>
N erut ‘7[ cre — N SO
Ui o ;ﬁki% D ¢ =O «

=,
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Characterisation of Matrices

If A and B are matrices with n columns, then AX = Bx for all X € R" if
and only if A= B.

B ke by Y ol xed  He
%’Q) S- /)V* — bﬁ = 5 —Ydr o ke

= A-¢ = O T A

Patrick Meisner (KTH) Lecture 7 15/31



Next Simplest Subspace

Theorem

Let vy, Vo, ..., Vi be vectors in R", then the set of all linear combinations
of them

W:{§:t171+t272+"'+tkvkit1,t2,...,tk€R}

is a subspace of R"

d\c"% W wn —t/u‘l-y,’ OWI\Q‘/) cf Lp‘(\\ v 6, - G e([z

chree it %(w— /l//l/u(‘()]:‘ cehient h)_ze:w C’@QEL_ . N
C-¥: < Qé\;{ bVl 2 &VMJ\ = @DV(# 4 ééJ[{(
S W

ek, addids o, i/} ew . X
36y (bl > el Y o (S Ver-y sein ) = Eemdvie k&l
= W
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Span of Set of Vectors

The example in the previous slide is called the span of the vectors
Vi, Vo, ..., V. We often denote it

W:{)?: BV + Vo + o+ Ve s b, t, .t ER}
= spang {V1, Vo,..., Vk} —  span ax Tet
=span{vi, Va,..., Vk} S Y el mlies,

and we call the set of vectors i, ..., Vi a spanning set of vectors for W.



Span of Set of Vectors

The example in the previous slide is called the span of the vectors
Vi, Vo, ..., V. We often denote it

W:{)_(: t1V1+t272+-~'+thk:t1,t2,...,tk€R}

= spang {V1, Vo,..., Vk}
= span {V}, Vo, ..., Vk}
and we call the set of vectors i, ..., Vi a spanning set of vectors for W.
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Spanning Set of Vectors for R”

Recall we have the standard normal vectors of R”

1 0 0
. 0 . 1 . 0
€1 = € = |. €n =

0 0 1
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Spanning Set of Vectors for R”

Recall we have the standard normal vectors of R”

1 0 0
. 0 . 1 . 0
€1 = € = : €n =
0 0 1
then we can write
R" = span{é1,&,...,€,}
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Spanning Set of Vectors for R”

Recall we have the standard normal vectors of R”

1 0 0
€1 = € = : €n =
0 0 1
then we can write
R" =span{é}, &,...,€en}
So e1,..., 6, is a spanning set of vectors for R"
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Exercise

Exercise

Find the subspace of homogeneous solutions of
13 -2 0 2 0
A 2 6 b -2 4 -3
|00 5 10 0 15
2 6 0 8 4 18
and write it as a span of vectors.
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Exercise

Exercise

Find the subspace of homogeneous solutions of

13 -2 0 2 0
A 2 6 -5 -2 4 -3
0 0 5 10 0 15
26 0 8 4 18

and write it as a span of vectors.

We know that set of homogeneous solutions will all those X that satisfy
AX =0.
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Exercise

Exercise

Find the subspace of homogeneous solutions of

13 -2 0 2 0
A 2 6 5 -2 4 -3
0 0 5 10 0 15
26 0 8 4 18

and write it as a span of vectors.

We know that set of homogeneous solutions will all those X that satisfy
Ax = 0. To solve this we reduce A down to RREF

13 -2 0 2 0
2 6 -5 -2 4 -3
0 0 5 10 0 15
26 0 8 4 18
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Exercise

Exercise

Find the subspace of homogeneous solutions of

13 -2 0 2 0
A 2 6 -5 -2 4 -3
0 0 5 10 0 15
26 0 8 4 18

and write it as a span of vectors.

We know that set of homogeneous solutions will all those X that satisfy
Ax = 0. To solve this we reduce A down to RREF

13 -2 0 2 0 130420
26 -5 -2 4 -3 0012 40
00 5 100 15| ~|ooooo01
26 0 8 4 18 000000
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Exercise Continued

Hence, we need to find the set of X such that

®L & X _X1_ [07
1 30 4 2 0\ |x 0
001240]|[x| |0
0 00O0O0T1 x| |0
0 00 O0O0OT O X5 0

{ [ ( | X6 _0_

N4
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Exercise Continued

Hence, we need to find the set of X such that

O O o

Patrick Meisner (KTH)

O OO Ww

X1
X2
X3
X4
X5

L X6

o O+~ o

oo N d

W< oo &~N

O O O O

o = OO

t1 +

|
o

Lecture 7

X1 0
X2 0
X3| 0
X4 - 0
X5 0
%] O]
U
- t -
—4
0
—2
1 tr +
ol 0
0] pr

—
“{7
_2-
0
0,
0 3
1| T
0 PN
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Exercise Continued

Therefore, we can conclude that the subspace of homogeneous solutions to
Als

([-3] (4] F2]
1 0 0
8 t1 + 12 to + 8 t3: t1, b, t3 €R
0 0 1
L L0 | | 0 | | 0 | )
3] [-4] [-2])
1 0 0
Cand | 0] 2] |0
o’ 1]’|0
0 0 1
LLO] LO] LO]]
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Different Spanning Set of Vectors

We saw that
R" = span{éi, ..., €}

so that €1, ..., &, is a spanning set of vectors.
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Different Spanning Set of Vectors

We saw that
R" = span{éi, ..., €}

so that €1, ..., &, is a spanning set of vectors. However, we can find many
different spanning sets of vectors for the same vector space

w=eoon {[o]. 1]}
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Different Spanning Set of Vectors

We saw that
R" = span{éi, ..., €}

so that €1, ..., &, is a spanning set of vectors. However, we can find many
different spanning sets of vectors for the same vector space
exerch R legt Yhes

s sn{ [ [} = { i)
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Different Spanning Set of Vectors

We saw that
R" = span{éi, ..., €}

so that €1, ..., &, is a spanning set of vectors. However, we can find many
different spanning sets of vectors for the same vector space

w=n{[]. [} = { . [} - {13
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Different Spanning Set of Vectors

We saw that
R" = span{éi, ..., €}

so that €1,..., &, is a spanning set of vectors. However, we can find many
different spanning sets of vectors for the same vector space

(81 R A B (BB

However, we see there is some redundancy in that last example
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Redundancy in Spanning Sets

In the last example we had

{11 []}
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Redundancy in Spanning Sets

In the last example we had

R? = span {

However, we see that

S o
—
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Redundancy in Spanning Sets

In the last example we had

R? = span {

-

However, we see that

so any linear combination of all three of the vectors can easily be written

as a linear combination of first two:

Patrick Meisner (KTH)
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Redundancy in Spanning Sets

In the last example we had

{11 []}
=[]+ [

so any linear combination of all three of the vectors can easily be written
as a linear combination of first two:

alo] v+

However, we see that
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Redundancy in Spanning Sets

In the last example we had

{11 []}
=[]+ [

so any linear combination of all three of the vectors can easily be written
as a linear combination of first two:

sl vl e B =alof re b+ (] + L))

However, we see that
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Redundancy in Spanning Sets

In the last example we had

e e {11 [}
=[]+ [

so any linear combination of all three of the vectors can easily be written
as a linear combination of first two:

sl vl e B =alof re b+ (] + L))

= (t1 + t3) H + (t2 + t3) m

We then say that these three vectors are linearly dependent.
Patrick Meisner (KTH) Lecture 7
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Linearly Dependent and Independent

Definition

We say that a set of vectors v, ..., v are linearly dependent if there is a

V; that can be written as a linear combination of the rest of the vectors:
Vi=t+ Vo + o+ tio1Vier + tiaVigr + o Vi
A
/\

)

{
\/(, (9‘\6\ I\uf\( C,Q\()@h PN

W s
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Linearly Dependent and Independent

Definition
We say that a set of vectors v, ..., v are linearly dependent if there is a
V; that can be written as a linear combination of the rest of the vectors:

Vi=twvi+ Vo + o+ tim1Vier + Vi + o+ v

If no such relationship exists we say the vectors are linearly independent.
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Linearly Dependent and Independent

We say that a set of vectors v, ..., v are linearly dependent if there is a
V; that can be written as a linear combination of the rest of the vectors:

Vi=twvi+ Vo + o+ tim1Vier + Vi + o+ v

If no such relationship exists we say the vectors are linearly independent.

Fact

Any set of vectors containing 0is linearly dependent.

\//l..; i wd \\70‘ - O hex

G 2 Sﬁ OVic Ot % Dy O Ve + 7% OV
V ~
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Creating Linearly Independence out of Linearly Dependence

If Vi,..., Vy is a linearly dependent set of vectors with V; being able to be
written as a linear combination of the rest of the vectors, then we get

span{Vi,..., Vk} =span{Vi,..., Vi1, Vit1,..., Vk}

£ Vi + LoVe v o balhs DU F—y 75\9'( S ViF:+ Sf:‘/n) F‘"*é'l’/n
v Rk fpe-
~ @\-t%\\/t — - - 3 @'1'\_ 6{5/\ ) l/f\
')
(

Ve choset  oppeun
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Creating Linearly Independence out of Linearly Dependence

If Vi,..., Vy is a linearly dependent set of vectors with V; being able to be
written as a linear combination of the rest of the vectors, then we get

span{Vi,..., Vk} =span{Vi,..., Vi1, Vit1,..., Vk}

Hence, as long as the remaining vectors are still linearly dependent, then
we can keep removing one vector without affecting the span of the vectors.
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Creating Linearly Independence out of Linearly Dependence

If Vi,..., Vy is a linearly dependent set of vectors with V; being able to be
written as a linear combination of the rest of the vectors, then we get

span{Vi,..., Vk} =span{Vi,..., Vi1, Vit1,..., Vk}

Hence, as long as the remaining vectors are still linearly dependent, then
we can keep removing one vector without affecting the span of the vectors.

Theorem

For any set of vectors Vi, ..., Vi, we can find a subset of the vectors
Vii, .., Vi, such that

span{vi,...,Vk} = span{vy,..., v}

and Vi, ...,V is linearly independent.

Patrick Meisner (KTH) Lecture 7 25/31



Linearly Independent Theorem

The following statements are equivalent
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Linearly Independent Theorem

The following statements are equivalent

© The set of vectors Vi,. .., Vi in R" are linearly independent
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Linearly Independent Theorem

The following statements are equivalent

© The set of vectors Vi,. .., Vi in R" are linearly independent

@ The only solution to

BVl + taVh + - + tei =0
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Linearly Independent Theorem

The following statements are equivalent
© The set of vectors Vi,. .., Vi in R" are linearly independent

@ The only solution to

BVl + taVh + - + tei =0

sti=thb=---=t,=0
© Any vector in the span of Vi, ..., V) can be expressed as a linear
combination of Vi, ..., Vi in a unique way
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Linearly Independent Theorem

The following statements are equivalent

© The set of vectors Vi,. .., Vi in R" are linearly independent

@ The only solution to

BVl + taVh + - + tei =0

sti=thb=---=t,=0
© Any vector in the span of Vi, ..., V) can be expressed as a linear
combination of Vi, ..., Vi in a unique way

Q@ The matrix A= (Vi V> ... Vi) has rank k
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Linearly Independent Theorem

The following statements are equivalent

© The set of vectors Vi,. .., Vi in R" are linearly independent
@ The only solution to

t171+t29'2+--~+tk\7k=6 :

sti=thb=---=t,=0

© Any vector in the span of vi, ..., Vi can be expressed as a linear
combination of Vi, ..., Vi in a unique way

Q@ The matrix A= (Vi V> ... Vi) has rank k

@ The matrix equation AX = 0 has only the trivial solution, X = 0.

WO = Q) &> @

\l d
G & w@
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The set of vectors Vi, ..., V, in R™ are linearly independent if and only if
the matrix A = (\71 Vo ... \7,,) is invertible.

Uir Va e [t ide == A hes A

wﬁ{l\\/j
*[;9 J REEF v

(D A s m yerh! ble.
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Suppose k > n. Then any set of k vectors vi, ..., Vi in R" are linearly
dependent.

( 5 veetdrs NN lp’l will elweny b ((\"eo{}/ ”&f/’“‘é‘ﬂ
A= [ j n Nown
V= s

b omd  c0
p e n < A — Qe &
) vetdors  on linerle Loperde.

Qe yarioks = b obdy > o pe Mo e b e,

\/é;r\,-q%
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Geometric Interpretation

What does it mean geometrically for the set of two vectors vV, w in R" to

be linearly dependent?
N e az an e
V- Ly =7 Som line .

o Colinenr oar  puleel o frofortione

What does it mean geometrically for the set of three vectors i, vV, w in R"
to be linearly dependent?

CLLa = Il o b sem Elgv_}ogf/blzu,‘j
{1’3 .E'\\))V \,W =

S,0Ww an ¢ Plcn/wn
i
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