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Topics for Today

1 Easily Invertible Matrices

2 Functions on Matrices: Transpose and Trace

3 Subspaces

4 Linear Dependence
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Easily Invertible Matrices: Diagonal Matrices

Let

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn


be a diagonal matrix.

Then D is invertible if and only all of the di are
non-zero with inverse

D−1 =


1
d1

0 . . . 0

0 1
d2

. . . 0
...

...
. . .

...
0 0 . . . 1

dn
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Easily Ivertible Matrices: 2× 2 Matrix

In general, it is difficult to calculate the inverse of a given matrix.

However, in the 2× 2 case, there is a simple formula:

Theorem

If A =

(
a b
c d

)
then A is invertible if and only if ad − bc 6= 0 with inverse

A−1 =
1

ad − bc

(
d −b
−c a

)
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Functions on Matrices

As well as multiplying and inverting matrices there are some other
functions on matrices that we care about

Definition

Let A be an m × n matrix, then the transpose of A, denoted AT is an
n ×m matrix, where the rows and columns are “flipped”:

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 =⇒ AT =


a1,1 a2,1 . . . am,1

a1,2 a2,2 . . . am,2
...

...
. . .

...
a1,n a2,n . . . am,n



Example:

A :=

(
1 2 3
4 5 6

)
=⇒ AT =

1 4
2 5
3 6
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Properties of Transposes

Theorem

Let A,B be matrices (of suitable dimensions) and c a real number

1 (AT )T = A

2 (A + B)T = AT + BT

3 (cA)T = c(AT )

4 (AB)T = BTAT

5 (AT )−1 = (A−1)T

IMPORTANT!!!!

(AB)T = BTAT and NOT ATBT just like (AB)−1 = B−1A−1 and NOT
A−1B−1.
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The Dot Product as a Matrix Product

Let ~v be a vector in Rn.

Then we can think about it as an n × 1 matrix.
Thus ~vT is a 1× n matrix and their dimensions work out that we can
multiply them.

Theorem

Let ~u, ~v be two vectors in Rn. Then

~vT ~u = ~v · ~u
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The Trace Function

Definition

For a square matrix A = (ai ,j), we define the trace of the matrix as the
sum of its diagonal entries:

Tr(A) = a1,1 + a2,2 + · · ·+ an,n

Example:

Tr




3 6 −1000 2
9001 1 44 54

0 789134 1 98
−578 913 1 2


 = 3 + 1 + 1 + 2 = 7
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Properties of the Trace

Theorem

Let A and B be n × n square matrices and c any real number

1 Tr(cA) = cTr(A)

2 Tr(A + B) = Tr(A) + Tr(B)

3 Tr(AT ) = Tr(A)

4 Tr(AB) = Tr(BA)

Note: While it is almost never true that AB = BA, it happens that it is
always true that Tr(AB) = Tr(BA).
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Dot Product as a Trace

Recall that if ~u, ~v are vectors in Rn, then we can think of them as n × 1
matrix and ~vT as a 1× n matrix.

~vT ~u then makes sense and is the dot
product. But ~v~uT also makes sense. What is this?

Theorem

Let ~u, ~v be two matrices in Rn. Then ~v~uT is a square n × n matrix and

Tr(~v~uT ) = ~v · ~u
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Subspaces

Definition

A nonempty subset W of vectors in Rn is called a subsapce of Rn if it is
closed under scalar multiplication and additions.

That is,

1 If ~u ∈W and c ∈ R, then c~u ∈W

2 If ~u, ~v ∈W then ~u + ~w ∈W .

Remark: if W is a subspace of Rn then it is also a vector space.

Exercise

If W is a subspace of Rn, then show that ~0 ∈W .

Patrick Meisner (KTH) Lecture 7 11 / 31



Subspaces

Definition

A nonempty subset W of vectors in Rn is called a subsapce of Rn if it is
closed under scalar multiplication and additions. That is,

1 If ~u ∈W and c ∈ R, then c~u ∈W

2 If ~u, ~v ∈W then ~u + ~w ∈W .

Remark: if W is a subspace of Rn then it is also a vector space.

Exercise

If W is a subspace of Rn, then show that ~0 ∈W .

Patrick Meisner (KTH) Lecture 7 11 / 31



Subspaces

Definition

A nonempty subset W of vectors in Rn is called a subsapce of Rn if it is
closed under scalar multiplication and additions. That is,

1 If ~u ∈W and c ∈ R, then c~u ∈W

2 If ~u, ~v ∈W then ~u + ~w ∈W .

Remark: if W is a subspace of Rn then it is also a vector space.

Exercise

If W is a subspace of Rn, then show that ~0 ∈W .

Patrick Meisner (KTH) Lecture 7 11 / 31



Subspaces

Definition

A nonempty subset W of vectors in Rn is called a subsapce of Rn if it is
closed under scalar multiplication and additions. That is,

1 If ~u ∈W and c ∈ R, then c~u ∈W

2 If ~u, ~v ∈W then ~u + ~w ∈W .

Remark: if W is a subspace of Rn then it is also a vector space.

Exercise

If W is a subspace of Rn, then show that ~0 ∈W .

Patrick Meisner (KTH) Lecture 7 11 / 31



Subspaces

Definition

A nonempty subset W of vectors in Rn is called a subsapce of Rn if it is
closed under scalar multiplication and additions. That is,

1 If ~u ∈W and c ∈ R, then c~u ∈W

2 If ~u, ~v ∈W then ~u + ~w ∈W .

Remark: if W is a subspace of Rn then it is also a vector space.

Exercise

If W is a subspace of Rn, then show that ~0 ∈W .

Patrick Meisner (KTH) Lecture 7 11 / 31



Smallest Subspace

Definition

Let W = {~0} be the set containing only the zero vector of Rn. W is
called the zero subspace.

Exercise

Show that the zero subspace actually is a subspace of Rn.
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Homogenous Subspace

Theorem

The set of homogeneous solutions to a matrix A is a subspace of Rn.

If A
is invertible, then this subspace is the zero subspace.
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Characterisation of Zero Matrix

Theorem

If A is a matrix with n columns then the subspace of homogeneous
solutions is all of Rn if and only if A = 0, the zero matrix.

i.e. A~x = 0 for
all ~x ∈ Rn if and only if A = 0.
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Characterisation of Matrices

Theorem

If A and B are matrices with n columns, then A~x = B~x for all ~x ∈ Rn if
and only if A = B.
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Next Simplest Subspace

Theorem

Let ~v1, ~v2, . . . , ~vk be vectors in Rn, then the set of all linear combinations
of them

W = {~x = t1~v1 + t2~v2 + · · ·+ tk~vk : t1, t2, . . . , tk ∈ R}

is a subspace of Rn
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Span of Set of Vectors

The example in the previous slide is called the span of the vectors
~v1, ~v2, . . . , ~vk . We often denote it

W = {~x = t1~v1 + t2~v2 + · · ·+ tk~vk : t1, t2, . . . , tk ∈ R}
= spanR {~v1, ~v2, . . . , ~vk}
= span {~v1, ~v2, . . . , ~vk}

and we call the set of vectors ~v1, . . . , ~vk a spanning set of vectors for W .
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Spanning Set of Vectors for Rn

Recall we have the standard normal vectors of Rn

~e1 =


1
0
...
0

 ~e2 =


0
1
...
0

 . . . ~en =


0
0
...
1



then we can write
Rn = span {~e1, ~e2, . . . , ~en}

So ~e1, . . . , ~en is a spanning set of vectors for Rn
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Exercise

Exercise

Find the subspace of homogeneous solutions of

A =


1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18


and write it as a span of vectors.

We know that set of homogeneous solutions will all those ~x that satisfy
A~x = ~0. To solve this we reduce A down to RREF

1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18

 =⇒


1 3 0 4 2 0
0 0 1 2 4 0
0 0 0 0 0 1
0 0 0 0 0 0
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0 0 0 0 0 1
0 0 0 0 0 0
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Exercise Continued

Hence, we need to find the set of ~x such that


1 3 0 4 2 0
0 0 1 2 4 0
0 0 0 0 0 1
0 0 0 0 0 0




x1
x2
x3
x4
x5
x6

 =



0
0
0
0
0
0



=⇒

=⇒



x1
x2
x3
x4
x5
x6

 =



−3
1
0
0
0
0

 t1 +



−4
0
−2
1
0
0

 t2 +



−2
0
0
0
1
0

 t3
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Exercise Continued

Therefore, we can conclude that the subspace of homogeneous solutions to
A is 



−3
1
0
0
0
0

 t1 +



−4
0
−2
1
0
0

 t2 +



−2
0
0
0
1
0

 t3 : t1, t2, t3 ∈ R



= span





−3
1
0
0
0
0

 ,



−4
0
−2
1
0
0

 ,



−2
0
0
0
1
0
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Different Spanning Set of Vectors

We saw that
Rn = span{~e1, . . . , ~en}

so that ~e1, . . . , ~en is a spanning set of vectors.

However, we can find many
different spanning sets of vectors for the same vector space

R2 = span

{[
1
0

]
,

[
0
1

]}
= span

{[
1
2

]
,

[
3
4

]}
= span

{[
1
0

]
,

[
1
1

]
,

[
2
1

]}

However, we see there is some redundancy in that last example
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Redundancy in Spanning Sets

In the last example we had

R2 = span

{[
1
0

]
,

[
1
1

]
,

[
2
1

]}

However, we see that [
2
1

]
=

[
1
0

]
+

[
1
1

]
so any linear combination of all three of the vectors can easily be written
as a linear combination of first two:

t1

[
1
0

]
+ t2

[
1
1

]
+ t3

[
2
1

]
= t1

[
1
0

]
+ t2

[
1
1

]
+ t3

([
1
0

]
+

[
1
1

])

= (t1 + t3)

[
1
0

]
+ (t2 + t3)

[
1
1

]
We then say that these three vectors are linearly dependent.
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Linearly Dependent and Independent

Definition

We say that a set of vectors ~v1, . . . , ~vk are linearly dependent if there is a
~vi that can be written as a linear combination of the rest of the vectors:

~vi = t1~v1 + t2~v2 + · · ·+ ti−1~vi−1 + ti+1~vi+1 + · · ·+ tk~vk

If no such relationship exists we say the vectors are linearly independent.

Fact

Any set of vectors containing ~0 is linearly dependent.
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Creating Linearly Independence out of Linearly Dependence

If ~v1, . . . , ~vk is a linearly dependent set of vectors with ~vi being able to be
written as a linear combination of the rest of the vectors, then we get

span{~v1, . . . , ~vk} = span{~v1, . . . , ~vi−1, ~vi+1, . . . , ~vk}

Hence, as long as the remaining vectors are still linearly dependent, then
we can keep removing one vector without affecting the span of the vectors.

Theorem

For any set of vectors ~v1, . . . , ~vk , we can find a subset of the vectors
~vi1 , . . . , ~vi` such that

span{~v1, . . . , ~vk} = span{~vi1 , . . . , ~vi`}

and ~vi1 , . . . , ~vi` is linearly independent.
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Linearly Independent Theorem

Theorem

The following statements are equivalent

1 The set of vectors ~v1, . . . , ~vk in Rn are linearly independent

2 The only solution to

t1~v1 + t2~v2 + · · ·+ tk~vk = ~0

is t1 = t2 = · · · = tk = 0

3 Any vector in the span of ~v1, . . . , ~vk can be expressed as a linear
combination of ~v1, . . . , ~vk in a unique way

4 The matrix A =
(
~v1 ~v2 . . . ~vk

)
has rank k

5 The matrix equation A~x = ~0 has only the trivial solution, ~x = ~0.
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Proof
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More Proof
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k = n

Theorem

The set of vectors ~v1, . . . , ~vn in Rn are linearly independent if and only if
the matrix A =

(
~v1 ~v2 . . . ~vn

)
is invertible.
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k > n

Theorem

Suppose k > n. Then any set of k vectors ~v1, . . . , ~vk in Rn are linearly
dependent.
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Geometric Interpretation

What does it mean geometrically for the set of two vectors ~v , ~w in Rn to
be linearly dependent?

What does it mean geometrically for the set of three vectors ~u, ~v , ~w in Rn

to be linearly dependent?
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