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Topics for Today

1 Using Matrix Multiplication to Solve A~x = ~b

2 Matrix Inverse

3 Elementary Matrices
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Solving Matrix Equations

The main topic for today is to develop a way to solve the matrix equation

A~x = ~b

Motivating example: if a and b were real numbers (or vectors in R1), how
would we solve

ax = b

Today, will be devoted to developing a way to “divide matrices”. But first,
we should understand fully what it means to multiply matrices.
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Properties of Matrix Multiplication

Last time we showed that the set of m × n matrices is a vector space and
so behaves well with scalar multiplication. i.e.

c(A + B) = cA + cB (c + d)A = cA + dA · · ·

However, we also defined a way to multiply two matrices together. These
also behave well:

Theorem

If c is a real number and A,B,C are matrices (of suitable dimensions),
then

1 A(BC ) = (AB)C

2 A(B ± C ) = AB ± AC

3 (B ± C )A = BA± CA

4 c(BC ) = (cB)C = B(cC )
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Non Commutative

CAUTION!!!!!

Even if both make sense, in general AB 6= BA!!!

Exercise

Compute AB and BA for

A =

(
1 0
−1 2

)
B =

(
1 3
2 0

)

Patrick Meisner (KTH) Lecture 6 5 / 31



Non Commutative

CAUTION!!!!!

Even if both make sense, in general AB 6= BA!!!

Exercise

Compute AB and BA for

A =

(
1 0
−1 2

)
B =

(
1 3
2 0

)

Patrick Meisner (KTH) Lecture 6 5 / 31



Non Commutative

CAUTION!!!!!

Even if both make sense, in general AB 6= BA!!!

Exercise

Compute AB and BA for

A =

(
1 0
−1 2

)
B =

(
1 3
2 0

)

Patrick Meisner (KTH) Lecture 6 5 / 31



Non Canceling

CAUTION!!!!!!

It is not the case that we can “cancel” multiplication. That is:
1 AB = AC does NOT imply B = C
2 AB = 0 does NOT imply A = 0 or B = 0

(
1 2
3 6

)(
2 −4
−1 2

)
=

(
1 2
3 6

)(
−6 −2
3 1

)
=
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Identity Matrix

We saw that the matrix of all zeros (the zero matrix) behaves like the
number 0. i.e.

A + 0 = A A + (−A) = 0 · · ·

Is there a matrix that behaves like 1 with multiplication?

Definition

For any k , denote the identity matrix

Ik =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


Note: Ik is a square-matrix.
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Identity Matrix Theorem

Theorem

If A is an m × n matrix then

AIn = A = ImA

CAUTION!!!!!

In and Im are different matrices!

Exercise

Compute AI3 and I2A for

A =

(
−8 1 0
2 −2 1

)
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System of Linear Equations for In

Question

What system of linear equations does In represent?

Consider the augmented matrix (In|~b)

(In|~b) =


1 0 · · · 0 b1
0 1 · · · 0 b2
...

...
. . .

...
...

0 0 · · · 1 bn

 =⇒

x1 = b1

x2 = b2
...

xn = bn

And so we see that ~x solves (In|~b) if and only if ~x = ~b
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Solving (In|~b) Using Matrix Multiplication

Alternatively, we know that ~x solves (In|~b) if and only if

In~x = ~b

However, we can view ~x as an n × 1 matrix and so get that

In~x = ~x

from which we can conclude that ~x solves (In|~b) if and only if

~x = ~b
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RREF Theorem

Theorem

Let A be the coefficient matrix of a system of n linear equations with n
variables. Then A is a square matrix. Let R be the RREF of A.

1 If R = In, then the system has a unique solution

2 If R 6= In then rk(A) < n and the system has either 0 or infinitely
many solutions.

Recall: we say that two matrices are row equivalent if one can be
obtained from the other from a series of row operations. So the condition
R = In can be rephrased as A is row equivalent to In and R 6= In can be
rephrased as A is not row equivalent to In.
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Proof
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Simplest Example

Going back to our simplest example in R1, let us look at what is really
going on:

ax = b

=⇒ ax

a
=

b

a
=⇒ a

a
x =

b

a
=⇒ 1x =

b

a

Question

But what is “division by a”?

Division is defined as the opposite of multiplication. So, it is better to
think of it not as it’s own operation but as a type of multiplication. That
is:

“dividing by a” is the same as “multiplying by 1
a”
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Simplest Example 2

Question

But what is 1
a?

1
a can be defined as:

the number that, when multiplied by a, is 1

This is sometimes referred to as the multiplicative inverse of a.

Conclusion

To solve ax = b it is best to think about multiplying by the multiplicative
inverse of a then to think about dividing by a.
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Multiplicative Inverse

Let us now apply this to solving our matrix equation:

A~x = ~b

Following the simplest example, to solve this, we would need to multiply
by the multiplicative inverse of A. But what is this?

Recall for a real number a, the multiplicative inverse is

the number that, when multiplied by a, is 1

So, following this, for a matrix A, the multiplicative inverse is

the matrix that, when multiplied by A, is I , the identity matrix
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Sanity Check

Does this make sense?

Consider

A =

(
2 3
1 1

)
B =

(
−1 3
1 −2

)
It is easy enough to check that

BA =

(
1 0
0 1

)
= I2

So, to solve A~x =

[
1
−2

]
, we see that

A~x =

[
1
−2

]
=⇒ BA~x = B

[
1
−2

]
=⇒ I2~x =

(
−1 3
1 −2

)[
1
−2

]

=⇒ ~x =

[
−7
5

]
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Invertible Matrices

Definition

We say an n × n matrix A is invertible if there is an n × n matrix B such
that

AB = BA = In.

We call B the inverse of A and denote it A−1. Note that here B would
also be invertible with inverse A (i.e. B−1 = A).

CAUTION!!!!!

This definition if for square matrices only (m = n). We can not talk
about inverse of non-square matrices!
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Solving Matrix Equations with Invertible Matrices

Theorem

If A in an invertible matrix then

A~x = ~b ⇐⇒ ~x = A−1~b.

In particular, there is exactly one solution to the augmented matrix (A|~b)
for all ~b.
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Invertibility Theorem

Theorem

Let A be an n × n matrix. The the following are equivalent

1 A~x = ~b has a unique solution for every ~b

2 A~x = 0 has a unique solution

3 rk(A) = n

4 The RREF of A is In
5 A is invertible
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More Work Space
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Properties of the Inverse

To prove the (4) =⇒ (5), we need to know more about the inverse.

Theorem

Let A,B be invertible matrices and c a real number then

1 The identity matrix In is invertible with I−1n = In
2 Inverses are unique.

3 The inverse of the inverse of A is A: (A−1)−1 = A

4 cA is invertible with (cA)−1 = 1
cA
−1

5 AB is invertible with (AB)−1 = B−1A−1.
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More Work Space
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Elementary Matrices

Recall that the elementary row operation are

1 Add a multiple of one row to the other

2 Interchange two rows

3 Multiply a row by a non-zero constant

Definition

We say a matrix is an elementary matrix if it can be obtained by one
elementary row operation performed on the identity matrix.
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Examples of Elementary Matrices

1 Add a multiple of one row to the other

1 0 0
0 1 0
0 0 1

 R2+4R1=====⇒

1 0 0
4 1 0
0 0 1


2 Interchange two rows1 0 0

0 1 0
0 0 1

 R1 ⇐⇒ R3======⇒

0 0 1
0 1 0
1 0 0


3 Multiply a row by a non-zero constant1 0 0

0 1 0
0 0 1

 −2R1===⇒

−2 0 0
0 1 0
0 0 1


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Inverse of Elementary Matrices

Theorem

If E is an elementary matrix then it is invertible and E−1 is also an
elementary matrix.

Moreover, E−1 corresponds to the “undoing” row
operation of E .

1 0 0
4 1 0
0 0 1

−1 =

 1 0 0
−4 1 0
0 0 1


0 0 1

0 1 0
1 0 0

−1 =

0 0 1
0 1 0
1 0 0


−2 0 0

0 1 0
0 0 1

−1 =

−1
2 0 0

0 1 0
0 0 1


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Multiplying by Elementary Matrices

Theorem

Given a matrix A and an elementary matrix E , then the matrix EA is
obtained by performing the row operation corresponding to E on A.

1 0 0
4 1 0
0 0 1

1 0 2 3
2 −1 3 6
1 4 4 0

 =

1 0 2 3
6 −1 11 18
1 4 4 0


Note: It is only EA that corresponds to performing the row operation. AE
does NOT correspond to this. In fact, AE may not even make sense!

Theorem

Two matrices A and B are row equivalent if and only if there is a series of
elementary matrices such that

B = EkEk−1 · · ·E2E1A
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(4) =⇒ (5)

Theorem

Let A be an n × n matrix. The the following are equivalent

1 A~x = ~b has a unique solution for every ~b

2 A~x = 0 has a unique solution

3 rk(A) = n

4 The RREF of A is In
5 A is invertible
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Inverse as Elementary Matrices

One consequence of the above theorem is that A is invertible if and only if
there is a series of row operations that reduce it to I .

This is equivalent to
saying that there is a series of elementary matrices E1,E2, . . . ,Ek−1,Ek

such that
EkEk1 · · ·E2E1A = I

However, this now implies that

A−1 = EkEk−1 · · ·E2E1I

Conclusion

To find the inverse of A, it is enough to apply row operation that reduce A
to I on I itself.
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Algorithm for Finding the Inverse

1 Augment the n × n matrix A with In: (A|In)

2 Perform Gauss-Jordan elimination on A while at the same time doing
the same row operations to In

(A|In) =⇒ (R|B)

3 If the R = In then A is invertible and B = A−1.

4 If R 6= In then A is not invertible.

Patrick Meisner (KTH) Lecture 6 29 / 31



Algorithm for Finding the Inverse

1 Augment the n × n matrix A with In: (A|In)

2 Perform Gauss-Jordan elimination on A while at the same time doing
the same row operations to In

(A|In) =⇒ (R|B)

3 If the R = In then A is invertible and B = A−1.

4 If R 6= In then A is not invertible.

Patrick Meisner (KTH) Lecture 6 29 / 31



Algorithm for Finding the Inverse

1 Augment the n × n matrix A with In: (A|In)

2 Perform Gauss-Jordan elimination on A while at the same time doing
the same row operations to In

(A|In) =⇒ (R|B)

3 If the R = In then A is invertible and B = A−1.

4 If R 6= In then A is not invertible.

Patrick Meisner (KTH) Lecture 6 29 / 31



Algorithm for Finding the Inverse

1 Augment the n × n matrix A with In: (A|In)

2 Perform Gauss-Jordan elimination on A while at the same time doing
the same row operations to In

(A|In) =⇒ (R|B)

3 If the R = In then A is invertible and B = A−1.

4 If R 6= In then A is not invertible.

Patrick Meisner (KTH) Lecture 6 29 / 31



Algorithm for Finding the Inverse

1 Augment the n × n matrix A with In: (A|In)

2 Perform Gauss-Jordan elimination on A while at the same time doing
the same row operations to In

(A|In) =⇒ (R|B)

3 If the R = In then A is invertible and B = A−1.

4 If R 6= In then A is not invertible.

Patrick Meisner (KTH) Lecture 6 29 / 31



Finding the Inverse

Find the inverse of the matrix

A =

−1 3 1
1 0 1
2 1 0


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More Work Space
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