SF 1684 Algebra and Geometry Lecture 6

Patrick Meisner

KTH Royal Institute of Technology

- **1** Using Matrix Multiplication to Solve $A\vec{x} = \vec{b}$
- 2 Matrix Inverse
- Ilementary Matrices

Solving Matrix Equations

The main topic for today is to develop a way to solve the matrix equation

$$A\vec{x} = \vec{b}$$

Solving Matrix Equations

The main topic for today is to develop a way to solve the matrix equation

$$A\vec{x} = \vec{b}$$

Motivating example: if a and b were real numbers (or vectors in \mathbb{R}^1), how would we solve

$$ax = b$$

divide both sides by q: $X = \frac{b}{q}$

Solving Matrix Equations

The main topic for today is to develop a way to solve the matrix equation

Motivating example: if a and b were real numbers (or vectors in \mathbb{R}^1), how would we solve

$$ax = b$$

Today, will be devoted to developing a way to "divide matrices". But first, we should understand fully what it means to multiply matrices.

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$\underline{c}(A+B) = \underline{c}A + \underline{c}B \qquad (\underline{c}+\underline{d})A = \underline{c}A + \underline{d}A \cdots \qquad \forall c \in \mathbb{Z}$$

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$c(A+B) = cA + cB$$
 $(c+d)A = cA + dA \cdots$

However, we also defined a way to *multiply* two matrices together. These also behave well:

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$c(A+B) = cA + cB$$
 $(c+d)A = cA + dA \cdots$

However, we also defined a way to *multiply* two matrices together. These also behave well:

Theorem

If c is a real number and A, B, C are matrices (of suitable dimensions), then

$$(BC) = (AB)C$$

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$c(A+B) = cA + cB$$
 $(c+d)A = cA + dA \cdots$

However, we also defined a way to *multiply* two matrices together. These also behave well:

Theorem

If c is a real number and A, B, C are matrices (of suitable dimensions), then

•
$$A(BC) = (AB)C$$

• $A(B \pm C) = AB \pm AC$

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$c(A+B) = cA + cB$$
 $(c+d)A = cA + dA \cdots$

However, we also defined a way to *multiply* two matrices together. These also behave well:

Theorem

If c is a real number and A, B, C are matrices (of suitable dimensions), then

$$A(BC) = (AB)C$$

$$A(B \pm C) = AB \pm AC$$

$$A(B \pm \check{C})A = BA \pm CA$$

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$c(A+B) = cA + cB$$
 $(c+d)A = cA + dA \cdots$

However, we also defined a way to *multiply* two matrices together. These also behave well:

Theorem

If c is a real number and A, B, C are matrices (of suitable dimensions), then \frown

•
$$A(BC) = (AB)C$$
 \longrightarrow $exercise Prov (1)$
• $A(B \pm C) = AB \pm AC$
• $(B \pm C)A = BA \pm CA$
• $c(BC) = (cB)C = B(cC)$

Non Commutative

CAUTION!!!!!

Even if both make sense, in general $AB \neq BA!!!$

Even if both make sense, in general $AB \neq BA!!!$

It is not the case that we can "cancel" multiplication.

It is not the case that we can "cancel" multiplication. That is:

• AB = AC does *NOT* imply B = C

It is not the case that we can "cancel" multiplication. That is:

- AB = AC does *NOT* imply B = C
- 2 AB = 0 does *NOT* imply A = 0 or B = 0

It is not the case that we can "cancel" multiplication. That is:

•
$$AB = AC$$
 does *NOT* imply $B = C$

2 AB = 0 does *NOT* imply A = 0 or B = 0

Identity Matrix

We saw that the matrix of all zeros (the **zero matrix**) behaves like the number 0. i.e.

$$A + 0 = A$$
 $A + (-A) = 0 \cdots$

Identity Matrix

We saw that the matrix of all zeros (the **zero matrix**) behaves like the number 0. i.e.

$$A + 0 = A$$
 $A + (-A) = 0 \cdots$

Is there a matrix that behaves like 1 with multiplication?

We saw that the matrix of all zeros (the **zero matrix**) behaves like the number 0. i.e.

$$A + 0 = A$$
 $A + (-A) = 0 \cdots$

Is there a matrix that behaves like 1 with multiplication?

Identity Matrix Theorem

Theorem

If A is an $m \times m$ matrix then

$$Al_{O} = A = l_{O}$$

Identity Matrix Theorem

Theorem

If A is an $m \times n$ matrix then

$$AI_n = A = I_m A$$
Coercie: prov Huis

CAUTION!!!!!

 I_n and I_m are **different** matrices!

Identity Matrix Theorem

Theorem

If A is an $m \times n$ matrix then

$$AI_n = A = I_m A$$

CAUTION!!!!!

 I_n and I_m are **different** matrices!

Exercise

Compute AI_3 and I_2A for

$$A = \begin{pmatrix} -8 & 1 & 0 \\ 2 & -2 & 1 \end{pmatrix}$$

What system of linear equations does I_n represent?

What system of linear equations does I_n represent?

Consider the augmented matrix $(I_n | \vec{b})$

$$(I_n|\vec{b}) = egin{pmatrix} 1 & 0 & \cdots & 0 & b_1 \ 0 & 1 & \cdots & 0 & b_2 \ dots & dots & \ddots & dots & dots \ dots & dots & \ddots & dots & dots \ dots & dots & \ddots & dots & dots \ dots & dots & \ddots & dots & dots \ dots & dots & \ddots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots \ dots & dots & dots \ dots & dots \ dots & dots \ \ dots \ dots$$

What system of linear equations does I_n represent?

Consider the augmented matrix $(I_n | \vec{b})$

$$(I_n|\vec{b}) = \begin{pmatrix} \vec{x}_1 & \vec{x}_n & \vec{x}_n \\ 1 & 0 & \cdots & 0 & b_1 \\ 0 & 1 & \cdots & 0 & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & b_n \end{pmatrix} \implies_{\vec{x}_1} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ \vdots \\ b_n \end{pmatrix}}_{\vec{x}_1} \vec{b}_2 \rightarrow \vec{b}$$

And so we see that \vec{x} solves $(I_n|\vec{b})$ if and only if $\vec{x} = \vec{b}$

What system of linear equations does I_n represent?

Consider the augmented matrix $(I_n | \vec{b})$

$$(I_n|\vec{b}) = \begin{pmatrix} 1 & 0 & \cdots & 0 & b_1 \\ 0 & 1 & \cdots & 0 & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & b_n \end{pmatrix} \implies \begin{array}{c} x_1 = b_1 \\ \Rightarrow & x_2 = b_2 \\ \vdots \\ \vdots \\ x_n = b_n \end{array}$$
And so we see that \vec{x} solves $(I_n|\vec{b})$ if and only if $\vec{x} = \vec{b}$

Solving $(I_n | \vec{b})$ Using Matrix Multiplication

Alternatively, we know that \vec{x} solves $(I_n | \vec{b})$ if and only if

$$I_n \vec{x} = \vec{b}$$

Solving $(I_n | \vec{b})$ Using Matrix Multiplication

Alternatively, we know that \vec{x} solves $(I_n | \vec{b})$ if and only if

$$I_n \vec{x} = \vec{b}$$

However, we can view \vec{x} as an $n \times 1$ matrix and so get that

$$I_n \vec{x} = \vec{x}$$

Solving $(I_n | \vec{b})$ Using Matrix Multiplication

Alternatively, we know that \vec{x} solves $(I_n | \vec{b})$ if and only if

$$I_n \vec{x} = \vec{b}$$

However, we can view \vec{x} as an $n \times 1$ matrix and so get that

$$I_n \vec{x} = \vec{x}$$

from which we can conclude that \vec{x} solves $(I_n | \vec{b})$ if and only if

$$\vec{x} = \vec{b}$$

A is nxu

Theorem

Let A be the coefficient matrix of a system of <u>n</u> linear equations with <u>n</u> variables. Then A is a square matrix. Let R be the RREF of A.

Theorem

Let A be the coefficient matrix of a system of n linear equations with n variables. Then A is a square matrix. Let R be the RREF of A.

• If $R = I_n$, then the system has a unique solution

Theorem

Let A be the coefficient matrix of a system of n linear equations with n variables. Then A is a square matrix. Let R be the RREF of A.

- If $R = I_n$, then the system has a unique solution for $\mathcal{A}(\mathcal{A}|\mathcal{b})$
- If R ≠ I_n then rk(A) < n and the system has either 0 or infinitely many solutions.</p>

Theorem

Let A be the coefficient matrix of a system of n linear equations with n variables. Then A is a square matrix. Let R be the RREF of A.

- If $R = I_n$, then the system has a unique solution
- If R ≠ I_n then rk(A) < n and the system has either 0 or infinitely many solutions.</p>

Recall: we say that two matrices are **row equivalent** if one can be obtained from the other from a series of row operations.

Theorem

Let A be the coefficient matrix of a system of n linear equations with n variables. Then A is a square matrix. Let R be the RREF of A.

- If $R = I_n$, then the system has a unique solution
- If R ≠ I_n then rk(A) < n and the system has either 0 or infinitely many solutions.</p>

Recall: we say that two matrices are **row equivalent** if one can be obtained from the other from a series of row operations. So the condition $R = I_n$ can be rephrased as A is row equivalent to I_n

Theorem

Let A be the coefficient matrix of a system of n linear equations with n variables. Then A is a square matrix. Let R be the RREF of A.

- If $R = I_n$, then the system has a unique solution
- If R ≠ I_n then rk(A) < n and the system has either 0 or infinitely many solutions.</p>

Recall: we say that two matrices are **row equivalent** if one can be obtained from the other from a series of row operations. So the condition $R = I_n$ can be rephrased as A is row equivalent to I_n and $R \neq I_n$ can be rephrased as A is *not* row equivalent to I_n .

Proof

 $\mathbb{O}(A|\tilde{b}) \xrightarrow{\text{formedia}} (R|\tilde{c}) = (I_n|\tilde{c})$ χ solves $(A(\vec{b}))$ iff \vec{x} solve $(\pm (\vec{c}))$ iff $\vec{x} = \vec{c}$ (2) (A(5) (P(c)) (R(c)) (For the variable = N-rK(R)) (For the variable > 0) (For the variable > 0) (For the leading Li con be So I much have a leading ones but n rows so by extradistion & must have a row of zerzs, R= -. Of C = C => then mult be a free variable => millions

Patrick Meisner (KTH)

ax = b

$$ax = b \implies \frac{ax}{a} = \frac{b}{a}$$

$$ax = b \implies \frac{ax}{a} = \frac{b}{a} \implies \frac{a}{a}x = \frac{b}{a}$$

$$ax = b \implies \frac{ax}{a} = \frac{b}{a} \implies \frac{a}{a}x = \frac{b}{a} \implies 1x = \frac{b}{a}$$

$$ax = b \implies \frac{ax}{a} = \frac{b}{a} \implies \frac{a}{a} = \frac{b}{a} \implies 1x = \frac{b}{a}$$

Question

But what is "division by a"?

$$ax = b \implies \frac{ax}{a} = \frac{b}{a} \implies \frac{a}{a}x = \frac{b}{a} \implies 1x = \frac{b}{a}$$

Question But what is "division by a"?

Division is defined as the opposite of multiplication.

$$ax = b \implies \frac{ax}{a} = \frac{b}{a} \implies \frac{a}{a}x = \frac{b}{a} \implies 1x = \frac{b}{a}$$

Question

But what is "division by a"?

Division is defined as the opposite of multiplication. So, it is better to think of it not as it's own operation but as a type of multiplication.

$$ax = b \implies \frac{ax}{a} = \frac{b}{a} \implies \frac{a}{a} = \frac{b}{a} \implies 1x = \frac{b}{a}$$

Question

But what is "division by a"?

Division is defined as the opposite of multiplication. So, it is better to think of it not as it's own operation but as a type of multiplication. That is:

```
"dividing by a" is the same as "multiplying by \frac{1}{2}"
```

Simplest Example 2

Question

But what is $\frac{1}{a}$?

Question

But what is $\frac{1}{a}$?

 $\frac{1}{a}$ can be defined as:

the number that, when multiplied by a, is 1

Question

But what is $\frac{1}{a}$?

 $\frac{1}{a}$ can be defined as:

the number that, when multiplied by a, is 1

This is sometimes referred to as the **multiplicative inverse** of *a*.

Question

But what is $\frac{1}{a}$?

 $\frac{1}{a}$ can be defined as:

```
the number that, when multiplied by a, is 1
```

This is sometimes referred to as the **multiplicative inverse** of *a*.

Conclusion

To solve ax = b it is best to think about *multiplying by the multiplicative inverse* of *a* then to think about dividing by *a*.

$$A\vec{x} = \vec{b}$$

$$A\vec{x} = \vec{b}$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of *A*.

$$A\vec{x} = \vec{b}$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of *A*. But what is this?

$$A\vec{x} = \vec{b}$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A. But what is this?

Recall for a real number *a*, the multiplicative inverse is

the number that, when multiplied by a, is 1

$$A\vec{x} = \vec{b}$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A. But what is this?

Recall for a real number *a*, the multiplicative inverse is

the number that, when multiplied by a, is 1

So, following this, for a matrix A, the multiplicative inverse is

$$A\vec{x} = \vec{b}$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A. But what is this?

Recall for a real number *a*, the multiplicative inverse is

the number that, when multiplied by a, is 1

So, following this, for a matrix *A*, the multiplicative inverse is the *matrix*

$$A\vec{x} = \vec{b}$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A. But what is this?

Recall for a real number *a*, the multiplicative inverse is

the number that, when multiplied by a, is 1

So, following this, for a matrix A, the multiplicative inverse is

the matrix that, when multiplied by A, is

$$A\vec{x} = \vec{b}$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A. But what is this?

Recall for a real number *a*, the multiplicative inverse is

the number that, when multiplied by a, is 1

So, following this, for a matrix A, the multiplicative inverse is

the matrix that, when multiplied by A, is I, the identity matrix

L' behas

Does this make sense?

Does this make sense? Consider

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix}$$

Does this make sense? Consider

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix}$$

It is easy enough to check that

$$BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

Does this make sense? Consider

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix}$$

It is easy enough to check that

$$BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

So, to solve
$$A\vec{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
, we see that $A\vec{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

Does this make sense? Consider

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix}$$

It is easy enough to check that

that

$$BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

$$Mo(tiplic divent)$$

$$BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

$$Mverse \quad of \quad L.$$

So, to solve
$$A\vec{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
, we see that
 $A\vec{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \implies BA\vec{x} = B \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

Does this make sense? Consider

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix}$$

It is easy enough to check that

$$BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

So, to solve $A\vec{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, we see that $A\vec{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \implies BA\vec{x} = B \begin{bmatrix} 1 \\ -2 \end{bmatrix} \implies l_2\vec{x} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

Does this make sense? Consider

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix}$$

It is easy enough to check that

$$BA = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = I_2$$

So, to solve $A\vec{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, we see that

$$A\vec{x} = \begin{bmatrix} 1\\ -2 \end{bmatrix} \implies BA\vec{x} = B\begin{bmatrix} 1\\ -2 \end{bmatrix} \implies l_2\vec{x} = \begin{pmatrix} -1 & 3\\ \underline{1 & -2 \end{pmatrix} \begin{bmatrix} 1\\ -2 \end{bmatrix}}$$
$$\implies \vec{x} = \begin{bmatrix} -7\\ 5 \end{bmatrix}$$

We say an $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix B such that

$$AB = BA = I_n.$$

We say an $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix B such that

$$AB = BA = I_n.$$

We call B the **inverse** of A and denote it A^{-1} .

is the multiplication inverse of A

We say an $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix B such that

$$AB = BA = I_n.$$

We call *B* the **inverse** of *A* and denote it A^{-1} . Note that here *B* would also be invertible with inverse *A* (i.e. $B^{-1} = A$).

We say an $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix B such that

$$AB = BA = I_n$$
.

We call *B* the **inverse** of *A* and denote it A^{-1} . Note that here *B* would also be invertible with inverse *A* (i.e. $B^{-1} = A$).

CAUTION!!!!!

We say an $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix B such that

$$\underline{AB} = \underline{BA} = I_n.$$

We call *B* the **inverse** of *A* and denote it A^{-1} . Note that here *B* would also be invertible with inverse *A* (i.e. $B^{-1} = A$).

CAUTION!!!!!

This definition if for square matrices only (m = n).

We say an $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix B such that

$$AB = BA = I_n$$
.

We call *B* the **inverse** of *A* and denote it A^{-1} . Note that here *B* would also be invertible with inverse *A* (i.e. $B^{-1} = A$).

CAUTION!!!!!

This definition if for square matrices only (m = n). We can not talk about inverse of non-square matrices!

Solving Matrix Equations with Invertible Matrices

Theorem

If A in an invertible matrix then

$$A\vec{x} = \vec{b} \iff \vec{x} = A^{-1}\vec{b}.$$

Solving Matrix Equations with Invertible Matrices

Theorem

If A in an invertible matrix then

$$A\vec{x} = \vec{b} \iff \vec{x} = A^{-1}\vec{b}.$$

In particular, there is exactly one solution to the augmented matrix $(A|\vec{b})$ for all \vec{b} .

$$(-7)Ax=b$$
 Multiply both sides by A^{7} : $A^{7}Ax = A^{7}b$
-> $I_{n}x = A^{7}b$
 $x = A^{7}b$

$$(=)$$
 $\tilde{X} = A^{-1}b$ He $f\tilde{X} = AA^{-1}b = I_{11}b = \bar{b}$

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent

• $A\vec{x} = \vec{b}$ has a unique solution for every \vec{b}

Theorem

- $A\vec{x} = \vec{b}$ has a unique solution for every \vec{b}
- 2 $A\vec{x} = 0$ has a unique solution

Theorem

- $A\vec{x} = \vec{b}$ has a unique solution for every \vec{b}
- 2 $A\vec{x} = 0$ has a unique solution
- rk(A) = n

Theorem

- $A\vec{x} = \vec{b}$ has a unique solution for every \vec{b}
- 2 $A\vec{x} = 0$ has a unique solution
- rk(A) = n
- The RREF of A is In

Theorem

- $A\vec{x} = \vec{b}$ has a unique solution for every \vec{b}
- 2 $A\vec{x} = 0$ has a unique solution
- Irrk(A) = n
- The RREF of A is In
- A is invertible

$$(1) \Rightarrow (21 = (2) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1)$$

$$(1) \Rightarrow (2) (f Ax = 6 has a colution for all 6 then in putiendo for $5x$
(2) = (3) Ax > 0 dummer has a solution of $x = 0$
so Ax > 0 hos 4 solution of hos solutions.
(f it has a force variable then $hK(f) = n - # free variable < N$$$

More Work Space

$$\frac{(2)^{-7}(2)}{Hn} \xrightarrow{(2)^{-7}(2)} (2n+1) \xrightarrow{(2)^{-7}(2)^{-7}(2)} (2n+1) \xrightarrow{(2)^{-7}(2)^{-7}(2)} (2n+1) \xrightarrow{(2)^{-7}(2)^{-7}(2)} (2n+1) \xrightarrow{(2)^{-7}(2)^{-7}(2)^{-7}(2)} (2n+1) \xrightarrow{(2)^{-7}(2)^{$$

To prove the (4) \implies (5), we need to know more about the inverse.

To prove the (4) \implies (5), we need to know more about the inverse.

Theorem

To prove the (4) \implies (5), we need to know more about the inverse.

Theorem

Let A, B be invertible matrices and c a real number then

• The identity matrix I_n is invertible with $I_n^{-1} = I_n$

To prove the (4) \implies (5), we need to know more about the inverse.

Theorem

- The identity matrix I_n is invertible with $I_n^{-1} = I_n$
- Inverses are unique.

To prove the (4) \implies (5), we need to know more about the inverse.

Theorem

- The identity matrix I_n is invertible with $I_n^{-1} = I_n$
- Inverses are unique.
- The inverse of the inverse of A is A: $(A^{-1})^{-1} = A$

To prove the (4) \implies (5), we need to know more about the inverse.

Theorem

- The identity matrix I_n is invertible with $I_n^{-1} = I_n$
- Inverses are unique.
- The inverse of the inverse of A is A: $(A^{-1})^{-1} = A$
- *cA* is invertible with $(cA)^{-1} = \frac{1}{c}A^{-1}$

To prove the (4) \implies (5), we need to know more about the inverse.

Theorem

Let A, B be invertible matrices and c a real number then

- **1** The identity matrix I_n is invertible with $I_n^{-1} = I_n$
- Inverses are unique.
- 3 The inverse of the inverse of A is A: $(A^{-1})^{-1} = A$

• cA is invertible with
$$(cA)^{-1} = rac{1}{c}A^{-1}$$

DAB is invertible with $(AB)^{-1} = B^{-1}A^{-1}$. \frown biz one [

More Work Space

3) Want to show (I'l'= A B(AT) is the Motrix such that A'B= (3A'= I we at that A=B satisfies this I by the uniquences is the only metrix that satisfies this (a) $(CA)^{T} = \tilde{c}A^{-1}$ deck: $(CA) \cdot (\tilde{c}A^{-1}) = C \cdot \tilde{c} \cdot A \cdot A^{T}$ =1.2= $(AB)^{T} \neq A^{T}B^{T}$ BT AT (A-B) Ĵ cheak + hat (RT A') (AB) 2 B(A'A)B $= B^{T}(IP) = B^{T}B = I$

Recall that the elementary row operation are

- Add a multiple of one row to the other
- Interchange two rows
- Multiply a row by a non-zero constant

Recall that the elementary row operation are

- Add a multiple of one row to the other
- Interchange two rows
- Multiply a row by a non-zero constant

Definition

We say a matrix is an **elementary matrix** if it can be obtained by one elementary row operation performed on the identity matrix.

Add a multiple of one row to the other

Add a multiple of one row to the other

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 + 4R_1} \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \overleftarrow{(-)}$$

Add a multiple of one row to the other

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 + 4R_1} \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Interchange two rows

Add a multiple of one row to the other

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 + 4R_1} \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \simeq$$

Interchange two rows

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \iff R_3} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \simeq \overbrace{\vdash}^{\sim}$$

Add a multiple of one row to the other

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 + 4R_1} \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Interchange two rows

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \iff R_3} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Add a multiple of one row to the other

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 + 4R_1} \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cong \widehat{f_{\mathbb{C}}}$$

Interchange two rows

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \iff R_3} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \simeq \int$$

Multiply a row by a non-zero constant

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{-2R_1} \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cong \bigcup$$

Inverse of Elementary Matrices

Theorem

If E is an elementary matrix then it is invertible and E^{-1} is also an elementary matrix.

If E is an elementary matrix then it is invertible and E^{-1} is also an elementary matrix. Moreover, E^{-1} corresponds to the "undoing" row operation of E.

If E is an elementary matrix then it is invertible and E^{-1} is also an elementary matrix. Moreover, E^{-1} corresponds to the "undoing" row operation of E.

$$F_{2} + 4 R_{1} \rightarrow \left(\begin{array}{c} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)^{-1} = \left(\begin{array}{c} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \leftarrow F_{2} - 4 R_{1}$$

$$F_{3} \Rightarrow \left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right)^{-1} = \left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right) \leftarrow F_{3} - 4 R_{1}$$

$$F_{4} \Rightarrow \left(\begin{array}{c} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)^{-1} = \left(\begin{array}{c} -\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \leftarrow -\frac{1}{2} R_{1}$$

Given a matrix A and an elementary matrix E, then the matrix EA is obtained by performing the row operation corresponding to E on A.

Given a matrix A and an elementary matrix E, then the matrix EA is obtained by performing the row operation corresponding to E on A.

$$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & \\ & \\ & \\ \end{array} \end{array} \xrightarrow{\ell} \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & -1 & 3 & 6 \\ 1 & 4 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 6 & -1 & 11 & 18 \\ 1 & 4 & 4 & 0 \end{pmatrix}$$

Given a matrix A and an elementary matrix E, then the matrix EA is obtained by performing the row operation corresponding to E on A.

$$\begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & -1 & 3 & 6 \\ 1 & 4 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 6 & -1 & 11 & 18 \\ 1 & 4 & 4 & 0 \end{pmatrix}$$

Note: It is only EA that corresponds to performing the row operation. AE does NOT correspond to this. In fact, AE may not even make sense!

Given a matrix A and an elementary matrix E, then the matrix EA is obtained by performing the row operation corresponding to E on A.

$$\begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & -1 & 3 & 6 \\ 1 & 4 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 6 & -1 & 11 & 18 \\ 1 & 4 & 4 & 0 \end{pmatrix}$$

Note: It is only EA that corresponds to performing the row operation. AE does NOT correspond to this. In fact, AE may not even make sense!

Theorem

Two matrices A and B are row equivalent if and only if there is a series of elementary matrices such that

$$B=E_kE_{k-1}\cdots E_2E_1A$$

$(4) \implies (5)$

Theorem

One consequence of the above theorem is that A is invertible if and only if there is a series of row operations that reduce it to I.

$$E_k E_{k_1} \cdots E_2 E_1 A = I$$

$$E_k E_{k_1} \cdots E_2 E_1 A = I$$

However, this now implies that

$$A^{-1} = E_k E_{k-1} \cdots E_2 E_1$$

$$E_k E_{k_1} \cdots E_2 E_1 A = I$$

However, this now implies that

$$A^{-1} = \underbrace{E_k E_{k-1} \cdots E_2 E_1}_{I_1}$$

$$E_k E_{k_1} \cdots E_2 E_1 A = I$$

However, this now implies that

$$A^{-1} = E_k E_{k-1} \cdots E_2 E_1 I$$

Conclusion

To find the inverse of A, it is enough to apply row operation that reduce A to I on I itself.

- Augment the $n \times n$ matrix A with I_n : $(A|I_n)$
- 2 Perform Gauss-Jordan elimination on A while at the same time doing the same row operations to I_n

$$(A|I_n) \implies (R|B)$$

- Augment the $n \times n$ matrix A with I_n : $(A|I_n)$
- 2 Perform Gauss-Jordan elimination on A while at the same time doing the same row operations to I_n

$$(A|I_n) \Longrightarrow (R|\underline{B})$$

• If the
$$R = I_n$$
 then A is invertible and $B = A^{-1}$.

- Augment the $n \times n$ matrix A with I_n : $(A|I_n)$
- **②** Perform Gauss-Jordan elimination on A while at the same time doing the same row operations to I_n

$$(A|I_n) \implies (R|B)$$

- If the $R = I_n$ then A is invertible and $B = A^{-1}$.
- If $R \neq I_n$ then A is not invertible.

Finding the Inverse

Find the inverse of the matrix

$$A = \begin{pmatrix} -1 & 3 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

$$(A \mid I_{n}) = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 2 & 1 \\ 0 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 0 \\ 0 & 0$$

More Work Space

0 (-)/ -(00 $\left(\begin{array}{c|c}
(-3) \\
0 & 1 \\
6 & -2
\end{array}\right)^{-(0)} + \left(\begin{array}{c}
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3) \\
(-3)$ $\begin{array}{c} \bigcirc (\bigcirc 11, 10 \bigcirc 11 \\ \bigcirc 7 - 2 & 2 \circ 1 \end{array}$ $\left(\begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 \\ \end{array}\right) \left(\begin{array}{c} 0 & 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ \end{array}\right) \left(\begin{array}{c} 0 & 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ \end{array}\right)$ $\begin{array}{c|c} ->h \\ +>h \\ 0 \\ 0 \\ 0 \\ 0 \\ -2 \\ 2/3 \\ -7j \\ 1 \end{array}$ f1+sh 001 7327 -26 \ 00/12-16 1/2 , Warning (Thene may be 010/13 1/3 0 Camputational epinors 001 13 2 12 Che-K (Multidying $\begin{pmatrix} -1 & 2 \\ 1 & 0 \\ 2 & 1 \\ 0 \end{pmatrix}^{-1} = \begin{pmatrix} 1/3 & -1/6 & 1/2 \\ 1/1 & 1/1 & 0 \\ -1/3 & 7/6 & -1/2 \\ -1/3 & 7/6 & -1/2 \\ \end{pmatrix}$ / 113 -1/6 these notrices give (100) Patrick Meisner Lecture 6 31 / 31