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Topics for Today

—

@ Using Matrix Multiplication to Solve AX = b
@ Matrix Inverse

© Elementary Matrices
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Solving Matrix Equations

The main topic for today is to develop a way to solve the matrix equation

AX = b
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Solving Matrix Equations

The main topic for today is to develop a way to solve the matrix equation

AX = b

Motivating example: if a and b were real numbers (or vectors in R!), how
would we solve

ax=>b

L
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Solving Matrix Equations

The main topic for today is to develop a way to solve the matrix equation

A% = b
<§§§E§§§§=~—

Motivating example: if a and b were real numbers (or vectors in R!), how
would we solve

ax=>b

L
divide M sidy by e X=

Today, will be devoted to developing a way to “divide matrices”

. But first,
we should understand fully what it means to multiply matrices.
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Properties of Matrix Multiplication

Last time we showed that the set of m X n matrices is a vector space and
so behaves well with scalar multiplication. i.e.

c(A+B)=cA+cB  (c+d)A=cA+dA-.. <Hdep

=
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Properties of Matrix Multiplication

Last time we showed that the set of m X n matrices is a vector space and
so behaves well with scalar multiplication. i.e.

c(A+B)=cA+cB (c+d)A=cA+dA---

However, we also defined a way to multiply two matrices together. These
also behave well:
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Properties of Matrix Multiplication

Last time we showed that the set of m X n matrices is a vector space and
so behaves well with scalar multiplication. i.e.

c(A+B)=cA+cB (c+d)A=cA+dA---

However, we also defined a way to multiply two matrices together. These
also behave well:

Theorem

If ¢ is a real number and A, B, C are matrices (of suitable dimensions),
then

O A(BC) = (AB)C

—_—

Patrick Meisner (KTH) Lecture 6 4/31



Properties of Matrix Multiplication

Last time we showed that the set of m X n matrices is a vector space and
so behaves well with scalar multiplication. i.e.

c(A+B)=cA+cB (c+d)A=cA+dA---

However, we also defined a way to multiply two matrices together. These
also behave well:

Theorem

If ¢ is a real number and A, B, C are matrices (of suitable dimensions),
then

0 A(BC) = (AB)C
@ AB+C)=AB+AC
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Properties of Matrix Multiplication

Last time we showed that the set of m X n matrices is a vector space and
so behaves well with scalar multiplication. i.e.

c(A+B)=cA+cB (c+d)A=cA+dA---

However, we also defined a way to multiply two matrices together. These
also behave well:

Theorem

If ¢ is a real number and A, B, C are matrices (of suitable dimensions),
then

@ A(BC) = (AB)C
A(B £ C) = AB + AC
o

(B+ C)A= BA+ CA
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Properties of Matrix Multiplication

Last time we showed that the set of m X n matrices is a vector space and
so behaves well with scalar multiplication. i.e.

c(A+B)=cA+cB (c+d)A=cA+dA---

However, we also defined a way to multiply two matrices together. These
also behave well:

Theorem

If ¢ is a real number and A, B, C are matrices (of suitable dimensions),
then

Q@ A(BC)=(AB)C  — > exevi« v @
@ A(B+C)=AB+AC

Q@ (B C)A=BA+CA

Q ¢(BC) = (cB)C = B(cC)
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Non Commutative
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Non Commutative

Even if both make sense, in general AB # BAll
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Non Commutative
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Non Canceling
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Non Canceling

It is not the case that we can “cancel” multiplication.
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Non Canceling

It is not the case that we can “cancel” multiplication. That is:
@ AB = AC does NOT imply B=C
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Non Canceling

It is not the case that we can “cancel” multiplication. That is:
@ AB = AC does NOT imply B=C
Q@ AB =0does NOT imply A=00or B=0
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Non Canceling

It is not the case that we can “cancel” multiplication. That is:
@ AB = AC does NOT imply B=C
Q@ AB =0does NOT imply A=00or B=0
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Identity Matrix

We saw that the matrix of all zeros (the zero matrix) behaves like the
number 0. i.e.
A+0=A A+(-A)=0---
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Identity Matrix

We saw that the matrix of all zeros (the zero matrix) behaves like the
number 0. i.e.
A+0=A A+(-A)=0---

Is there a matrix that behaves like 1 with multiplication?
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Identity Matrix

We saw that the matrix of all zeros (the zero matrix) behaves like the
number 0. i.e.
A+0=A A+(-A)=0---

Is there a matrix that behaves like 1 with multiplication?

Definition

For any k, denote the identity matrix
(<
Ty & a di ago=! Lal 10 --- 0
= 0 1 0 W< e ch"{-r\x
L=1. . .
= .
0 0 1
Note: Ix is a square-matrix. comwed” weite A= o aut

Con Pe witl T akd
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Identity Matrix Theorem

If A is an @)x @ matrix then

Ap=A=gf
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Identity Matrix Theorem

If A is an m X n matrix then

Al,=A=I,A
Trettie - Prove s

I, and I, are different matrices!
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Identity Matrix Theorem

If A is an m X n matrix then

Al =A=1,A
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System of Linear Equations for /,
What system of linear equations does /,, represent? l
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System of Linear Equations for /,

What system of linear equations does /,, represent? l

-,

Consider the augmented matrix (/,|b)

10 --- 0| b

. lo1 - 0] b
(11B) = |
00 1| b,
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System of Linear Equations for /,

What system of linear equations does /,, represent? l

-,

Consider the augmented matrix (/,|b)

T Ky K
1 0 --- 0| b
o 01 -+ 0] b
(Inlb) = oo . S :>7Z~_ 72
00 --- 1]b,

-,

And so we see that X solves (/,|b) if and only if X = b

=



System of Linear Equations for /,

What system of linear equations does /,, represent? l

-,

Consider the augmented matrix (/,|b)

10 - 0|b = by

. 01 .- by .

(hiy=1. . . | .| = *X*=m
00 1| b,

Xn = by
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-,

Solving (/,|b) Using Matrix Multiplication

-,

Alternatively, we know that X solves (/,|b) if and only if

I.Xx=b
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-,

Solving (/,|b) Using Matrix Multiplication

-,

Alternatively, we know that X solves (/,|b) if and only if

I
Sy

InX
However, we can view X as an n x 1 matrix and so get that

X

InX
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-,

Solving (/,|b) Using Matrix Multiplication

-,

Alternatively, we know that X solves (/,|b) if and only if

I
Sy

InX
However, we can view X as an n x 1 matrix and so get that
X=X

from which we can conclude that X solves (/,|b) if and only if

X=b
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RREF Theorem

A‘ S (RS

Let A be the coefficient matrix of a system of n linear equations with n_
variables. Then A is a square matrix. Let R be the RREF of A.

——
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RREF Theorem

Let A be the coefficient matrix of a system of n linear equations with n
variables. Then A is a square matrix. Let R be the RREF of A.

© If R = I,, then the system has a unique solution
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RREF Theorem

Let A be the coefficient matrix of a system of n linear equations with n
variables. Then A is a square matrix. Let R be the RREF of A.

Q I/f R = I,, then the system has a unique solution B A {C_A~l2>

@ If R # I, then rk(A) < n and the system has either O or infinitely
many solutions.
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RREF Theorem

Theorem

Let A be the coefficient matrix of a system of n linear equations with n
variables. Then A is a square matrix. Let R be the RREF of A.

© If R = I,, then the system has a unique solution

@ If R # I, then rk(A) < n and the system has either O or infinitely
many solutions.

Recall: we say that two matrices are row equivalent if one can be
obtained from the other from a series of row operations.
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RREF Theorem

Theorem

Let A be the coefficient matrix of a system of n linear equations with n
variables. Then A is a square matrix. Let R be the RREF of A.
© If R = I,, then the system has a unique solution

@ If R # I, then rk(A) < n and the system has either O or infinitely
many solutions.

Recall: we say that two matrices are row equivalent if one can be
obtained from the other from a series of row operations. So the condition
R = I, can be rephrased as A is row equivalent to /,
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RREF Theorem

Let A be the coefficient matrix of a system of n linear equations with n
variables. Then A is a square matrix. Let R be the RREF of A.

© If R = I,, then the system has a unique solution

@ If R # I, then rk(A) < n and the system has either O or infinitely
many solutions.

Recall: we say that two matrices are row equivalent if one can be
obtained from the other from a series of row operations. So the condition
R = I, can be rephrased as A is row equivalent to /, and R # I, can be
rephrased as A is not row equivalent to /,.
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Simplest Example

Going back to our simplest example in R!, let us look at what is really
going on:
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Simplest Example

Going back to our simplest example in R!, let us look at what is really
going on:
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Simplest Example

Going back to our simplest example in R!, let us look at what is really
going on:
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Simplest Example

Going back to our simplest example in R!, let us look at what is really

going on:

— 1x =

Lo
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Simplest Example

Going back to our simplest example in R!, let us look at what is really

going on:

— 1x =

But what is “division by a"? l

b
a
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Simplest Example

Going back to our simplest example in R!, let us look at what is really

going on:

— 1x =

But what is “division by a"? l

Division is defined as the opposite of multiplication.

b
a
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Simplest Example

Going back to our simplest example in R!, let us look at what is really

going on:

— 1x =

But what is “division by a"? l

Division is defined as the opposite of multiplication. So, it is better to
think of it not as it's own operation but as a type of multiplication.

b
a
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Simplest Example

Going back to our simplest example in R!, let us look at what is really

going on:

— 1x =

But what is “division by a"? \

Division is defined as the opposite of multiplication. So, it is better to
think of it not as it's own operation but as a type of multiplication. That

b
a

is:
“dividing by a" is the same as “multiplying by %
13/31
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Simplest Example 2

But what is %?
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Simplest Example 2

But what is %?

1

5 can be defined as:

the number that, when multiplied by a, is 1
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Simplest Example 2

But what is %?

% can be defined as:
the number that, when multiplied by a, is 1

This is sometimes referred to as the multiplicative inverse of a.
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Simplest Example 2

But what is %?

% can be defined as:
the number that, when multiplied by a, is 1

This is sometimes referred to as the multiplicative inverse of a.

To solve ax = b it is best to think about multiplying by the multiplicative
inverse of a then to think about dividing by a.
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Multiplicative Inverse

Let us now apply this to solving our matrix equation:

AX=b
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Multiplicative Inverse

Let us now apply this to solving our matrix equation:
AX=b

Following the simplest example, to solve this, we would need to multiply
by the multiplicative inverse of A.
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Multiplicative Inverse

Let us now apply this to solving our matrix equation:
AX=b

Following the simplest example, to solve this, we would need to multiply
by the multiplicative inverse of A. But what is this?
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Multiplicative Inverse

Let us now apply this to solving our matrix equation:
AX=b

Following the simplest example, to solve this, we would need to multiply
by the multiplicative inverse of A. But what is this?

Recall for a real number a, the multiplicative inverse is

the number that, when multiplied by a, is 1
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Multiplicative Inverse

Let us now apply this to solving our matrix equation:
AX=b

Following the simplest example, to solve this, we would need to multiply
by the multiplicative inverse of A. But what is this?

Recall for a real number a, the multiplicative inverse is
the number that, when multiplied by a, is 1

So, following this, for a matrix A, the multiplicative inverse is
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Multiplicative Inverse

Let us now apply this to solving our matrix equation:
AX=b

Following the simplest example, to solve this, we would need to multiply
by the multiplicative inverse of A. But what is this?

Recall for a real number a, the multiplicative inverse is
the number that, when multiplied by a, is 1
So, following this, for a matrix A, the multiplicative inverse is

the matrix
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Multiplicative Inverse

Let us now apply this to solving our matrix equation:
AX=b

Following the simplest example, to solve this, we would need to multiply
by the multiplicative inverse of A. But what is this?

Recall for a real number a, the multiplicative inverse is
the number that, when multiplied by a, is 1
So, following this, for a matrix A, the multiplicative inverse is

the matrix that, when multiplied by A, is

Patrick Meisner (KTH) Lecture 6 15 /31



Multiplicative Inverse

Let us now apply this to solving our matrix equation:
AX=b
Following the simplest example, to solve this, we would need to multiply
by the multiplicative inverse of A. But what is this?
T el
f[L( L

Recall for a real number a, the multiplicative inverse is
the number that, when multiplied by a, is 1
= —_—

So, following this, for a matrix A, the multiplicative inverse is

the matrix that, when multiplied by A, is [, the identity matrix
p—— ——
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Sanity Check

Does this make sense?
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Sanity Check

Does this make sense? Consider

=) e 3
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Sanity Check

Does this make sense? Consider

=) e 3

It is easy enough to check that
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Sanity Check

Does this make sense? Consider

=) e 3

It is easy enough to check that

10
BA_(O 1>—12

So, to solve AX = [ 1 ] we see that

-2
- 4
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Sanity Check

Does this make sense? Consider

2 3 -1 3
=l e %)
It is easy enough to check that é Hc

1 0 / //1_0( /Ca{((@/
BA:<O 1>:I2 (e se 03;‘#.

So, to solve AX = [ 1

_2] , we see that

ax— |
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Sanity Check

Does this make sense? Consider

=) e 3

It is easy enough to check that

10
BA_(O 1>—12

So, to solve AX = [ 1 ] we see that

-2

ax— |
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Sanity Check

Does this make sense? Consider

=) e 3

It is easy enough to check that

10
BA_(O 1>—12

So, to solve AX = [ 1 ] we see that

-2

e e A It
— X= {_7] j
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Invertible Matrices

We say an n x n matrix A is invertible if there is an n x n matrix B such
that
AB = BA=I,.
v
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Invertible Matrices

Definition

We say an n x n matrix A is invertible if there is an n x n matrix B such
that

AB = BA = |,.
We call B the inverse of A and denote it A~1.

A

@ o Al JMU({-;P//U,HVL (4GS e d*‘[’?é
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Invertible Matrices

Definition
We say an n x n matrix A is invertible if there is an n x n matrix B such
that

AB = BA=1I,.

We call B the inverse of A and denote it A—1. Note that here B would
also be invertible with inverse A (i.e. B~ = A).
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Invertible Matrices

Definition
We say an n x n matrix A is invertible if there is an n x n matrix B such

that
AB = BA = I,.

We call B the inverse of A and denote it A—1. Note that here B would
also be invertible with inverse A (i.e. B~ = A).
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Invertible Matrices

Definition
We say an n x n matrix A is invertible if there is an n x n matrix B such
that

AB = EAZ 1.

We call B the inverse of A and denote it A—1. Note that here B would
also be invertible with inverse A (i.e. B~ = A).

CAUTION!!I
This definition if for square matrices only (m = n).
/Av o DA Moh e Went ﬁ‘;& £ % o MUt Seuse
kel e AReRA
© = TNV Aoxn i Kb
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Invertible Matrices

Definition

We say an n x n matrix A is invertible if there is an n x n matrix B such
that

AB = BA=1I,.

We call B the inverse of A and denote it A—1. Note that here B would
also be invertible with inverse A (i.e. B~ = A).

This definition if for square matrices only (m = n). We can not talk
about inverse of non-square matrices!
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Solving Matrix Equations with Invertible Matrices

If A in an invertible matrix then

AX=b «— X=Alb.
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Solving Matrix Equations with Invertible Matrices

If A in an invertible matrix then

AX=b «— X=Alb.

—

In particular, there is exactly one solution to the augmented matrix (A|5)
for all b.
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Invertibility Theorem

Let A be an n x n matrix. The the following are equivalent

O AX=b has a unique solution for every b
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Invertibility Theorem

Let A be an n x n matrix. The the following are equivalent

O AX=b has a unique solution for every b

@ AxX =0 has a unique solution
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Invertibility Theorem

Let A be an n x n matrix. The the following are equivalent

O AX=b has a unique solution for every b
@ AxX =0 has a unique solution
@ rk(A)=n
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Invertibility Theorem

Let A be an n x n matrix. The the following are equivalent
O AX=b has a unique solution for every b
@ AxX =0 has a unique solution
@ rk(A)=n
@ The RREF of A is I,
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Invertibility Theorem

Let A be an n x n matrix. The the following are equivalent
O AX=b has a unique solution for every b
9. AX = 0 has a unique solution
@ rk(A)=n
@ The RREF of A is I,
© A is invertible

= (= = =06 = ©
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More Work Space
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Properties of the Inverse

To prove the (4) = (5), we need to know more about the inverse.
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Properties of the Inverse

To prove the (4) = (5), we need to know more about the inverse.

Let A, B be invertible matrices and c a real number then
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Properties of the Inverse

To prove the (4) = (5), we need to know more about the inverse.

Let A, B be invertible matrices and c a real number then

© The identity matrix I, is invertible with | L—
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Properties of the Inverse

To prove the (4) = (5), we need to know more about the inverse.

Theorem

Let A, B be invertible matrices and c a real number then
© The identity matrix I, is invertible with | L—

@ Inverses are unique.
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Properties of the Inverse

To prove the (4) = (5), we need to know more about the inverse.

Theorem

Let A, B be invertible matrices and c a real number then
© The identity matrix I, is invertible with | L—
@ Inverses are unique.
© The inverse of the inverse of A is A: (A71)7"1 = A
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Properties of the Inverse

To prove the (4) = (5), we need to know more about the inverse.

Theorem

Let A, B be invertible matrices and c a real number then
© The identity matrix I, is invertible with | L—
@ Inverses are unique.
© The inverse of the inverse of A is A: (A71)7"1 = A
@ cA is invertible with (cA)~! = 1A-1

Cc
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Properties of the Inverse

To prove the (4) = (5), we need to know more about the inverse.

Let A, B be invertible matrices and c a real number then

@ The identity matrix I, is invertible with 171 = I,
@ Inverses are unique.
© The inverse of the inverse of A is A: (A71)7"1 = A
Q@ CcA is invertible with (cA)~! = L A~1
CDAB is invertible with (AB)™! = BTIATL = by 5|
= —
() N tHat Dl T = B =7
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Elementary Matrices

Recall that the elementary row operation are
@ Add a multiple of one row to the other
@ Interchange two rows

© Multiply a row by a non-zero constant
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Elementary Matrices

Recall that the elementary row operation are
@ Add a multiple of one row to the other
@ Interchange two rows

© Multiply a row by a non-zero constant

Definition

We say a matrix is an elementary matrix if it can be obtained by one
elementary row operation performed on the identity matrix.
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Examples of Elementary Matrices

@ Add a multiple of one row to the other

Patrick Meisner (KTH) Lecture 6 24 /31



Examples of Elementary Matrices

@ Add a multiple of one row to the other

10 0\ —~_ /10
0 1 ofBHE) (4 1
00 1 0 0

————~>

0
0] = —

=
1

Patrick Meisner (KTH) Lecture 6 24 /31



Examples of Elementary Matrices

@ Add a multiple of one row to the other

10
0 1 o] R£2Ry
00 1

[
o = O
= O O

@ |Interchange two rows
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Examples of Elementary Matrices

@ Add a multiple of one row to the other
100 o 100 -
01 0| &8 (4 1 0 /=
0 01 0 01

@ |Interchange two rows

100 (001
010%01OQE/
001 100
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Examples of Elementary Matrices

@ Add a multiple of one row to the other

10 pan (100
01 0228 (4 1 0
00 1 00 1
@ |Interchange two rows
100y (001
01 0 2==.1010
00 1 100

© Multiply a row by a non-zero constant
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Examples of Elementary Matrices

@ Add a multiple of one row to the other
100 o 1 0 0\ _
01 0] 228 141 0] 7 &
0 01 0 01

@ |Interchange two rows
100 0 01
01 0)]———= (010
0 01 100

© Multiply a row by a non-zero constant
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Inverse of Elementary Matrices

If E is an elementary matrix then it is invertible and E~' is also an
elementary matrix.
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Inverse of Elementary Matrices

If E is an elementary matrix then it is invertible and E~' is also an
elementary matrix. Moreover, E~' corresponds to the “undoing” row
operation of E.
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Inverse of Elementary Matrices

If E is an elementary matrix then it is invertible and E~' is also an
elementary matrix. Moreover, E~' corresponds to the “undoing” row
operation of E.

| ©
Trercies - gv\/c IZAS

1oo 1 00

Q“UL(O“\ 4 41 0 b%’é/ﬁf
oo 0 01

3 00 1 00 1 Q

e 01 0] ={010| /Q7>QZ
100 100
2 0 0\ -1 00 o

9 ,7010:010@‘7:@&\
0 0 1 0 0 1
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Multiplying by Elementary Matrices

Given a matrix A and an elementary matrix E, then the matrix EA is
obtained by performing the row operation corresponding to E on A.
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Multiplying by Elementary Matrices

Given a matrix A and an elementary matrix E, then the matrix EA is
obtained by performing the row operation corresponding to E on A.

3

1 00 1 2 3 2
=4 10 2 -1 3 6] = -1 18
0 01 1 4 40 1 4 0
2¢

@,L&L(D‘\
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Multiplying by Elementary Matrices

Given a matrix A and an elementary matrix E, then the matrix EA is
obtained by performing the row operation corresponding to E on A.

1 00 1 0 2 3 1 0 2 3
4 10 2 -1 3 6|]=1|6 -1 11 18
0 01 1 4 40 1 4 4 0

Note: It is only EA that corresponds to performing the row operation. AE
does NOT correspond to this. In fact, AE may not even make sense!
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Multiplying by Elementary Matrices

Given a matrix A and an elementary matrix E, then the matrix EA is
obtained by performing the row operation corresponding to E on A.

100 1 0 2 3 1 0 2 3
4 10 2 -1 3 6|]=1|6 -1 11 18
0 01 1 4 40 1 4 4 0

Note: It is only EA that corresponds to performing the row operation. AE
does NOT correspond to this. In fact, AE may not even make sense!

Two matrices A and B are row equivalent if and only if there is a series of
elementary matrices such that

B=EE1---E2EA
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(4) = (5)

Let A be an n x n matrix. The the following are equivalent

O AX=b has a unique solution for every b

@ Ax =0 has a unique solution T wm
&‘; rk(A) = n et e,
The RREF of A is I, @) &2 ©)
© A is invertible )
) - ©) PRePF ki T = A LD are  tous egn'velet

=3 L& Te  oswl et I:x-@e,.;—g,,b

Do B SE B | e

o o o B (B Bb, oB) wdta 24T,
L = A averdi Deo Cchoade f2=T4)

Patrick Meisner (KTH)
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Inverse as Elementary Matrices

One consequence of the above theorem is that A is invertible if and only if
there is a series of row operations that reduce it to /.
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Inverse as Elementary Matrices

One consequence of the above theorem is that A is invertible if and only if
there is a series of row operations that reduce it to /. This is equivalent to
saying that there is a series of elementary matrices Eq, Ep, ..., Ex_1, Ex
such that

ExEy, - B2E1A =1
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Inverse as Elementary Matrices

One consequence of the above theorem is that A is invertible if and only if
there is a series of row operations that reduce it to /. This is equivalent to
saying that there is a series of elementary matrices Eq, Ep, ..., Ex_1, Ex
such that

ExEy, - B2E1A =1

However, this now implies that

AY=EFE 1 - EE
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Inverse as Elementary Matrices

One consequence of the above theorem is that A is invertible if and only if
there is a series of row operations that reduce it to /. This is equivalent to
saying that there is a series of elementary matrices Eq, Ep, ..., Ex_1, Ex
such that

ExEy, - B2E1A =1

However, this now implies that

AL=FEFE 1 - EEy
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Inverse as Elementary Matrices

One consequence of the above theorem is that A is invertible if and only if
there is a series of row operations that reduce it to /. This is equivalent to
saying that there is a series of elementary matrices Eq, Ep, ..., Ex_1, Ex
such that

ExEy, - B2E1A =1

@IQWU’%
/\ (\OW dp*”cj“ Onp

ATl = Eibin - BE o T

However, this now implies that

To find the inverse of A, it is enough to apply row operation that reduce A
to / on [ itself.

Patrick Meisner (KTH) Lecture 6 28 /31



Algorithm for Finding the Inverse
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Algorithm for Finding the Inverse

@ Augment the n x n matrix A with I,: (All,)

D U - U | .
tlw)=( |
a

v - — @nn O
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Algorithm for Finding the Inverse

@ Augment the n x n matrix A with I,: (All,)

@ Perform Gauss-Jordan elimination on A while at the same time doing
the same row operations to /,

(All) = (R|B)
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Algorithm for Finding the Inverse

@ Augment the n x n matrix A with I,: (All,)

@ Perform Gauss-Jordan elimination on A while at the same time doing
the same row operations to /,

Wil — (RB)
s

-

Q If the R =1, then Wand B=A"1

—_—
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Algorithm for Finding the Inverse

@ Augment the n x n matrix A with I,: (All,)

@ Perform Gauss-Jordan elimination on A while at the same time doing
the same row operations to /,

(All) = (R|B)

@ If the R = I, then A is invertible and B = A1,
Q If R # I, then A is not invertible.
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Finding the Inverse

Find the inverse of the matrix

Cﬂrllﬂ ./ o oo) h
[ o (|9 lo
27 ( o\Y |
(= | ~( o ( =3 | ~ oe
e O o R, 24 o 7 2\2 0oy
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More Work Space

o 1 o Lo |[FR O o |1h D o |k
6 7 | & o) © 2tz oy
Lo | O |
D, -7 l 1o o
2 3k oo | 5o 1o
O o~ |\H T b\ ce }f%

g\(_@‘ ( G O (é Ff/é (‘7 WW[‘/L;,Q T}(/\@ MO‘P‘ }2{
- Oto| W o\ %t Efpon

% »4’(;4'1/\‘ cep

FHie ( cz;)
2~
s
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