SF 1684 Algebra and Geometry Lecture 6

Patrick Meisner
KTH Royal Institute of Technology

Topics for Today

(1) Using Matrix Multiplication to Solve $A \vec{x}=\vec{b}$
(2) Matrix Inverse
(3) Elementary Matrices

Solving Matrix Equations

The main topic for today is to develop a way to solve the matrix equation

$$
A \vec{x}=\vec{b}
$$

Solving Matrix Equations

The main topic for today is to develop a way to solve the matrix equation

$$
A \vec{x}=\vec{b}
$$

Motivating example: if a and b were real numbers (or vectors in \mathbb{R}^{1}), how would we solve

$$
a x=b
$$

$$
\text { divide both sides by } q: \quad x=\frac{b}{a}
$$

Solving Matrix Equations

The main topic for today is to develop a way to solve the matrix equation

Motivating example: if a and b were real numbers (or vectors in \mathbb{R}^{1}), how would we solve

$$
a x=b
$$

$$
\text { divide both sides by } a: \quad x=\frac{b}{a}
$$

Today, will be devoted to developing a way to "divide matrices". But first, we should understand fully what it means to multiply matrices.

Properties of Matrix Multiplication

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$
\underline{c}(A+B)=\underline{c} A+\underline{c} B \quad(\underline{c}+\underline{d}) A=\underline{c} A+\underset{\sim}{d} A \cdots \quad c l \in \mathbb{R}
$$

Properties of Matrix Multiplication

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$
c(A+B)=c A+c B \quad(c+d) A=c A+d A \cdots
$$

However, we also defined a way to multiply two matrices together. These also behave well:

Properties of Matrix Multiplication

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$
c(A+B)=c A+c B \quad(c+d) A=c A+d A \cdots
$$

However, we also defined a way to multiply two matrices together. These also behave well:

Theorem

If c is a real number and A, B, C are matrices (of suitable dimensions), then
(1) $A(B C)=(A B) C$

Properties of Matrix Multiplication

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$
c(A+B)=c A+c B \quad(c+d) A=c A+d A \cdots
$$

However, we also defined a way to multiply two matrices together. These also behave well:

Theorem

If c is a real number and A, B, C are matrices (of suitable dimensions), then
(1) $A(B C)=(A B) C$
(2) $A(B \pm C)=A B \pm A C$

Properties of Matrix Multiplication

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$
c(A+B)=c A+c B \quad(c+d) A=c A+d A \cdots
$$

However, we also defined a way to multiply two matrices together. These also behave well:

Theorem

If c is a real number and A, B, C are matrices (of suitable dimensions), then
(1) $A(B C)=(A B) C$
(2) $A(B \pm C)=A B \pm A C$
(3) $(B \pm C) A=B A \pm C A$

Properties of Matrix Multiplication

Last time we showed that the set of $m \times n$ matrices is a vector space and so behaves well with scalar multiplication. i.e.

$$
c(A+B)=c A+c B \quad(c+d) A=c A+d A \cdots
$$

However, we also defined a way to multiply two matrices together. These also behave well:

Theorem

If c is a real number and A, B, C are matrices (of suitable dimensions), then
(1) $A(B C)=(A B) C$ \longrightarrow exercia pron (1)
(2) $A(B \pm C)=A B \pm A C$
(3) $(B \pm C) A=B A \pm C A$
(9) $c(B C)=(c B) C=B(c C)$

Non Commutative

CAUTION!!!!!

Non Commutative

CAUTION!!!!!

Even if both make sense, in general $A B \neq B A!!!$

Non Commutative

CAUTION!!!!!!
Even if both make sense, in general $A B \neq B A!!!$
Exercise
Compute $A B$ and $B A$ for

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right) \\
& A B=\left(\begin{array}{ll}
1 & 0 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
2
\end{array}\right)=\left[\begin{array}{ll}
1 x 1+0 \times 2 & 2 \times 10 \times 0 \\
1 x-1+2 \times 2 & 3 x-1+0 \times 2
\end{array}\right]=\left[\begin{array}{cc}
1 & 3 \\
1 & -3
\end{array}\right] \\
& B A=\left(\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
-1 & 2
\end{array}\right)=\left[\begin{array}{ll}
1 x 1+3 x y & 0 x(+2 x) \\
1+2+0 x-1 & 0 x 2+2 x c
\end{array}\right] \\
& =\left[\begin{array}{cc}
-2 & 6 \\
2 & 0
\end{array}\right]
\end{aligned}
$$

Non Canceling

CAUTION!!!!!!!

Non Canceling

CAUTION!!!!!!

It is not the case that we can "cancel" multiplication.

Non Canceling

CAUTION!!!!!!

It is not the case that we can "cancel" multiplication. That is:
(1) $A B=A C$ does NOT imply $B=C$

Non Canceling

CAUTION!!!!!!!

It is not the case that we can "cancel" multiplication. That is:
(1) $A B=A C$ does NOT imply $B=C$
(2) $A B=0$ does NOT imply $A=0$ or $B=0$

Non Canceling

CAUTION!!!!!!!

It is not the case that we can "cancel" multiplication. That is:
(1) $A B=A C$ does NOT imply $B=C$
(2) $A B=0$ does NOT imply $A=0$ or $B=0$

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right)\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)=\left[\begin{array}{cc}
2 \times 1+-1 \times 2 & -4 \times 1-2 \times 2 \\
2 x)+-1 \times 6 & -4 x]+2 x_{6}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \text { t } \\
& \left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right)\left(\begin{array}{cc}
-6 & -2 \\
3 & 1
\end{array}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Identity Matrix

We saw that the matrix of all zeros (the zero matrix) behaves like the number 0. i.e.

$$
A+0=A \quad A+(-A)=0 \cdots
$$

Identity Matrix

We saw that the matrix of all zeros (the zero matrix) behaves like the number 0. i.e.

$$
A+0=A \quad A+(-A)=0 \cdots
$$

Is there a matrix that behaves like 1 with multiplication?

Identity Matrix

We saw that the matrix of all zeros (the zero matrix) behaves like the number 0. ie.

$$
A+0=A \quad A+(-A)=0 \cdots
$$

Is there a matrix that behaves like 1 with multiplication?

Definition

For any k, denote the identity matrix

$$
I_{k} \text { is a diagonal matrix }=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right) \quad K \times k \text { matrix }
$$

Note: I_{k} is a square-matrix.
comment: write I to nat

Identity Matrix Theorem

Theorem

If A is an $(m) \times(n)$ matrix then

$$
\text { Ald }=A=1 \text { An }
$$

Identity Matrix Theorem

Theorem

If A is an $m \times n$ matrix then

$$
A I_{n}=A=I_{\underline{m}} A
$$

exerie: pron this

CAUTION!!!!!

I_{n} and I_{m} are different matrices!

Identity Matrix Theorem

Theorem

If A is an $m \times n$ matrix then

$$
A I_{n}=A=I_{m} A
$$

CAUTION!!!!!

I_{n} and I_{m} are different matrices!

Exercise

Compute $A I_{3}$ and $I_{2} A$ for

$$
A=\left(\begin{array}{ccc}
-8 & 1 & 0 \\
2 & -2 & 1
\end{array}\right)
$$

System of Linear Equations for I_{n}

Question

What system of linear equations does I_{n} represent?

System of Linear Equations for I_{n}

Question

What system of linear equations does I_{n} represent?
Consider the augmented matrix $\left(I_{n} \mid \vec{b}\right)$

$$
\left(I_{n} \mid \vec{b}\right)=\left(\begin{array}{cccc|c}
1 & 0 & \cdots & 0 & b_{1} \\
0 & 1 & \cdots & 0 & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & b_{n}
\end{array}\right)
$$

System of Linear Equations for I_{n}

Question

What system of linear equations does I_{n} represent?
Consider the augmented matrix $\left(I_{n} \mid \vec{b}\right)$

$$
\left(I_{n} \mid \vec{b}\right)=\left(\begin{array}{cccc|c}
x_{1} & x_{2} \\
1 & 0 & \cdots & x_{n} & b_{1} \\
0 & 1 & \cdots & 0 & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & b_{n}
\end{array}\right) \Longrightarrow \vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}=\left\lvert\, \begin{array}{l}
b_{1} \\
b_{2} \\
\vec{L} \\
b_{n}
\end{array}\right.\right) \geq \vec{b}
$$

And so we see that \vec{x} solves $\left(I_{n} \mid \vec{b}\right)$ if and only if $\vec{x}=\vec{b}$

System of Linear Equations for I_{n}

Question

What system of linear equations does I_{n} represent?
Consider the augmented matrix $\left(I_{n} \mid \vec{b}\right)$

$$
\left(I_{n} \mid \vec{b}\right)=\left(\begin{array}{cccc|c}
1 & 0 & \cdots & 0 & b_{1} \\
0 & 1 & \cdots & 0 & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & b_{n}
\end{array}\right) \Longrightarrow \begin{gathered}
x_{1}=b_{1} \\
x_{2}=b_{2} \\
\vdots \\
\\
x_{n}=b_{n}
\end{gathered}
$$

And so we see that \vec{x} solves $\left(I_{n} \mid \vec{b}\right)$ if and only if $\vec{x}=\vec{b}$

Solving $\left(I_{n} \mid \vec{b}\right)$ Using Matrix Multiplication

Alternatively, we know that \vec{x} solves $\left(I_{n} \mid \vec{b}\right)$ if and only if

$$
I_{n} \vec{x}=\vec{b}
$$

Solving $\left(I_{n} \mid \vec{b}\right)$ Using Matrix Multiplication

Alternatively, we know that \vec{x} solves $\left(I_{n} \mid \vec{b}\right)$ if and only if

$$
I_{n} \vec{x}=\vec{b}
$$

However, we can view \vec{x} as an $n \times 1$ matrix and so get that

$$
I_{n} \vec{x}=\vec{x}
$$

Solving $\left(I_{n} \mid \vec{b}\right)$ Using Matrix Multiplication

Alternatively, we know that \vec{x} solves $\left(I_{n} \mid \vec{b}\right)$ if and only if

$$
I_{n} \vec{x}=\vec{b}
$$

However, we can view \vec{x} as an $n \times 1$ matrix and so get that

$$
I_{n} \vec{x}=\vec{x}
$$

from which we can conclude that \vec{x} solves $\left(I_{n} \mid \vec{b}\right)$ if and only if

$$
\vec{x}=\vec{b}
$$

RREF Theorem

$$
A \text { is } n \times n
$$

Theorem

Let A be the coefficient matrix of a system of n linear equations with n variables. Then A is a square matrix. Let R be the RREF of A.

RREF Theorem

Theorem

Let A be the coefficient matrix of a system of n linear equations with n variables. Then A is a square matrix. Let R be the RREF of A.
(1) If $R=I_{n}$, then the system has a unique solution

RREF Theorem

Theorem

Let A be the coefficient matrix of a system of n linear equations with n variables. Then A is a square matrix. Let R be the RREF of A.
(1) If $R=I_{n}$, then the system has a unique solution for $\operatorname{dl}(A \mid \vec{b})$
(2) If $R \neq I_{n}$ then $r k(A)<n$ and the system has either 0 or infinitely many solutions.

RREF Theorem

Theorem

Let A be the coefficient matrix of a system of n linear equations with n variables. Then A is a square matrix. Let R be the RREF of A.
(1) If $R=I_{n}$, then the system has a unique solution
(2) If $R \neq I_{n}$ then $r k(A)<n$ and the system has either 0 or infinitely many solutions.

Recall: we say that two matrices are row equivalent if one can be obtained from the other from a series of row operations.

RREF Theorem

Theorem

Let A be the coefficient matrix of a system of n linear equations with n variables. Then A is a square matrix. Let R be the RREF of A.
(1) If $R=I_{n}$, then the system has a unique solution
(2) If $R \neq I_{n}$ then $r k(A)<n$ and the system has either 0 or infinitely many solutions.

Recall: we say that two matrices are row equivalent if one can be obtained from the other from a series of row operations. So the condition $R=I_{n}$ can be rephrased as A is row equivalent to I_{n}

RREF Theorem

Theorem

Let A be the coefficient matrix of a system of n linear equations with n variables. Then A is a square matrix. Let R be the RREF of A.
(1) If $R=I_{n}$, then the system has a unique solution
(2) If $R \neq I_{n}$ then $r k(A)<n$ and the system has either 0 or infinitely many solutions.

Recall: we say that two matrices are row equivalent if one can be obtained from the other from a series of row operations. So the condition $R=I_{n}$ can be rephrased as A is row equivalent to I_{n} and $R \neq I_{n}$ can be rephrased as A is not row equivalent to I_{n}.
If A is row equivalent to In then (All) has a unique soltuigr for all \vec{b}.

Proof
(1) $(A \mid \vec{b}) \stackrel{\text { ronde ra }}{\Longrightarrow}(R \mid \dot{C})=\left(I_{n} \mid \vec{c}\right)$
x salves ($A(\vec{b}$) iff $\vec{x} \operatorname{solu}(\operatorname{In}(\vec{c})$ iff $\vec{x}=\vec{c}$

If $N(R)=n$: By exhausting when the leading '' con be $^{\prime}$ co

$$
P=\left[\begin{array}{lll}
1 & & 0 \\
1 & \ddots & \\
0 & & 7
\end{array}\right]=I_{n}
$$

So, if $R \neq I_{n}$ then

$$
r k(R) \notin n \text { \& sa } r k(R)<n
$$

So \& mash han $<n$ leading ones but n sours so by exhreststion R mast have a row

Simplest Example

Going back to our simplest example in \mathbb{R}^{1}, let us look at what is really going on:

$$
a x=b
$$

Simplest Example

Going back to our simplest example in \mathbb{R}^{1}, let us look at what is really going on:

$$
a x=b \Longrightarrow \frac{a x}{a}=\frac{b}{a}
$$

Simplest Example

Going back to our simplest example in \mathbb{R}^{1}, let us look at what is really going on:

$$
a x=b \Longrightarrow \frac{a x}{a}=\frac{b}{a} \Longrightarrow \frac{a}{a} x=\frac{b}{a}
$$

Simplest Example

Going back to our simplest example in \mathbb{R}^{1}, let us look at what is really going on:

$$
a x=b \Longrightarrow \frac{a x}{a}=\frac{b}{a} \Longrightarrow \frac{a}{a} x=\frac{b}{a} \Longrightarrow 1 x=\frac{b}{a}
$$

Simplest Example

Going back to our simplest example in \mathbb{R}^{1}, let us look at what is really going on:

$$
a x=b \Longrightarrow \frac{a x}{a}=\frac{b}{a} \Longrightarrow \frac{a}{a} x=\frac{b}{a} \Longrightarrow 1 x=\frac{b}{a}
$$

Question

> But what is "division by a"?

Simplest Example

Going back to our simplest example in \mathbb{R}^{1}, let us look at what is really going on:

$$
a x=b \Longrightarrow \frac{a x}{a}=\frac{b}{a} \Longrightarrow \frac{a}{a} x=\frac{b}{a} \Longrightarrow 1 x=\frac{b}{a}
$$

Question

But what is "division by a"?

Division is defined as the opposite of multiplication.

Simplest Example

Going back to our simplest example in \mathbb{R}^{1}, let us look at what is really going on:

$$
a x=b \Longrightarrow \frac{a x}{a}=\frac{b}{a} \Longrightarrow \frac{a}{a} x=\frac{b}{a} \Longrightarrow 1 x=\frac{b}{a}
$$

Question

But what is "division by a"?

Division is defined as the opposite of multiplication. So, it is better to think of it not as it's own operation but as a type of multiplication.

Simplest Example

Going back to our simplest example in \mathbb{R}^{1}, let us look at what is really going on:

$$
a x=b \Longrightarrow \frac{a x}{a}=\frac{b}{a} \Longrightarrow \frac{a}{a} x=\frac{b}{a} \Longrightarrow 1 x=\frac{b}{a}
$$

Question

But what is "division by a"?

Division is defined as the opposite of multiplication. So, it is better to think of it not as it's own operation but as a type of multiplication. That is:
"dividing by a " is the same as "multiplying by $\frac{1}{a}$ "

Simplest Example 2

Question

But what is $\frac{1}{a}$?

Simplest Example 2

Question

But what is $\frac{1}{a}$?

$\frac{1}{a}$ can be defined as:
the number that, when multiplied by a, is 1

Simplest Example 2

Question

But what is $\frac{1}{a}$?

$\frac{1}{a}$ can be defined as:
the number that, when multiplied by a, is 1
This is sometimes referred to as the multiplicative inverse of a.

Simplest Example 2

Question

But what is $\frac{1}{2}$?

$\frac{1}{a}$ can be defined as:
the number that, when multiplied by a, is 1
This is sometimes referred to as the multiplicative inverse of a.

Conclusion

To solve $a x=b$ it is best to think about multiplying by the multiplicative inverse of a then to think about dividing by a.

Multiplicative Inverse

Let us now apply this to solving our matrix equation:

$$
A \vec{x}=\vec{b}
$$

Multiplicative Inverse

Let us now apply this to solving our matrix equation:

$$
A \vec{x}=\vec{b}
$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A.

Multiplicative Inverse

Let us now apply this to solving our matrix equation:

$$
A \vec{x}=\vec{b}
$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A. But what is this?

Multiplicative Inverse

Let us now apply this to solving our matrix equation:

$$
A \vec{x}=\vec{b}
$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A. But what is this?

Recall for a real number a, the multiplicative inverse is the number that, when multiplied by a, is 1

Multiplicative Inverse

Let us now apply this to solving our matrix equation:

$$
A \vec{x}=\vec{b}
$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A. But what is this?

Recall for a real number a, the multiplicative inverse is the number that, when multiplied by a, is 1

So, following this, for a matrix A, the multiplicative inverse is

Multiplicative Inverse

Let us now apply this to solving our matrix equation:

$$
A \vec{x}=\vec{b}
$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A. But what is this?

Recall for a real number a, the multiplicative inverse is the number that, when multiplied by a, is 1

So, following this, for a matrix A, the multiplicative inverse is the matrix

Multiplicative Inverse

Let us now apply this to solving our matrix equation:

$$
A \vec{x}=\vec{b}
$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A. But what is this?

Recall for a real number a, the multiplicative inverse is the number that, when multiplied by a, is 1

So, following this, for a matrix A, the multiplicative inverse is the matrix that, when multiplied by A, is

Multiplicative Inverse

Let us now apply this to solving our matrix equation:

$$
A \vec{x}=\vec{b}
$$

Following the simplest example, to solve this, we would need to multiply by the multiplicative inverse of A. But what is this?

Recall for a real number a, the multiplicative inverse is

the number that, when multiplied by a, is 1
So, following this, for a matrix A, the multiplicative inverse is the matrix that, when multiplied by A, is I, the identity matrix

Sanity Check

Does this make sense?

Sanity Check

Does this make sense? Consider

$$
A=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right)
$$

Sanity Check

Does this make sense? Consider

$$
A=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right)
$$

It is easy enough to check that

$$
B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
$$

Sanity Check

Does this make sense? Consider

$$
A=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right)
$$

It is easy enough to check that

$$
B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
$$

So, to solve $A \vec{x}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$, we see that

$$
A \vec{x}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

Sanity Check

Does this make sense? Consider

$$
A=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right)
$$

It is easy enough to check that

$$
B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
$$

So, to solve $A \vec{x}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$, we see that

$$
A \vec{x}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \Longrightarrow B A \vec{x}=B\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

Sanity Check

Does this make sense? Consider

$$
A=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right)
$$

It is easy enough to check that

$$
B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
$$

So, to solve $A \vec{x}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$, we see that

$$
A \vec{x}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \Longrightarrow B A \vec{x}=B\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \Longrightarrow l_{2} \vec{x}=\left(\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right)\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

Sanity Check

Does this make sense? Consider

$$
A=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right)
$$

It is easy enough to check that

$$
B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
$$

So, to solve $A \vec{x}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$, we see that

$$
\begin{aligned}
& A \vec{x}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \Longrightarrow B A \vec{x}=B\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \Longrightarrow I_{2} \vec{x}=\frac{\left(\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right)\left[\begin{array}{c}
1 \\
-2
\end{array}\right]}{} \\
& \Longrightarrow \vec{x}=\left[\begin{array}{c}
-7 \\
5
\end{array}\right] \quad
\end{aligned}
$$

Invertible Matrices

Definition

We say an $n \times n$ matrix A is invertible if there is an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

Invertible Matrices

Definition

We say an $n \times n$ matrix A is invertible if there is an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

We call B the inverse of A and denote it A^{-1}.

Invertible Matrices

Definition

We say an $n \times n$ matrix A is invertible if there is an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

We call B the inverse of A and denote it A^{-1}. Note that here B would also be invertible with inverse A (i.e. $B^{-1}=A$).

Invertible Matrices

Definition

We say an $n \times n$ matrix A is invertible if there is an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

We call B the inverse of A and denote it A^{-1}. Note that here B would also be invertible with inverse A (i.e. $B^{-1}=A$).

CAUTION!!!!!

Invertible Matrices

Definition
We say an $n \times n$ matrix A is invertible if there is an $n \times n$ matrix B such that

$$
\underline{A B}=\underline{B A}=I_{n} .
$$

We call B the inverse of A and denote it A^{-1}. Note that here B would also be invertible with inverse A (i.e. $B^{-1}=A$).

CAUTION!!!!!!
This definition if for square matrices only $(m=n)$.
A is men matrix went $A B \& B A$ to make sense is $\quad \frac{b \times l}{a} \underline{l}$ matrix $\quad \frac{A B}{m \times l}=\frac{B A}{\sqrt{2} \times n} \quad m=l=b=n$

Invertible Matrices

Definition

We say an $n \times n$ matrix A is invertible if there is an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

We call B the inverse of A and denote it A^{-1}. Note that here B would also be invertible with inverse A (i.e. $B^{-1}=A$).

CAUTION!!!!!

This definition if for square matrices only $(m=n)$. We can not talk about inverse of non-square matrices!

Solving Matrix Equations with Invertible Matrices

Theorem

If A in an invertible matrix then

$$
A \vec{x}=\vec{b} \Longleftrightarrow \vec{x}=A^{-1} \vec{b} .
$$

Solving Matrix Equations with Invertible Matrices

Theorem
If A in an invertible matrix then

$$
A \vec{x}=\vec{b} \Longleftrightarrow \vec{x}=A^{-1} \vec{b}
$$

In particular, there is exactly one solution to the augmented matrix $(A \mid \vec{b})$ for all \vec{b}.

$$
\begin{aligned}
& \Rightarrow \begin{array}{ll}
A \vec{x}=\vec{b}
\end{array} \quad \text { Mu(tipl) beth sales by } A^{\top}: \begin{array}{l}
A^{-1} A \vec{x}
\end{array}=A^{-1} b \\
& x=A^{-1} b \\
& \vec{x}=A^{-} b \text { the } \quad \hat{x}=A A^{-1} \vec{b}=I_{n} \vec{b}=\vec{b}
\end{aligned}
$$

Invertibility Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}

Invertibility Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution

Invertibility Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$

Invertibility Theorem

Theorem

Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(9) The RREF of A is I_{n}

Invertibility Theorem
Theorem
Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
(3) $r k(A)=n$
(4) The RREF of A is I_{n}
(5) A is invertible
$(1) \Rightarrow(21 \Rightarrow(3) \Rightarrow(\mathbb{L}) \Rightarrow(S) \Rightarrow(1)$
$(1) \Rightarrow(2)$ (f $A \bar{x}-\vec{b}$ has asolution for all \vec{b} the inparficado forb \vec{b} ar
$(2) \Rightarrow(1) \quad A \vec{x}>0$ deans has a solution of $\vec{x}=0$
so $A x=0$ hos 1 sxtaio of a sections. If it hor ∞ mon solution $\Rightarrow A$ has a tree variable. if Alas a free savianh then $N K(A)=n-\#$ free variable $<n$

More Work Space
(2) \rightarrow (3) citmed so workeng backurods if $N \leqslant A<n$ the A has a frec vevichle \& thas at ly may solution to $A=0$. Herer imposithesinc we cav (2) Araco has 1 spection?
(3) \Rightarrow (4) $A \Rightarrow R \quad R$ is a squar nixn matrix with
n leading 1s. Wnd so

$$
\text { by exokowstin } R=\left[\begin{array}{ll}
1 & \\
1 & 0 \\
0 & \ddots \\
1
\end{array}\right]=I_{n}
$$

$(s)=71$ If A is invertible the

$$
\begin{aligned}
\text { Axab } \Rightarrow x= & 4^{-1} b \text { and so Uniave } \\
& \text { Solutian. }
\end{aligned}
$$

Properties of the Inverse

To prove the $(4) \Longrightarrow(5)$, we need to know more about the inverse.

Properties of the Inverse

To prove the $(4) \Longrightarrow(5)$, we need to know more about the inverse.

Theorem

Let A, B be invertible matrices and c a real number then

Properties of the Inverse

To prove the $(4) \Longrightarrow(5)$, we need to know more about the inverse.

Theorem

Let A, B be invertible matrices and c a real number then
(1) The identity matrix I_{n} is invertible with $I_{n}^{-1}=I_{n}$

Properties of the Inverse

To prove the $(4) \Longrightarrow(5)$, we need to know more about the inverse.

Theorem

Let A, B be invertible matrices and c a real number then
(1) The identity matrix I_{n} is invertible with $I_{n}^{-1}=I_{n}$
(2) Inverses are unique.

Properties of the Inverse

To prove the $(4) \Longrightarrow(5)$, we need to know more about the inverse.

Theorem

Let A, B be invertible matrices and c a real number then
(1) The identity matrix I_{n} is invertible with $I_{n}^{-1}=I_{n}$
(2) Inverses are unique.
(3) The inverse of the inverse of A is $A:\left(A^{-1}\right)^{-1}=A$

Properties of the Inverse

To prove the $(4) \Longrightarrow(5)$, we need to know more about the inverse.

Theorem

Let A, B be invertible matrices and c a real number then
(1) The identity matrix I_{n} is invertible with $I_{n}^{-1}=I_{n}$
(2) Inverses are unique.
(3) The inverse of the inverse of A is $A:\left(A^{-1}\right)^{-1}=A$
(9) $c A$ is invertible with $(c A)^{-1}=\frac{1}{c} A^{-1}$

Properties of the Inverse
To prove the $(4) \Longrightarrow(5)$, we need to know more about the inverse.
Theorem
Let A, B be invertible matrices and c a real number then
(1) The identity matrix I_{n} is invertible with $I_{n}^{-1}=I_{n}$
(2) Inverses are unique.
(3) The inverse of the inverse of A is $A:\left(A^{-1}\right)^{-1}=A$
(1) $c A$ is invertible with $(c A)^{-1}=\frac{1}{c} A^{-1}$
(0) $A B$ is invertible with $(A B)^{-1}=B^{-1} A^{-1}$. - big orel
(1) No that $I_{n} I_{n}=I_{n} \Rightarrow I_{n}^{-1}=I_{n}$
(2) Let A he an invertible matrix \& cossum $A B=B A=I$ bet also $A C=C A=I$

$$
B=I B=C A B=C I=C
$$

More Work Space
(3) Wart to show $\left(A^{-1}\right)=A$ $B\left(A^{-1}\right)^{-1}$ is th matrix such the $A^{-1} B=B A^{-1}=\geq$ we not that $A=B$ satifies this \& by the unisuencon is the only matrix that satistie this
(4) $(C A)^{r}=\frac{1}{c} A^{-1}$ clack: $(C A) \cdot\left(\frac{1}{2} A^{-1}\right)=C \cdot \frac{1}{c} \cdot A \cdot A^{r}$

cheakthets $\quad\left(R^{-1} A^{-1}\right) \cdot(A B)=B^{-1}\left(A^{-1} A\right) B$

$$
=B^{-1}(I B)=B^{T} B=I
$$

Elementary Matrices

Recall that the elementary row operation are
(1) Add a multiple of one row to the other
(2) Interchange two rows
(3) Multiply a row by a non-zero constant

Elementary Matrices

Recall that the elementary row operation are
(1) Add a multiple of one row to the other
(2) Interchange two rows
(3) Multiply a row by a non-zero constant

Definition

We say a matrix is an elementary matrix if it can be obtained by one elementary row operation performed on the identity matrix.

Examples of Elementary Matrices

(1) Add a multiple of one row to the other

Examples of Elementary Matrices

(1) Add a multiple of one row to the other

$$
\xrightarrow{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \stackrel{R_{2}+4 R_{1}}{\Longrightarrow}\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\bar{E}, ~}
$$

Examples of Elementary Matrices

(1) Add a multiple of one row to the other

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{R_{2}+4 R_{1}}\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(2) Interchange two rows

Examples of Elementary Matrices

(1) Add a multiple of one row to the other

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{R_{2}+4 R_{1}}\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \geq E
$$

(2) Interchange two rows

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{R_{1} \Longleftrightarrow R_{3}}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=E
$$

Examples of Elementary Matrices

(1) Add a multiple of one row to the other

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{R_{2}+4 R_{1}}\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(2) Interchange two rows

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{R_{1} \Longleftrightarrow R_{3}}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

(3) Multiply a row by a non-zero constant

Examples of Elementary Matrices

(1) Add a multiple of one row to the other

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{R_{2}+4 R_{1}}\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=E
$$

(2) Interchange two rows

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{R_{1} \Leftrightarrow R_{3}}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=E
$$

(3) Multiply a row by a non-zero constant

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \stackrel{-2 R_{1}}{\longrightarrow}\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=E
$$

Inverse of Elementary Matrices

Theorem
 If E is an elementary matrix then it is invertible and E^{-1} is also an elementary matrix.

Inverse of Elementary Matrices

Theorem

If E is an elementary matrix then it is invertible and E^{-1} is also an elementary matrix. Moreover, E^{-1} corresponds to the "undoing" row operation of E.

Inverse of Elementary Matrices
Theorem
If E is an elementary matrix then it is invertible and E^{-1} is also an elementary matrix. Moreover, E^{-1} corresponds to the "undoing" row operation of E.

$$
\begin{aligned}
& R_{2}+4 R_{1} \rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \Leftarrow R_{2}-4 R_{1} \\
& R_{3} \Leftrightarrow R_{1} \rightarrow\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \Leftarrow R_{1} \Leftarrow R_{3} \\
& -2 R_{1} \rightarrow\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
-\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \leftrightarrow-\frac{1}{2} R_{1}
\end{aligned}
$$

Multiplying by Elementary Matrices

Theorem

Given a matrix A and an elementary matrix E, then the matrix $E A$ is obtained by performing the row operation corresponding to E on A.

Multiplying by Elementary Matrices

Theorem

Given a matrix A and an elementary matrix E, then the matrix $E A$ is obtained by performing the row operation corresponding to E on A.

$$
\begin{aligned}
& \&_{2}+4 R_{1} \\
& \rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
1 & 4 & 4 & 0
\end{array}\right)\left.=\underset{2+4.1}{ } \quad \begin{array}{cccc}
1 & 0 & 2 & 3 \\
6 & -1 & 11 & 18 \\
1 & 4 & 4 & 0
\end{array}\right) \\
& 3+4.2
\end{aligned}
$$

Multiplying by Elementary Matrices

Theorem

Given a matrix A and an elementary matrix E, then the matrix $E A$ is obtained by performing the row operation corresponding to E on A.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
1 & 4 & 4 & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
6 & -1 & 11 & 18 \\
1 & 4 & 4 & 0
\end{array}\right)
$$

Note: It is only $E A$ that corresponds to performing the row operation. $A E$ does NOT correspond to this. In fact, $A E$ may not even make sense!

Multiplying by Elementary Matrices

Theorem

Given a matrix A and an elementary matrix E, then the matrix $E A$ is obtained by performing the row operation corresponding to E on A.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
1 & 4 & 4 & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
6 & -1 & 11 & 18 \\
1 & 4 & 4 & 0
\end{array}\right)
$$

Note: It is only $E A$ that corresponds to performing the row operation. $A E$ does NOT correspond to this. In fact, $A E$ may not even make sense!

Theorem

Two matrices A and B are row equivalent if and only if there is a series of elementary matrices such that

$$
B=E_{k} E_{k-1} \cdots E_{2} E_{1} A
$$

$(4) \Longrightarrow(5)$
Theorem
Let A be an $n \times n$ matrix. The the following are equivalent
(1) $A \vec{x}=\vec{b}$ has a unique solution for every \vec{b}
(2) $A \vec{x}=0$ has a unique solution
$r k(A)=n$
The most imponticat equisaden
The RREF of A is I_{n}
(2) $\Leftrightarrow(5)$
A is invertible
$(4) \Rightarrow(S)$ RREFot A is $I_{n} \Rightarrow A \& I_{n}$ are row equivalent
$\Rightarrow \exists E_{1}, G_{1}$. E_{k} sud that $I_{n}=E_{k} E_{k-1} \cdots E_{1} A$
$\left[\rightarrow A=\left(E_{k} E_{k+1} \cdots E_{1}\right)^{-1}=E_{1}^{-1} E_{1}^{-1} \cdots E_{k-1}^{-1} E_{k}^{-1}\right]$ aside
So re has a $B\left(B=B_{k} G_{k-1}-E_{1}\right)$ such that $\quad R A=I_{n}$ $\& \Rightarrow A$ is invertible. (cheek $\left.A B=I_{n}\right)$

Inverse as Elementary Matrices

One consequence of the above theorem is that A is invertible if and only if there is a series of row operations that reduce it to I.

Inverse as Elementary Matrices

One consequence of the above theorem is that A is invertible if and only if there is a series of row operations that reduce it to I. This is equivalent to saying that there is a series of elementary matrices $E_{1}, E_{2}, \ldots, E_{k-1}, E_{k}$ such that

$$
E_{k} E_{k_{1}} \cdots E_{2} E_{1} A=I
$$

Inverse as Elementary Matrices

One consequence of the above theorem is that A is invertible if and only if there is a series of row operations that reduce it to I. This is equivalent to saying that there is a series of elementary matrices $E_{1}, E_{2}, \ldots, E_{k-1}, E_{k}$ such that

$$
E_{k} E_{k_{1}} \cdots E_{2} E_{1} A=I
$$

However, this now implies that

$$
A^{-1}=E_{k} E_{k-1} \cdots E_{2} E_{1}
$$

Inverse as Elementary Matrices

One consequence of the above theorem is that A is invertible if and only if there is a series of row operations that reduce it to I. This is equivalent to saying that there is a series of elementary matrices $E_{1}, E_{2}, \ldots, E_{k-1}, E_{k}$ such that

$$
E_{k} E_{k_{1}} \cdots E_{2} E_{1} A=I
$$

However, this now implies that

$$
A^{-1}=E_{k} E_{k-1} \cdots E_{2} E_{1} l
$$

Inverse as Elementary Matrices

One consequence of the above theorem is that A is invertible if and only if there is a series of row operations that reduce it to I. This is equivalent to saying that there is a series of elementary matrices $E_{1}, E_{2}, \ldots, E_{k-1}, E_{k}$ such that

$$
E_{k} E_{k_{1}} \cdots E_{2} E_{1} A=I
$$

However, this now implies that

Per forming the
row operations

$$
A^{-1}=E_{k} E_{k-1} \cdots E_{2} E_{1} I
$$

Conclusion

To find the inverse of A, it is enough to apply row operation that reduce A to / on I itself.

Algorithm for Finding the Inverse

Algorithm for Finding the Inverse

(1) Augment the $n \times n$ matrix A with $I_{n}:\left(A \mid I_{n}\right)$

Algorithm for Finding the Inverse

(1) Augment the $n \times n$ matrix A with $I_{n}:\left(A \mid I_{n}\right)$
(2) Perform Gauss-Jordan elimination on A while at the same time doing the same row operations to I_{n}

$$
\left(A \mid I_{n}\right) \Longrightarrow(R \mid B)
$$

Algorithm for Finding the Inverse

(1) Augment the $n \times n$ matrix A with $I_{n}:\left(A \mid I_{n}\right)$
(2) Perform Gauss-Jordan elimination on A while at the same time doing the same row operations to I_{n}

(3) If the $R=I_{n}$ then A is invertible and $B=A^{-1}$.

Algorithm for Finding the Inverse

(1) Augment the $n \times n$ matrix A with $I_{n}:\left(A \mid I_{n}\right)$
(2) Perform Gauss-Jordan elimination on A while at the same time doing the same row operations to I_{n}

$$
\left(A \mid I_{n}\right) \Longrightarrow(R \mid B)
$$

(3) If the $R=I_{n}$ then A is invertible and $B=A^{-1}$.
(9) If $R \neq I_{n}$ then A is not invertible.

Finding the Inverse
Find the inverse of the matrix

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
-1 & 3 & 1 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right) \\
\left(A \mid I_{n}\right)=\left(\begin{array}{ccc}
-1 & 3 & 1
\end{array} \left\lvert\, \begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
2 & 1 & 1 \\
2 & 0 \\
0 & 0 & 1
\end{array}\right.\right) \\
\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 1 \\
2 & 1 & c
\end{array}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{array}\right) \begin{array}{l}
R_{3} \\
1
\end{array}\right.
\end{gathered}
$$

More Work Space

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & -3 & 1 & -1 & 0 & 0 \\
0 & 1 & 0 \\
0 & > & -2 & 1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right) \frac{j}{j} R_{2}\left(\begin{array}{ccc|ccc}
1 & -3 & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & 11, & 10 & 0 \\
0 & 7 & -2 & 2 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-1 & 3 & 1 \\
1 & 0 & 1 \\
2 & 1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 / 3 & -1 / 6 & 1 / 2 \\
1 / 3 & 1 / 3 & 0 \\
1 / 3 & 1 / 6 & -1 / 2
\end{array}\right) \quad \begin{array}{c}
\text { these instrices } \\
\text { giver } \\
\left(\begin{array}{ll}
1 & 0 \\
2 & 1 \\
2 & 0
\end{array}\right)
\end{array}
\end{aligned}
$$

