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Topics for Today

© Matrices as Vector Space: Addition and Scalar Multiplication
@ Multiplying Matrices by Vectors
© Multiplying Two Matrices
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Row and Column Vectors

Recall we say that M (o lomyy
arl a2 ... al,n
aml a4m2 --- Admn
— - —

is an m X n matrix.
’;%
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Row and Column Vectors

Recall we say that

is an m X n matrix.

We will denote

= (ai,l aj2 ... ai,n)

as the i-th row vector of A and consider it as a “1 x n matrix”.
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Row and Column Vectors

Recall we say that

z a1
A= :
am,2
is an m X n matrix. h
SFedun T Colomn
_ vl V127
We will denote
E = (a,-71 3;72 e 3;7,,)

as the i-th row vector of A and consider it as a “1 x n matrix”". Further,
we will denote

as the j-th column vector of A and consider it as a “m x 1 matrix".
P —
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Shorthand Notations

We can then created three differing shorthand notations for the matrix A:
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Shorthand Notations

We can then created three differing shorthand notations for the matrix A:

A
m
A=(ajj)i=1,.m=| .
j:17' 7n :
m
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Shorthand Notations

We can then created three differing shorthand notations for the matrix A:

rn
r
A=(aij)i=1,.m=| . | =(@& & ch)
j:17' 7n :
m
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Shorthand Notations

We can then created three differing shorthand notations for the matrix A

n
)
A= (al,j)izl,,..,m = . (El 82 En)
Jj=1,...,n .
Fm

To save space, and if it can be inferred from context, we will write just

(aij)ij or (aij) instead of (aij)i=1,..m

j=1,...,n
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Matrices as Vector Spaces

The set of m X n matrices form a vector space
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Matrices as Vector Spaces

The set of m x n matrices form a vector space with

© The zero matrix being

0 0 . 0
0 0 . 0
@ Addition being done ‘coordinate-wise” CO Mo et ~wise

(aiy)ij + (big)iy = (aij + bij)ij

© Scalar multiplication also being done “coordinate-wise” NP ler-—

c(aij)ij = (caij)ij
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~7 7 13 4 10 22
g (9T Ty lg_ (25 10 iyl
“\20 17 20 " \—a5 1 1) bk
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13 7 5 —2 0
A‘(z 5 11) B‘(—g 2 2>
6 1 7 2 6 14
A+B_<—7 7 13> 2A_<4 10 22>

-9 77 1 25 -1 0
A_ZB_<20 1 7) 2B_<—4.5 1 1>
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<> 33
13 7 5 —2 0
A‘(z 5 11) B‘(—g 2 2>
6 1 7 2 6 14
A+B_<—7 7 13> 2A_<4 10 22>

-9 77 1 25 -1 0
A_ZB_<20 1 7) 2B_<—4.5 1 1>

You can only add matrices of the same dimension!
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13 7 5 —2 0
A‘(z 5 11) B‘(—g 2 2>
6 1 7 2 6 14
A+B_<—7 7 13> 2A_<4 10 22>

-9 77 1 25 -1 0
A_ZB_<20 1 7) 2B_<—4.5 1 1>

You can only add matrices of the same dimension! That is, if

1 3 3
C=12 5 =2
7 11 21

then it does not even make sense to consider things like A4+ C or 2C + 5Bl
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Multiplication of Matrices

We have defined addition of matrices “coordinate-wise”, so it is tempting
to define multiplication of matrices the same way.
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Multiplication of Matrices

We have defined addition of matrices “coordinate-wise”, so it is tempting
to define multiplication of matrices the same way. That is, if A and B are
m X n matrices, then it is tempting to define

Ax B = (aij)ij* (bij)ij = (aijbij)i
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Multiplication of Matrices

We have defined addition of matrices “coordinate-wise”, so it is tempting
to define multiplication of matrices the same way. That is, if A and B are

trices, then it is t ting to defi N
m X n matrices en It IS tempting to aerine T\MD OS
Ax B = (ai,j)i,j * (bl,j)l,j — (ai,jbi,j)i,j AO’}\ ﬁOQJ”
— '

However, we must remember that we are interested in matrices in relation
to solving systems of linear equations.

As it turns out defining the multiplication of matrices in this way does not
help us understand this.
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Multiplying 1 x 1 Matrices
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Multiplying 1 x 1 Matrices

A 1 x 1 matrix would be something of the form

A= (a),aeR
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Multiplying 1 x 1 Matrices

A 1 x 1 matrix would be something of the form
A= (a),aeR

That is, a 1 x 1 matrix is, essentially, just an element of R, a scalar.
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Multiplying 1 x 1 Matrices

A 1 x 1 matrix would be something of the form

A= (a),aeR
That is, a 1 x 1 matrix is, essentially, just an element of R, a scalar.
Therefore, there is no real way to multiply them except for the naive way.
That is, if A= (a) and X = (x) it must be that

Ax X = (ax)
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Multiplying 1 x 1 Matrices 2

However, since X = (x) is essentially just an element of R = R!, we can
view it as vector: X = X = [x )
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Multiplying 1 x 1 Matrices 2

However, since X = (x) is essentially just an element of R = R!, we can
view it as vector: X = X = [x]

Thus we can define how to multiply a 1 x 1 matrix A = !a! with a vector

in Rl x= [x]:
]

(2\

R
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Multiplying 1 x 1 Matrices 2

However, since X = (x) is essentially just an element of R = R!, we can
view it as vector: X = X = [x]

Thus we can define how to multiply a 1 x 1 matrix A = (a) with a vector
in RY, X = [x]: —

Ax X = [ax]

We want to relate this back to solving linear equations.

@\To\ — ax="b

n—J

X

@J@\ —5 A =T

P

K
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Multiplying 1 x 1 Matrices 2

However, since X = (x) is essentially just an element of R = R!, we can
view it as vector: X = X = [x]

Thus we can define how to multiply a 1 x 1 matrix A = (a) with a vector
in Rl x= [x]:
AxxX = [ax]

We want to relate this back to solving linear equations. So if b= [b] is a
vector in R!, then we see that X = [x] solves to the 1 x 2 augmented

-,

matrix (A|b) = (a|b) if and only if ax = b.
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Multiplying 1 x 1 Matrices 2

However, since X = (x) is essentially just an element of R = R!, we can
view it as vector: X = X = [x]

Thus we can define how to multiply a 1 x 1 matrix A = (a) with a vector
in Rl x= [x]:
AxxX = [ax]

We want to relate this back to solving linear equations. So if b= [b] is a
vector in R!, then we see that X = [x] solves to the 1 x 2 augmented

-,

matrix (A|b) = (a|b) if and only if ax = b.

If Aisa 1 x 1 matrix and b is a vector in R then a vector X in R! solves

-,

the augmented matrix (A|b) if and only

AxX=b
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Multiplying Matrices by Vectors

We want to generalize this conclusion to any matrix.
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Multiplying Matrices by Vectors

We want to generalize this conclusion to any matrix.

For any matrix A and any vector X, we want to define A x X such that X
. . . e
solves the augmented matrix (A|b) if and only if A X = b.
ArX— 0
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Multiplying Matrices by Vectors

We want to generalize this conclusion to any matrix.

For any matrix A and any vector X, we want to define A x X such that X
solves the augmented matrix (A|b) if and only if Ax X = b.
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Multiplying Matrices by Vectors

We want to generalize this conclusion to any matrix.

For any matrix A and any vector X, we want to define A x X such that X
solves the augmented matrix (A|b) if and only if Ax X = b.

$
If Aiis an m x n matrix then it corresponds to a system of linear equations
in n variables.

Patrick Meisner (KTH) Lecture 5 10/28



Multiplying Matrices by Vectors

We want to generalize this conclusion to any matrix.

For any matrix A and any vector X, we want to define A x X such that X
solves the augmented matrix (A|b) if and only if Ax X = b.

If Ais an m x/n)matrix then it corresponds to a system of linear equations

—,

in n variables. Thus, in order for X to solve the augmented matrix (A|b), X
must be in K2}
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Multiplying Matrices by Vectors

We want to generalize this conclusion to any matrix.

For any matrix A and any vector X, we want to define A x X such that X
solves the augmented matrix (A|b) if and only if Ax X = b.

If Ais an m x@)matrix then it corresponds to a system of linear equations

—,

in n variables. Thus, in order for X to solve the augmented matrix (A|b), X
must be in RQ)

So, we would NOT be able to define the multiplication of aﬁ@%trix
by a vector in H@in this way.
=
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Multiplying Matrices by Vectors 2

So, given an augmented matrix

a1 a2 ... ain | b

. a1 ap ... axn | b
(Ap) = | 2 7 _

dm,1 dm2 --- dmn bm
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Multiplying Matrices by Vectors 2

So, given an augmented matrix

aii a2 ... ai,n b1
. a1 ap ... axn | b
(Alb) = [ . S C]
am1 am2 --- amn | bm
X1

we recall that a vector X = in R” solves the augmented matrix if

Xn
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Multiplying Matrices by Vectors 2

So, given an augmented matrix

ai1 a12 ... ain | b
. a1 ap ... axn | b
T E R
dm,1 dm2 --- dmn bm
X1

we recall that a vector X = in R" solves the aui ented matrix if

Som ety \Wedvivs

a11x1 + aipxo + - -+ + a1,nXn A b1

N
/xﬂs 3? o |aaxitapxo -+ axnxp 5 b2 | 2 b

\)

Am1X1 + am2X2 + ... amnXn bm
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Multiplying Matrices by Vectors Definition

Given an m x@matrix and a vector in K?

3171 3172 coo 31@ X1
a1 a2 ... 32@ . X2

= o . . . X =
dm,1 dm2 --- dm,

we define A x X to be
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Multiplying Matrices by Vectors Definition

we define A x X to be
a1,1X1 +a12Xe + -+ a1 nXp | =
. a1X1 +ax2xg + -+ apXp| —
Ax X = .

Am,1X1 T am2X2 + ... amnXn | =
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Multiplying Matrices by Vectors Theorem

Given an m x n matrix A and a vector b in R™, then a vector X in R”
solves the augmented matrix (A|b) if and only if

AxX=h

_
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Multiplying Matrices by Vectors Theorem

Given an m x n matrix A and a vector b in R™, then a vector X in R”
solves the augmented matrix (A|b) if and only if

AxX=h

By construction. [
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Multiplying Matrices by Vectors Theorem

Given an m x n matrix A and a vector b in R™, then a vector X in R”
solves the augmented matrix (A|b) if and only if

AxX=h

By construction.

Notation: from now on we will just write A{X’ instead of A x X to indicate
the multiplication of a matrix by a vector in this way.
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Exercise

Exercise

Calculate AX in the following and interpret the result in terms of a solution

to a system of linear equations
oAt 2] 2:[2] [@] 2x [ tE0)xl)
3 4] -1 I+ 6

\;

—il
os-o 2] [;J )
1) @Q @4 /\/()JY‘ 351&/ (Mcmam
A: __52 110_'X: 55’ % = < %%
V) . (@) '{2:/%' Slves th Sole,
s AL - (G =7 Tl =k g

G =@
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Extra Work Space




Q@ IfAisanm @atrix then AX only makes sense if X is in H@
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@ If Ais an m x n matrix then AX only makes sense if X is in R".
Q IfAis an@x @matrix and X is in R® then AX is a vector in R

g ,] = é " (@
i

1 g
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@ If Ais an m x n matrix then AX only makes sense if X is in R".
@ If Ais an m x n matrix and X is in R" then AX is a vector in R™.

© We may have AX = 0 even if A is not the zero matrix and X # 0.
= — —_——
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@ If Ais an m x n matrix then AX only makes sense if X is in R".
@ If Ais an m x n matrix and X is in R" then AX is a vector in R™.

© We may have AX = 0 even if A is not the zero matrix and X # 0.

X is a homogeneous solution to A if and only if AZ = 0.

3k e N iF <oy (MBles AR = &
r
L T
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Multiplying Matrices by Vectors: Row Vectors Dot Product

Theorem

Recall that if A = (a;j) is an m x n matrix then the row vectors,
ri=(ai1 aj2 ... ajn), are vectors in R".
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Multiplying Matrices by Vectors: Row Vectors Dot Product

Theorem
Recall that if A = (a;j) is an m x n matrix then the row vectors,
ri=(ai1 aj2 ... ajn), are vectors in R". Then for any vectors X in
R"”, we get = =
A-x Fx e
AX = .
- X

q{/ K{\‘ Cf/l 2<( - — 4 9//12(\

I
t

>

AU

)
2L

0

c

1

1

}§>
. J
—
R &S

\?

v( .\2 = (O(H OI(L T O]{V\> e @/ ﬁ T ><'\> = Qfl ?</ f\%LK\'f?Y()
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Linearity Properties

Theorem (Linearity Properties)

If A'is an m x n matrix, X and y vect%,\@ R" and ¢ a scalar then

Q A(cx) = cAX AES) - Ax /4\7

1
-

- N c n.
Ok A- Ceg)= /T C‘;‘)) SN L ef T

B B (A C s B

C . B €y TN tox\ /-
IAV\ &{\\{\) - ! ' i : ' Y
W CK]L\/) Qe i< G | By P Y.

= AR LAy
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Homogeneous Solutions are a Vector Space: Reproof

Given a matrix A, the set of homogeneous solutions of A form a vector
space. Equivalently, the following holds

© 0 is a homogeneous solution

@ If X is a homogeneous solution and ¢ € R then cx is also a
homogeneous solution

@ I/f X and y are homogeneous solutions than so is X + y

CD/AVS-—Z‘\’:é ~ o

R >

@ o= AT? — )VCC\)Z): C- A—;: O =p
@)Zi"—o - /AVCKH»: Aot /H» > Oto—= o

y =0
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Multiplication of Matrices

Suppose A is an m X n matrix and B is a n X £ matrix.
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Multiplication of Matrices

Suppose A is an m x n matrix and B is a n x £ matrix. We can write
B = (61 & ... 5@)

where the G are the column vectors of B and so are vectors in R”.
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Multiplication of Matrices

Suppose Ais an m x@matrix and B is amx ¢ matrix. We can write
B=(G & ... &)

where the & are the column vectors of B and so are vectors in K™ Hence,
we know how to multiply each ¢&; by A.

Aa e Ko NN
el &
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Multiplication of Matrices

Suppose A is an m x n matrix and B is a n x £ matrix. We can write
B = (61 & ... 55)

where the ¢ are the column vectors of B and so are vectors in&’. Hence,
we know how to multiply each & by A. We now can think of multiplying
B by A by distributing it:

Definition
Let A be an@x@matrix and B be a@x@matrix with column vectors

61767"')Qvthe%%e\
w/\z<9\
AB=A(E & ... &) =(Aa A& ... A&)"" 7z

n L] /‘l

AN g
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Remarks on Multiplication of Matrices
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Remarks on Multiplication of Matrices

AB=AE & ... &) =(Ad A& ... AZ)

Q If Aisa m x atrix and B is @ ¢ matrix then the ¢; are in R¥
and hence AB only makes sense if n = k (i.e. the number of columns
of A must be equal to the number of rows of B).
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Remarks on Multiplication of Matrices

AB=AE & ... &) =(Ad A& ... AZ)

@ If Ais a m x n matrix and B is a k x £ matrix then the & are in R¥
and hence AB only makes sense if n = k (i.e. the number of columns
of A must be equal to the number of rows of B).

@ It is very possible that AB makes sense while BA does not even make

sense! Vl"//b\ A’Q w/qu'Co
ned LA dle b el
WO G
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Remarks on Multiplication of Matrices

AB=AE & ... &) =(Ad A& ... AZ)

@ If Ais a m x n matrix and B is a k x £ matrix then the & are in R¥
and hence AB only makes sense if n = k (i.e. the number of columns
of A must be equal to the number of rows of B).

@ It is very possible that AB makes sense while BA does not even make
sense!

@ Since ¢ are vectors in R”, the AcC; are vectors in R™ and so AB is an
m x £ matrix.

furn) + (eR) = 0xL
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Exercise

Exercise

2 1
A=[10 B:(_ll g D C=(2 1)
00
Computer AB, AC, BA, BC, CA and CB or state that they don't make
sense

v

Qx( = =l Ox2 & ax( & H&/\
& (c(t ok~ Ox( &30 & hay
@) Lo to&( ot t o (wiy

( O ( o L
121 Hal
== 2L Bk
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Extra Work Space
Sl E O F (oo \@(Fowm@
) 2~ (2 o xo Hx ((w,a&z)

\\\E

Iz %%




Multiplying Matrices: Row Vector, Column Vector Dot

Product

Theorem

Let A be an m X n matrix with row vectors i, ,...,m and B be an
n x ¢ matrix with column vectors ¢i, G, ..., Cs. Then

AB=] . @ & ... @) =(- G)i=1,...,m-
F‘m f\\d”/\d%— C—Q(‘””Vl OS-'

&
That is, the ( ,_j! th entry of the m x ¢ matrix AB is r, CJ =

o (e hon M W
(0 (- (le)) b j

N
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Multiplying Matrices: Row Vector, Column Vector Dot

Product

Theorem
Let A be an m X n matrix with row vectors i, ,...,m and B be an
n x ¢ matrix with column vectors ¢i, G, ..., Cs. Then

n

EX I N

AB=| | (& & &) = (- €)i=1,.m
. j=1,...¢
Fm

That is, the (i,j)-th entry of the m x { matrix AB is r; - Cj.

Follows from the similar theorem about matrices multiplied by vectors and

the definition of matrix multiplication.

Ol

v
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Diagonal Matrices

We call an n x n matrix D = (d;;) diagonal if d;; = 0 whenever i 7 j:
T o
D= =
0 0 dn,n
-— y
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Multiplying a Matrix by a Diagonal Matrix on the Right

0 0 ... d,

and Ais an m X n matrix with entries a; j,
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Multiplying a Matrix by a Diagonal Matrix on the Right
et ot Dh

d 0 0
R R Hesi't wede
oo . Seafe w,/gg/
0 O d, e
and Ais an m X n matrix with entries a; j, then ‘%
a1,1 a2 ... al,n d1 0 . 0
ai a2 ... az.n 0 d2 . 0
AD = . ) ) ) .
am1 am2 --- amn 0 0 ... d,
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Multiplying a Matrix by a Diagonal Matrix on the Right

Cdéaéé dpaip ... dpain

diaz 3:2822 ... dpaop

d!agl dzamg . d,,am,,
—

Patrick Meisner (KTH) Lecture 5 26/28



Multiplying a Matrix by a Diagonal Matrix on the Left

and Ais an n X m matrix with entries a; j,
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Multiplying a Matrix by a Diagonal Matrix on the Left

and A is an n X_m matrix with entries a; j, then
d1 0 PN 0 d11 412 ... dlm
0 d2 ce 0 a1 a2 ... am
DA=1 . . . . . .
0 0 ... d, an1l an2 --- anm
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Multiplying a Matrix by a Diagonal Matrix on the Left

and Ais an n X m matrix with entries a; j, then
d1 0 . 0 a1 a1.2 alm
0 d2 ce 0 a1 a2 ... am
DA=1 . . . . . . .
0
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Multiplying Two Diagonal Matrices

Let
dq 0 ... 0 eg O 0
0 o 0 0 e 0
D= ) and E =
0 O 0 0
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Multiplying Two Diagonal Matrices

Let
d 0 0 ee O 0
0 o 0 0 e 0
D= ] and E =
o 0 ... d, 0 0 ... e
then
d1€1 0 0
0 d2€2 0
DE = i )
0 0 dhen
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Multiplying Two Diagonal Matrices

Let
d 0 0 ee O 0
0 & ... 0 0 e 0
p=|. - and E=
o 0 ... d, 0 0 ... e
then
d1€1 0 0 e1d1 0 0
0 drer ... 0 0 edr ... 0
DE = . . . = . . _ .
O 0 d,,en 0 O endn
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Multiplying Two Diagonal Matrices

Let
d 0 0 ee O 0
0 & ... 0 0 & 0
p=\|. - and E=
0O 0 ... d, 0 0 ... e,
then
d1€1 0 0 e1d1 0 0
0 d2€2 0 0 62d2 0
DE = ) = . =ED
0 0 dne, 0 0 endn
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