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Topics for Today

1 Solving Augmented Matrices

2 Reduced Row Echcelon Form
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Last Class

1 Showed that solving a system of linear equations is equivalent to
finding a solution to an augmented matrix.

2 Showed that this can be done using equation operation on the
equations or row operations on the rows of the augmented matrix.
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Ideal Situation

Ideally, for a system of linear equations we would want to perform
equation operations to reduce it

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1 x1 = c1
a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2 =⇒ x2 = c2

...
...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm xn = cn

For matrices this would correspond to performing row operations to reduce
it 

a1,1 a1,2 . . . a1,n b1
a2,1 a2,2 . . . a2,n b2

...
...

. . .
...

...
am,1 am,2 . . . am,n bm

 =⇒


1 0 . . . 0 c1
0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 cn


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Non-Ideal Situation

However, the ideal situation does not always happen...

Exercise

Find all solutions to the system of linear equations

x + 4y + z = 2

2x + 3z = 2
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More Work Space
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Geometric Reasoning for Our Solution

We know that both formulas x + 4y + z = 2 and 2x + 3z = 2 describe a
plane in R3.

Hence, finding the set of points (x , y , z) that satisfy both
equations is the same as finding the set of points that are on both planes,
or finding the intersection of the planes. Therefore, it makes geometric
sense that our answer was a line in R3.
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Reducing Matrices

We note that in the previous example, we reduced the augmented matrix
as much as possible(

1 4 1 2
2 0 3 2

)
=⇒

(
1 0 3

2 1
0 1 −1

8
1
4

)

This is an example of reduced row echelon form.
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Reduced Row Echelon Form

Definition

We say that a matrix is in Reduced Row Echelon Form (RREF) if the
following holds:

1 If a row does not consist entirely of zeros, then the first nonzero
number is a 1, called a leading 1

2 If there are any rows that consist entirely of zeros, then they are
grouped together at the bottom of the matrix

3 In any two successive rows that do not consist entirely of zeroes, the
leading 1 in the lower row occurs farther to the right than the leading
1 in the higher row.

4 Each column that contains a leading 1 has zero everywhere else.

If the first three properties hold, we say the matrix is in Row Echelon
Form (REF).

The process of transforming a matrix into RREF is often called “reducing”.
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Examples of RREF and REF

Reduced Row Echelon Form:

1 0 0 4
0 1 0 7
0 0 1 −1




0 1 −2 0 1
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0

 (
0 0
0 0

)

Row Echelon Form:1 4 −3 7
0 1 6 2
0 0 1 5

 1 1 0
0 1 0
0 0 0

 0 1 2 6 0
0 0 1 −1 0
0 0 0 0 1


Neither form:0 1 0 4

0 1 4 7
0 0 1 3

 1 0 0
0 0 0
0 1 1

 1 0 0
0 0 1
0 1 0


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Definitions and Terminology

Definition
1 The positions that have a leading 1 in REF or RREF are sometimes

referred to as pivot positions and their columns as pivot columns.

2 The rank of a matrix A is the number of leading 1s when it is
reduced to REF or RREF. We denote this as rk(A).

3 The parameter t we saw in the example is referred to as a free
variable. They correspond to columns that aren’t pivot columns.
Note, it is possible to have multiple free variables!
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Facts

Fact
1 # columns = # variables = rk(A) + # free variables

2 If rk(A) = # variables, then there is a unique solution to A

3 If rk(A) < # variables, then there are infinitely many homogeneous
solutions to A.
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Solving Augmented Matrices in REF and RREF

Exercise

Find all the solutions to following augmented matrices

(A|~a) =

1 0 2 0 2 3
0 1 4 0 −5 7
0 0 0 1 0 −3

 (B|~b) =

0 1 2 6 0
0 0 1 −1 0
0 0 0 0 0


(C |~c) =

(
1 0 2
0 0 1

)
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Extra Work Space
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Consistent

Definition

We say an augmented matrix is consistent if there exists a solution and
inconsistent otherwise.

Ex: (A|~a) was consistent but (C |~c) was
inconsistent

Theorem

If an augmented matrix (A|~b) has a row of the form(
0 0 . . . 0 c

)
when brought to RREF, then (A|~b) is consistent if c = 0and inconsistent if
c 6= 0.
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Exercise

Exercise

For which values of a is the following system consistent:

x1 + x2 + 2x3 + 4x4 = 1

2x1 + 4x2 + x4 = 1

x1 − x2 + 11x4 = a
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Extra Work Space
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Row Equivalence

Definition

Two matrices are row equivalent if there is a sequence of row operations
that transforms one into the other.

Theorem

For any matrix A, there exists a unique matrix S that is in RREF that is
row equivalent to A.
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Proof by Gauss-Jordan Elimination

1 Locate the leftmost column that does not consist entirely of zeros

2 Interchange the top row with another row, if necessary, to bring a
nonzero entry to the top of the column found in Step 1

3 If the entry that is now at the top of the column found in Step 1 is a,
multiply the first row by 1

a in order to introduce a leading 1

4 Add suitable multiples of the top row to the rows below so that all
entries below the leading 1 become zeros.

5 Now cover the top row in the matrix and begin again with Step 1
applied to the submatrix the remains. (Will create REF)

6 Beginning with the last nonzero row and working upward, add
suitable multiples of each row to the rows above to introduce zeros
above the leading 1s. (Will create RREF)
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Exercise

Exercise

Use Gauss-Jordan elimination to put the matrix in RREF0 0 −2 0 7 12
2 4 −10 6 12 28
2 4 −5 6 −5 −1


and use it to find all homogeneous solutions.

See page 52 of textbook.
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