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Topics for Today

© Systems of Linear Equations
@ Matrices: Definition and Row Operations
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Linear Equations

Definition

An equation of the form a;x; + axxo + -+ apx, = b where 3; € R, be R
and the x; are variables is called a linear equation.
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Linear Equations

Definition
An equation of the form a;x; + axxo + -+ apx, = b where 3; € R, be R
and the x; are variables is called a linear equation.

If b =0, the equation is then called homogeneous.
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Linear Equations

Definition

An equation of the form a;x; + axxo + -+ apx, = b where 3; € R, be R
and the x; are variables is called a linear equation.

If b =0, the equation is then called homogeneous. If b # 0, it is called
non-homogeneous.
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Linear Equations

Definition

An equation of the form a;x; + axxo + -+ apx, = b where 3; € R, be R
and the x; are variables is called a linear equation.

If b =0, the equation is then called homogeneous. If b # 0, it is called
non-homogeneous.

Example: R e d BEx by
2x +y = 3 is a linear equation Al K=y
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Linear Equations

Definition

An equation of the form a;x; + axxo + -+ apx, = b where 3; € R, be R
and the x; are variables is called a linear equation.

If b =0, the equation is then called homogeneous. If b # 0, it is called
non-homogeneous.

Example:
2x + y = 3 is a linear equation

@ 3y = 1 is not a linear equation

pawee o two  mekes 1k ok [Uear
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System of Linear Equations

Having multiple linear equations
W ot Ller 9. &
y wwz\z ’\\ vl Q
n- copakion a11x1 + a12x2 + -+ aunXn = b1 b\‘\ &R

a,1X1 + 320X + -+ + 320X = bp

—

Am1X1 + am2X2 + -+ + amnXn = bm
—_ — =X

is called an m x n system of linear equations.

Patrick Meisner (KTH) Lecture 3 4/26



System of Linear Equations

Having multiple linear equations

ay1x1 +aipxo + -+ aipxp =b = o

a1Xi Faxoxo+ - +apxn=b ~o = 11@”'70;@@&

Am1X1 + am2X2 + -+ amnXn = bm >

is called an m x n system of linear equations. If all the b; = 0, then the
system is called homogeneous.
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System of Linear Equations

Having multiple linear equations

arixi +aipxo + -+ ainxs = by

ar1X1 + a2 X0 4 -+ + ax pXn = bo

Am1X1 + am2X2 + -+ amnXn = bm

is called an m x n system of linear equations. If all the b; = 0, then the
system is called homogeneous. If any of b; # 0, the system is called
non-homogeneous.
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System of Linear Equations

Having multiple linear equations

arixi +aipxo + -+ ainxs = by

ar1X1 + a2 X0 4 -+ + ax pXn = bo

Am1X1 + am2X2 + -+ amnXn = bm

is called an m x n system of linear equations. If all the b; = 0, then the
system is called homogeneous. If any of b; # 0, the system is called
non-homogeneous.

Determining the solutions (if any) of systems of linear equations is the
main motivation behind this whole course.
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Example of Problems Using a System of Linear Equations
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Example of Problems Using a System of Linear Equations

Give two lines, L and L,, is there a point that lies on both lines?
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Example of Problems Using a System of Linear Equations

Give two lines, L and L,, is there a point that lies on both lines? If so,
what is it?
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Example of Problems Using a System of Linear Equations

Give two lines, L and L,, is there a point that lies on both lines? If so,
what is it?

Example: If line Ly is given by the equation

L1:2x+3y =1
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Example of Problems Using a System of Linear Equations

Give two lines, L and L,, is there a point that lies on both lines? If so,
what is it?

Example: If line Ly is given by the equation
L1:2x+3y =1
and Ly is given by the equation

Ly:4x+6y =1
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Example of Problems Using a System of Linear Equations

Give two lines, L and L,, is there a point that lies on both lines? If so,
what is it?

Example: If line Ly is given by the equation
L1:2x+3y =1
and Ly is given by the equation
Ly:4x+6y =1

then determining the solutions (if any) to the 2 x 2 system of linear

equations: & ko=
3 csuhion Z2x+3y: 1
4x +6y =1

would answer our question.
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Example of Problems Using a System of Linear Equations
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Example of Problems Using a System of Linear Equations

Given a set of vectors Vi, Vo, ..., Vi, can a new vector w be written as a
linear combination of the v;?

Patrick Meisner (KTH) Lecture 3 6/26



Example of Problems Using a System of Linear Equations

Given a set of vectors Vi, Vo, ..., Vi, can a new vector w be written as a
linear combination of the V;? If so, what linear combination(s)?
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Example of Problems Using a System of Linear Equations

Given a set of vectors Vi, Vo, ..., Vi, can a new vector w be written as a
linear combination of the V;? If so, what linear combination(s)?

Example: Let
vi =(1,2,3),%» = (1,0,0),v3 = (0,1,1),w = (1,5,3)
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Example of Problems Using a System of Linear Equations

Given a set of vectors Vi, Vo, ..., Vi, can a new vector w be written as a
linear combination of the V;? If so, what linear combination(s)?

Example: Let
vi =(1,2,3),%» = (1,0,0),v3 = (0,1,1),w = (1,5,3)
The question is now, does there exist an A, B, C such that

(1,5,3) = A(1,2,3) + B(1,0,0) + €(0,1,1)
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Example of Problems Using a System of Linear Equations

Given a set of vectors Vi, Vo, ..., Vi, can a new vector w be written as a
linear combination of the V;? If so, what linear combination(s)?

Example: Let
vi =(1,2,3),%» = (1,0,0),v3 = (0,1,1),w = (1,5,3)
The question is now, does there exist an A, B, C such that

(1,5,3) = A(1,2,3) + B(1,0,0) + C(0,1,1) = (A+ B,2A+ C,3A+ ()
\rg\ﬁ\ [\ / \
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Example of Problems Using a System of Linear Equations

Given a set of vectors Vi, Vo, ..., Vi, can a new vector w be written as a
linear combination of the V;? If so, what linear combination(s)?

Example: Let
vi =(1,2,3),%» = (1,0,0),v3 = (0,1,1),w = (1,5,3)
The question is now, does there exist an A, B, C such that
(1,5,3) = A(1,2,3) + B(1,0,0) + €(0,1,1) = (A+ B,2A+ C,3A+ C)
Thus solving the 3 x 3 system of Iineizxﬁquti‘ations
A+B=1 = W =
2A+C=5 = w [
3A+C=3 ~ @ &

3 ecu okt on

would answer our question.
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Matrix Representation of a Linear System

Given a system of linear equations

¢ [
a1 F a2kt tawy = by
210 + 228 - L ang = b

am1& + am29 + - - ¥3m, o) = bm

the only relevant information are the coefficients a;1,a12,... and the
b1, bo,. ...
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Matrix Representation of a Linear System

Given a system of linear equations

ayix1 +aipxo + -+ aipxp = by

\7 a21X1 + axpXo 4 -+ + ax pXp = bo <

am,1X1 + am2X2 + ... amnXn = bm

the only relevant information are the coefficients a;1,a12,... and the
b1, by, .... Thus we condense this information into the matrix of
coefficients and the b-vector

a1l a2 ... ain by U
J a1 a2 ... an - by
A= ) ) ] ) and b= .
am1 am2 --- amn bm
' =
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Augmented Matrix of a Linear System

We also care about how the matrix of coefficients behave with the
b-vector and so we also consider the augmented matrix:

al a2 ... al,n b1

. a1 a2 ... a | b
(Alb) == | . . . .

am1 am2 --- amn | bm
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Consider the system of linear equations:
—2x+2y+3z=1

3x+y+5z=7 L
x+y+z=1

Then the matrix of coefficients, b-vector and augmented matrix,
respectively, would be: -

N (2|

- (! -

L2l 7 @rl@ 515107
| 44
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Exercise

Exercise

Given the augmented matrices
1
3 (Blb) =
7

write down the corresponding system of linear equations. )
&ﬁ%g\( £S5z = L 6 toxiog=2 => % =3
2x vy e f2=3 oy clatoh Y — G =y

x FlyeSe2= O8 % Ord (2525 =D K= ¢
—_—

o O R
o~ o
— o oX
(S eV}

N &
(255
(Ab)= {3 9 6

145

—
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Terminology

N colomys

/\/\/\

al,l 3172 e 3_1,2
a1 a2 ... aun WZ \{\@WS
A= . . )
am71 am72 e amm

A is called an m x n matrix.
}*
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Terminology

31,1 3172 e 31,,,

a1 422 ... an
A= )

am71 am72 e amm

A is called an m x n matrix.

m = number of rows !eguations)
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Terminology

31,1 3172 e 31,,,

a1 422 ... an
A=

am71 am72 e amm

A is called an m x n matrix.
m = number of rows (equations)

n = number of columns (variable) ~
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Terminology

;) P[ID{HOU

31,1 3172 e 31,,,

== ~ <.
azi a2 ... azn Y POS( hqy

A= . o .
q‘:‘l. . L

am71 am72 e amm

—

A is called an m x n matrix.

m = number of rows (equations)

n = number of columns (variable)

a;j is the number in the it row and j® column.
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Terminology

a1
ai

dm,1

A is called an m x n matrix.
m = number of rows (equations)

n = number of columns (variable)
a;j is the number in the it row and j® column.

ai2
a2

dm,2

If m= n, we call A a square matrix.

-

Patrick Meisner (KTH)
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Terminology 2

Given an augmented matrix

ai a2 ... al,n b1
S a1 a2 ... axn | b
(Alb) := i } )
am1 am2 --- amn | bm
we will say a vector
X1
X =
Xn

solves the augmented matrix if it is a solution to the corresponding

system of linear equations.
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We say the vector X = (x,y,z) = (—32, 7, 2) solves the augmented matrix
2 5 5|1
(Ab)=[3 9 6/3
1 4 5|7
since 33 9

n
w
X
+
©
<
+
o
N
Il
w
/T
‘00
@
~—
+
©
2O N N
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Main Motivation

As we stated before one of the main motivations behind this whole course
is to find all the solutions (if any) of a given system of linear equations.
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Main Motivation

As we stated before one of the main motivations behind this whole course

is to find all the solutions (if any) of a given system of linear equations.
We can now rephrase this in terms of matrices:
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Main Motivation

As we stated before one of the main motivations behind this whole course

is to find all the solutions (if any) of a given system of linear equations.
We can now rephrase this in terms of matrices:

Given an augmented matrix (A|b) determine all vectors X that solve it or
show that there are no solutions.
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Main Motivation

As we stated before one of the main motivations behind this whole course

is to find all the solutions (if any) of a given system of linear equations.
We can now rephrase this in terms of matrices:

Given an augmented matrix (A|b) determine all vectors X that solve it or
show that there are no solutions.

Find the solutions to the augmented matrix

-1 2 0] 2
2 1 2|21
2 -3 2|1
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A & () = AKX =3x = 6% >5

Exercise Solution

£ o-xedy =4 ~X Ry =Q

_’79\ PG (\7‘ 2= ol LA«% oOxX \~Sy £32=20

6 ax 2y we=l BWE 0X iy 132-C

- TT—— —
<y >d ot et oy > ADB Y0y ~Uz ~—¥
Syadz=ds T3 Ytra2 =5 3 Ytazg~ g
ti32=5 Sy v 3x=3S B oy -2 >0
~F —ups 3 ~x “zn ~g B < =2
- -y Y ~ 0
Y v¥z= S Y &92 S (=== R
0 4% 8L 2 - °©

S

_ - (3 Sdvey 44,

=8, Y75 zZ=o xf[?] “pm ente
WMo <.
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Equation Operations

We see that to solve the system of linear equations, we performed certain
operations to transform

—X+2y =2 x =38
2x+y+2z=21 = --- = y=5H
2x =3y +2z=1 z=0
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Equation Operations

We see that to solve the system of linear equations, we performed certain
operations to transform

—X+2y =2 x =38
2x+y+2z=21 = --- = y=5H
2x =3y +2z=1 z=0

We performed three different types of operations on the equations:
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Equation Operations

We see that to solve the system of linear equations, we performed certain
operations to transform

—X+2y =2 x =38
2x+y+2z=21 = --- = y=5H
2x =3y +2z=1 z=0

We performed three different types of operations on the equations:
@ Added a multiple of one equation to the other

Patrick Meisner (KTH) Lecture 3 16 / 26



Equation Operations

We see that to solve the system of linear equations, we performed certain
operations to transform

—X+2y =2 x =38
2x+y+2z=21 = --- = y=5H
2x =3y +2z=1 z=0

We performed three different types of operations on the equations:
@ Added a multiple of one equation to the other
@ Interchanged two equations
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Equation Operations

We see that to solve the system of linear equations, we performed certain
operations to transform

—X+2y =2 x =38
2x+y+2z=21 = --- = y=5H
2x =3y +2z=1 z=0

We performed three different types of operations on the equations:
@ Added a multiple of one equation to the other ——
@ Interchanged two equations =

© Multiplied an equation by a non-zero constant —
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Translate to Matrices

How do these equation operations translate to matrices:
@ Add a multiple of one equation to the other :

N E,
Ny - & Ew%% — [ Lmt
n E,

@ Interchange two equations

: g i;‘ — ¢
.—7 —_— —_—
Y\% D %, > é
y P,
(3] Mult|ply an equatlon by a non-zero constant
Qﬂ, E, . E{ [ Q( -
{ " \5 \ QVL
' o :
Q |
. E\
= -
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Row Operations

Definition

Row Operations
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Row Operations

Definition

Row Operations

© Add a multiple of one row to the other
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Row Operations

Definition

Row Operations
© Add a multiple of one row to the other

@ Interchange two rows
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Row Operations

Definition

Row Operations
© Add a multiple of one row to the other
@ |Interchange two rows

© Multiply a row by a non-zero constant
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Row Operations

Definition

Row Operations
© Add a multiple of one row to the other
@ |Interchange two rows

© Multiply a row by a non-zero constant
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Row Operations

Definition

Row Operations
© Add a multiple of one row to the other
@ |Interchange two rows

© Multiply a row by a non-zero constant

These are row operations.
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Row Operations

Definition

Row Operations
© Add a multiple of one row to the other
@ |Interchange two rows

© Multiply a row by a non-zero constant

These are row operations. We can NOT do the same the things to the
columns!
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Row Operations

Definition

Row Operations
© Add a multiple of one row to the other
@ |Interchange two rows

© Multiply a row by a non-zero constant

These are row operations. We can NOT do the same the things to the
columns!

Can NOT add a multiple of one column to the other!
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Row Operations

Definition

Row Operations
© Add a multiple of one row to the other
@ |Interchange two rows

© Multiply a row by a non-zero constant

These are row operations. We can NOT do the same the things to the
columns!

Can NOT add a multiple of one column to the other!
Can NOT interchange two columns!
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Row Operations

Definition

Row Operations

© Add a multiple of one row to the other
@ |Interchange two rows

© Multiply a row by a non-zero constant

These are row operations. We can NOT do the same the things to the
columns!

Can NOT add a multiple of one column to the other!
Can NOT interchange two columns!
Can NOT multiply a column by a non-zero constant!
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Exercise

Exercise

Use matrices and row operations to find the solution to the system of
linear equations

x+y+2z=9
2x+4y —3z=1 =7

3x+6y —5z=0
(&9 | ©ofa
( — o O b
c

L6 S \0o | Raw o |
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Extra Work Space
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Homogeneous Solutions

Definition

Given a matrix A, we say that X is a homogeneous solution of A if it
solves the augmented matrix (A|0).
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Homogeneous Solutions

Definition

Given a matrix A, we say that X is a homogeneous solution of A if it
solves the augmented matrix (A|0).

Theorem

Given a matrix A, the set of homogeneous solutions of A form a vector
space.
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Homogeneous Solutions

Definition

Given a matrix A, we say that X is a homogeneous solution of A if it
solves the augmented matrix (A|0).

Theorem

Given a matrix A, the set of homogeneous solutions of A form a vector
space. Equivalently, the following holds
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Homogeneous Solutions

Definition

Given a matrix A, we say that X is a homogeneous solution of A if it
solves the augmented matrix (A|0).

Theorem

Given a matrix A, the set of homogeneous solutions of A form a vector
space. Equivalently, the following holds

@ 0 is a homogeneous solution
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Homogeneous Solutions

Definition

Given a matrix A, we say that X is a homogeneous solution of A if it
solves the augmented matrix (A|0).

Theorem

Given a matrix A, the set of homogeneous solutions of A form a vector
space. Equivalently, the following holds

@ 0 is a homogeneous solution

@ If X is a homogeneous solution and ¢ € R then cX is also a
homogeneous solution
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Homogeneous Solutions

Definition

Given a matrix A, we say that X is a homogeneous solution of A if it
solves the augmented matrix (A|0).

Theorem

Given a matrix A, the set of homogeneous solutions of A form a vector
space. Equivalently, the following holds

Q@ 0isa homogeneous solution | o & C‘.w/(cu’ ke Yoivie

) Sol iy
@ If X is a homogeneous solution and c% RIEhen™ 2X is also a

homogeneous solution

@ If X and y are homogeneous solutions than so is X + y
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Non-homogeneous Solution

Theorem

Given an augmented matrix (A|b) and any vector Xy that solves the
augmented matrix, then all vectors that solve the matrix will be of the form

X + Xo
where X is a homogeneous solution of A.

> %, X ~-—-t Cr, -
— '

CucXy 77 T ¥ 6

T“ a sddion te @[f) . Wenk 4o shiw %f

—

{Yl Yo R wke XU g0 ey

x- Bovghy §o shw K= LK & o hemoany
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Extra Work Space
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0, 1, or oo Solution

-,

Any augmented matrix (A|b) either has

@ No solutions
@ Exactly 1 solution

© Infinitely many solutions
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Extra Work Space
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