SF 1684 Algebra and Geometry Lecture 2

Patrick Meisner

KTH Royal Institute of Technology

Topics for Today

- **1** Lines in \mathbb{R}^n
- 2 Planes in \mathbb{R}^3
- Oistance between point and line

Recall that a line in $\ensuremath{\mathbb{R}}^2$ can be given by the set of solution to the formula

$$L:Ax+By+C=0$$

for some values of A, B, C.

Recall that a line in $\ensuremath{\mathbb{R}}^2$ can be given by the set of solution to the formula

$$L: Ax + By + C = 0$$

$$Y = -A \times -C$$

$$Y = -A \times -C$$

$$Y = -A \times -C$$

for some values of A, B, C. As long as $B \neq 0$, we can rearrange this into the familiar form

$$L: y = mx + b$$

Recall that a line in \mathbb{R}^2 can be given by the set of solution to the formula

$$L: Ax + By + C = 0$$

for some values of A, B, C. As long as $B \neq 0$, we can rearrange this into the familiar form

$$L: y = mx + b$$

Now, if we were to write the points on the line as vectors then we would get

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ mx + b \end{bmatrix}$$

Recall that a line in \mathbb{R}^2 can be given by the set of solution to the formula

$$L: Ax + By + C = 0$$

for some values of A, B, C.As long as $B \neq 0$, we can rearrange this into the familiar form

$$L: y = mx + b$$

Now, if we were to write the points on the line as vectors then we would Scalar get

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ mx + b \end{bmatrix} = \begin{bmatrix} 1 \\ m \end{bmatrix} \overset{b}{\times} + \begin{bmatrix} 0 \\ b \end{bmatrix}$$
 Timear combination

Lecture 2 3/29

Recall that a line in \mathbb{R}^2 can be given by the set of solution to the formula

$$L: Ax + By + C = 0$$

for some values of A, B, C. As long as $B \neq 0$, we can rearrange this into the familiar form

$$L: y = mx + b$$

Now, if we were to write the points on the line as vectors then we would get

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ mx + b \end{bmatrix} = \begin{bmatrix} 1 \\ m \end{bmatrix} x + \begin{bmatrix} 0 \\ b \end{bmatrix}$$

That is, we can write every point as a *linear combination* of the two vectors $\begin{bmatrix} 1 \\ m \end{bmatrix}$ and $\begin{bmatrix} 0 \\ h \end{bmatrix}$.

The vectors $\begin{bmatrix} 1 \\ m \end{bmatrix}$ and $\begin{bmatrix} 0 \\ b \end{bmatrix}$ were not special. We could have started with any two vectors.

The vectors $\begin{bmatrix} 1 \\ m \end{bmatrix}$ and $\begin{bmatrix} 0 \\ b \end{bmatrix}$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

The vectors $\begin{bmatrix} 1 \\ m \end{bmatrix}$ and $\begin{bmatrix} 0 \\ b \end{bmatrix}$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 $\vec{x}_0 = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$

The vectors $\begin{bmatrix} 1 \\ m \end{bmatrix}$ and $\begin{bmatrix} 0 \\ b \end{bmatrix}$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 $\vec{x_0} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$

then I can write the equation of a line in parametric form by:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \vec{v}t + \vec{x}_0$$

The vectors $\begin{bmatrix} 1 \\ m \end{bmatrix}$ and $\begin{bmatrix} 0 \\ b \end{bmatrix}$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 $\vec{x}_0 = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$

then I can write the equation of a line in parametric form by:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \vec{v}t + \vec{x}_0 = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} t + \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

The vectors $\begin{bmatrix} 1 \\ m \end{bmatrix}$ and $\begin{bmatrix} 0 \\ b \end{bmatrix}$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 $\vec{x}_0 = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$

then I can write the equation of a line in parametric form by:

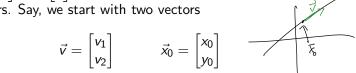
$$\begin{bmatrix} x \\ y \end{bmatrix} = \vec{v}t + \vec{x}_0 = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}t + \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} v_1t + x_0 \\ v_2t + y_0 \end{bmatrix}, t \in \mathbb{R}$$

Patrick Meisner (KTH) Lecture 2 4/29

The vectors $\begin{vmatrix} 1 \\ m \end{vmatrix}$ and $\begin{vmatrix} 0 \\ b \end{vmatrix}$ were not special. We could have started with any two vectors. Say, we start with two vectors

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$\vec{x_0} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$



then I can write the equation of a line in parametric form by:

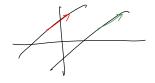
$$\begin{bmatrix} x \\ y \end{bmatrix} = \vec{v}t + \vec{x}_0 = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}t + \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} v_1t + x_0 \\ v_2t + y_0 \end{bmatrix}, t \in \mathbb{R}$$

 \vec{v} is called a **direction vector**, t is the **parameter** and \vec{x}_0 is any point on the line.

Parallel and Perpendicular Lines in \mathbb{R}^2

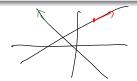
Definition

Two lines in \mathbb{R}^2 are parallel if and only if their direction vectors are parallel.



Definition

Two lines in \mathbb{R}^2 are orthogonal if and only if their direction vectors are orthogonal.



→ ũ·

Of course, there is nothing stopping us from taking vectors not in \mathbb{R}^2 . Indeed, for any vectors $\vec{v}, \vec{x_0} \in \mathbb{R}^n$, we can write the equation of a line in \mathbb{R}^n in parametric form by:

$$\vec{x} = \vec{v}t + \vec{x}_0 \iff \alpha \text{ point in } \mathbb{D}^N$$

$$\hat{L} \text{ a real number}$$

Of course, there is nothing stopping us from taking vectors not in \mathbb{R}^2 . Indeed, for any vectors $\vec{v}, \vec{x_0} \in \mathbb{R}^n$, we can write the equation of a line in \mathbb{R}^n in parametric form by:

$$\vec{x} = \vec{v}t + \vec{x}_0$$

Again, \vec{v} is a **direction vector**, t is the **parameter** and \vec{x}_0 is any point on the line.

Of course, there is nothing stopping us from taking vectors not in \mathbb{R}^2 . Indeed, for any vectors $\vec{v}, \vec{x_0} \in \mathbb{R}^n$, we can write the equation of a line in \mathbb{R}^n in parametric form by:

$$\vec{x} = \vec{v}t + \vec{x}_0$$

Again, \vec{v} is a **direction vector**, t is the **parameter** and \vec{x}_0 is any point on the line.

Example:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} t + \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} t+2 \\ 2t \\ -t+5 \end{bmatrix}$$

6/29

Non-unique Direction Vector

Note that, by it's name, the direction vector \vec{v} only depends on the it's direction. So we may shrink or stretch it as we please and still get the same line.

Non-unique Direction Vector

Note that, by it's name, the direction vector \vec{v} only depends on the it's direction. So we may shrink or stretch it as we please and still get the same line. Indeed the lines

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} t + \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

t=2: $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \lambda + \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix}$

and

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} t' + \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

contain the same points as for any value of t, we can just set t' = t/2.

Patrick Meisner (KTH) Lecture 2

Exercise

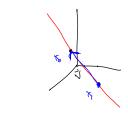
Exercise

Find the parametric equation for the line going through the points

$$\begin{pmatrix}
 3 \\
 0 \\
 -5
 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}}$$



$$L: \begin{bmatrix} x \\ y \\ z \end{bmatrix} : \begin{bmatrix} -2 \\ -2 \\ y \end{bmatrix} t + \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

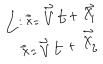
$$\vec{x} = \vec{x} - \vec{x} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} - \begin{bmatrix} 3 \\ 0 \\ -s \end{bmatrix}$$

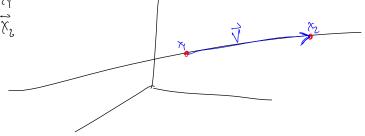
$$\vec{x} = \begin{bmatrix} -2 \\ -2 \\ 8 \end{bmatrix}$$

Calculating Direction Vector

In fact, any line passing through the points $\vec{x_1}$ and $\vec{x_2}$ will have a direction vector

$$\vec{v} = \vec{x}_2 - \vec{x}_1$$

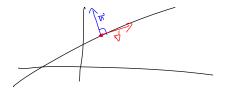




Normal Vector in \mathbb{R}^2

Definition

For any line L with a direction vector \vec{v} , we say a vector \vec{n} is **normal** to L if \vec{n} is orthogonal to \vec{v} .



Since a direction vector can always be given by $\vec{v}=\vec{x}_2-\vec{x}_1$ where \vec{x}_1,\vec{x}_2 are two point on the line, then we see that

$$\vec{v}_1 \cdot \vec{v} \Rightarrow \vec{n} \cdot (\vec{x}_1 - \vec{x}_2) = 0.$$

In fact, this is an equivalent way to define the equation of the line.

Definition

Given a point on a line in \mathbb{R}^2 , $\vec{x_0}$, and a normal vector \vec{n} , then the equation of the line can be given

Definition

Given a point on a line in \mathbb{R}^2 , $\vec{x_0}$, and a normal vector \vec{n} , then the equation of the line can be given

$$\vec{n}\cdot(\vec{x}-\vec{x}_0)=0$$

or

$$\vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = 0$$

Definition

Given a point on a line in \mathbb{R}^2 , $\vec{x_0}$, and a normal vector \vec{n} , then the equation of the line can be given

$$\vec{n}\cdot(\vec{x}-\vec{x}_0)=0$$

or

$$\vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = 0$$
 or $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{x}_0$

Definition

Given a point on a line in \mathbb{R}^2 , $\vec{x_0}$, and a normal vector \vec{n} , then the equation of the line can be given

$$\vec{n}\cdot(\vec{x}-\vec{x}_0)=0$$

or

$$\vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = 0$$
 or $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{x}_0$

If we write $\vec{n} = (n_1, n_2)$ and $\vec{x} = (x, y)$ then we see that $\vec{n} \cdot \vec{x} = n_1 x + n_2 y$.

Definition

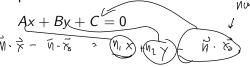
Given a point on a line in \mathbb{R}^2 , $\vec{x_0}$, and a normal vector \vec{n} , then the equation of the line can be given

$$\vec{n}\cdot(\vec{x}-\vec{x}_0)=0$$

or

$$\vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = 0$$
 or $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{x}_0$

If we write $\vec{n}=(n_1,n_2)$ and $\vec{x}=(x,y)$ then we see that $\vec{n}\cdot\vec{x}=n_1x+n_2y$. Hence, if we are given the equation of a line in the form



Definition

Given a point on a line in \mathbb{R}^2 , $\vec{x_0}$, and a normal vector \vec{n} , then the equation be given $\vec{n}\cdot(\vec{x}-\vec{x_0})=0$ $\vec{n}\cdot\vec{x}-\vec{n}\cdot\vec{x_0}=0 \qquad \text{or} \qquad \vec{n}\cdot\vec{x}=\vec{n}\cdot\vec{x_0}$ of the line can be given

$$\vec{n}\cdot(\vec{x}-\vec{x}_0)=0$$

or

$$\vec{x} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = 0$$

If we write $\vec{n} = (n_1, n_2)$ and $\vec{x} = (x, y)$ then we see that $\vec{n} \cdot \vec{x} = n_1 x + n_2 y$. Hence, if we are given the equation of a line in the form

$$Ax + By + C = 0$$
 \subset point normal formal

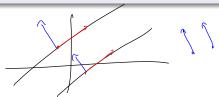
then we can read off a normal for the line as:

$$\vec{n} = \begin{bmatrix} A \\ B \end{bmatrix}$$

Parallel and Perpendicular Lines in \mathbb{R}^2 2

Theorem

Two lines in \mathbb{R}^2 are parallel if and only if their normals are parallel.



Theorem

Two lines in \mathbb{R}^2 are orthogonal if and only if their normals are orthogonal.

What happens if we try this construction in \mathbb{R}^3 ?

What happens if we try this construction in \mathbb{R}^3 ? Given an $\vec{n} = (A, B, C)$, and an $\vec{x}_0 = (x_0, y_0, z_0)$, what are the solutions to

$$\vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = 0$$
?

What happens if we try this construction in \mathbb{R}^3 ? Given an $\vec{n} = (A, B, C)$, and an $\vec{x}_0 = (x_0, y_0, z_0)$, what are the solutions to

$$\vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = 0?$$

Expanding out, we find

$$0 = \vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0$$

What happens if we try this construction in \mathbb{R}^3 ? Given an $\vec{n} = (A, B, C)$, and an $\vec{x}_0 = (x_0, y_0, z_0)$, what are the solutions to

$$\vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = 0$$
?

Expanding out, we find

$$0 = \vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = (A, B, C) \cdot (x, y, z) - (A, B, C) \cdot (x_0, y_0, z_0)$$

What happens if we try this construction in \mathbb{R}^3 ? Given an $\vec{n} = (A, B, C)$, and an $\vec{x}_0 = (x_0, y_0, z_0)$, what are the solutions to

$$\vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = 0?$$

Expanding out, we find

$$0 = \vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x_0} = (A, B, C) \cdot (x, y, z) - (A, B, C) \cdot (x_0, y_0, z_0)$$
$$= Ax + By + Cz + (-Ax_0 - By_0 - Cz_0)$$

What happens if we try this construction in \mathbb{R}^3 ? Given an $\vec{n} = (A, B, C)$, and an $\vec{x}_0 = (x_0, y_0, z_0)$, what are the solutions to

$$\vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = 0$$
?

Expanding out, we find

$$0 = \vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = (A, B, C) \cdot (x, y, z) - (A, B, C) \cdot (x_0, y_0, z_0)$$
$$= Ax + By + Cz + (-Ax_0 - By_0 - Cz_0)$$

That is, the point normal formula gives us an equation of the form

$$\mathbb{R}^{2}: Ax + By + Cz + D = 0$$

$$\mathbb{R}^{2}: Ax + \mathbb{C}y + \mathbb{C} = 0$$

Point-Normal Formula in \mathbb{R}^3

What happens if we try this construction in \mathbb{R}^3 ? Given an $\vec{n} = (A, B, C)$, and an $\vec{x}_0 = (x_0, y_0, z_0)$, what are the solutions to

$$\vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = 0?$$

Expanding out, we find

$$0 = \vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = (A, B, C) \cdot (x, y, z) - (A, B, C) \cdot (x_0, y_0, z_0)$$

$$= Ax + By + Cz + (-Ax_0 - By_0 - Cz_0)$$

That is, the point normal formula gives us an equation of the form

$$Ax + By + Cz + D = 0$$

What is the geometry of these solutions? Do they form a line?

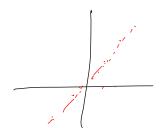
Patrick Meisner (KTH) Lecture 2 13/29

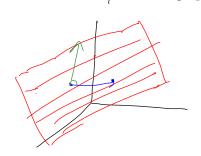
Plane in \mathbb{R}^3

The solutions to the equation

form a **plane** in
$$\mathbb{R}^3$$
. Moreover, the normal $\vec{n} = (A, B, C)$ is orthogonal to

form a **plane** in \mathbb{R}^3 . Moreover, the normal $\vec{n} = (A, B, C)$ is orthogonal to every vector in the plane.

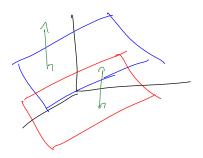


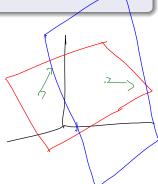


Parallel and Orthogonal Planes in \mathbb{R}^3

Definition

Two planes in \mathbb{R}^3 are **parallel** if and only if their normals are parallel. Two planes in \mathbb{R}^3 are **orthogonal** if and only if their normals are orthogonal.





Point-Normal Formula in \mathbb{R}^n

In general, given an $\vec{n}=(A_1,A_2,\ldots,A_n)$ and an $\vec{x}_0=(a_1,a_2,\ldots,a_n)$ the point-normal formula gives

$$0 = \vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = A_1 x_1 + A_2 x_2 + \dots A_n x_n + A_{n+1}$$

Point-Normal Formula in \mathbb{R}^n

In general, given an $\vec{n}=(A_1,A_2,\ldots,A_n)$ and an $\vec{x}_0=(a_1,a_2,\ldots,a_n)$ the point-normal formula gives

$$0 = \vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = A_1 x_1 + A_2 x_2 + \dots A_n x_n + A_{n+1}$$

The set of solutions of this equation form what is called an (n-1)-dimensional **hyperplane**.

Point-Normal Formula in \mathbb{R}^n

In general, given an $\vec{n}=(A_1,A_2,\ldots,A_n)$ and an $\vec{x}_0=(a_1,a_2,\ldots,a_n)$ the point-normal formula gives

$$0 = \vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{x}_0 = A_1 x_1 + A_2 x_2 + \dots A_n x_n + A_{n+1}$$

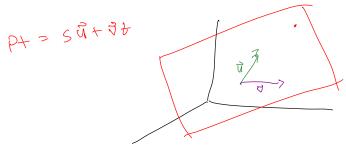
The set of solutions of this equation form what is called an (n-1)-dimensional **hyperplane**.

That is, in \mathbb{R}^n , the solution set "looks like" \mathbb{R}^{n-1} .

Parametric Equation of Plane in \mathbb{R}^3

Recall, every point in \mathbb{R}^2 can be written as a linear combination of the standard unit vectors $\vec{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Now, since a plane in \mathbb{R}^3 "looks like" \mathbb{R}^2 we can write it as a linear combination of two *non-parallel* vectors.



Definition of Parametric Equation of Plane in \mathbb{R}^3

Definition

Given any two non-parallel vectors $\vec{u}, \vec{v} \in \mathbb{R}^3$ and a point $\vec{x}_0 \in \mathbb{R}^3$, the parametric equation of a plane is

$$\vec{x} = \underline{\vec{u} \cdot s} + \underline{\vec{v} \cdot t} + \vec{x}_0, s, t \in \mathbb{R}$$

Definition of Parametric Equation of Plane in \mathbb{R}^3

Definition

Given any two non-parallel vectors $\vec{u}, \vec{v} \in \mathbb{R}^3$ and a point $\vec{x_0} \in \mathbb{R}^3$, the parametric equation of a plane is

$$\vec{x} = \vec{u} \cdot s + \vec{v} \cdot t + \vec{x}_0, s, t \in \mathbb{R}$$

 \vec{u} and \vec{v} are called **direction vectors**, s, t are called the **parameters** and \vec{x}_0 is a point on the plane.

Definition of Parametric Equation of Plane in \mathbb{R}^3

Definition

Given any two non-parallel vectors $\vec{u}, \vec{v} \in \mathbb{R}^3$ and a point $\vec{x}_0 \in \mathbb{R}^3$, the parametric equation of a plane is

$$\vec{x} = \vec{u} \cdot s + \vec{v} \cdot t + \vec{x}_0, s, t \in \mathbb{R}$$

 \vec{u} and \vec{v} are called **direction vectors**, s, t are called the **parameters** and \vec{x}_0 is a point on the plane.

Questions:

- Uniques of $\vec{u}, \vec{v}, \vec{x_0}$?
- Why must \vec{u}, \vec{v} be non-parallel?

Given

$$\vec{u} = \begin{bmatrix} 2\\4\\-2 \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} 3\\-5\\0 \end{bmatrix} \qquad \vec{x_0} = \begin{bmatrix} 0\\2\\3 \end{bmatrix}$$

the plane with direction vectors \vec{u} , \vec{v} and going through the point $\vec{x_0}$ is given by

Given

$$\vec{u} = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} 3 \\ -5 \\ 0 \end{bmatrix} \qquad \vec{x}_0 = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

the plane with direction vectors \vec{u} , \vec{v} and going through the point $\vec{x_0}$ is given by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \vec{u} \cdot s + \vec{v} \cdot t + \vec{x}_0$$

Given

$$\vec{u} = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} 3 \\ -5 \\ 0 \end{bmatrix} \qquad \vec{x}_0 = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

the plane with direction vectors \vec{u} , \vec{v} and going through the point \vec{x}_0 is given by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \vec{u} \cdot s + \vec{v} \cdot t + \vec{x}_0 = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} s + \begin{bmatrix} 3 \\ -5 \\ 0 \end{bmatrix} t + \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

Given

$$\vec{u} = \begin{bmatrix} 2\\4\\-2 \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} 3\\-5\\0 \end{bmatrix} \qquad \vec{x}_0 = \begin{bmatrix} 0\\2\\3 \end{bmatrix}$$

the plane with direction vectors \vec{u} , \vec{v} and going through the point \vec{x}_0 is given by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \vec{u} \cdot s + \vec{v} \cdot t + \vec{x}_0 = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} s + \begin{bmatrix} 3 \\ -5 \end{bmatrix} t + \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 2s + 3t \\ 4s - 5t + 2 \\ -2s + 3 \end{bmatrix}$$

Exercise

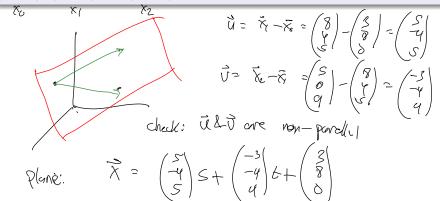
FACT: Any three point in \mathbb{R}^3 that don't all lie on the same line describe a unique plane

Exercise

FACT: Any three point in \mathbb{R}^{3} that don't all lie on the same line describe a unique plane

Exercise

Find the parametric equation of the plane going through the three points (3,8,0), (8,4,5) and (5,0,9)



Given a plane given by the point-normal equation Ax + By + Cz + D = 0. How does one find it's parametric equation?

Given a plane given by the point-normal equation Ax + By + Cz + D = 0. How does one find it's parametric equation?

• Find three points $\vec{x}_1, \vec{x}_2, \vec{x}_3$ that satisfy your point-normal equation.

Lecture 2 21 / 29

Given a plane given by the point-normal equation Ax + By + Cz + D = 0. How does one find it's parametric equation?

- **1** Find three points $\vec{x}_1, \vec{x}_2, \vec{x}_3$ that satisfy your point-normal equation.
- 2 Compute the vectors $\vec{u} = \vec{x}_2 \vec{x}_1$, $\vec{v} = \vec{x}_3 \vec{x}_1$.

Given a plane given by the point-normal equation Ax + By + Cz + D = 0. How does one find it's parametric equation?

- Find three points $\vec{x_1}$, $\vec{x_2}$, $\vec{x_3}$ that satisfy your point-normal equation.
- 2 Compute the vectors $\vec{u} = \vec{x}_2 \vec{x}_1$, $\vec{v} = \vec{x}_3 \vec{x}_1$.
- **1** If \vec{u} and \vec{v} are parallel, go back to step 1.

Patrick Meisner (KTH) Lecture 2 21/29

Given a plane given by the point-normal equation Ax + By + Cz + D = 0. How does one find it's parametric equation?

- Find three points $\vec{x}_1, \vec{x}_2, \vec{x}_3$ that satisfy your point-normal equation.
- 2 Compute the vectors $\vec{u} = \vec{x}_2 \vec{x}_1$, $\vec{v} = \vec{x}_3 \vec{x}_1$.
- **1** If \vec{u} and \vec{v} are parallel, go back to step 1.
- 4 If \vec{u} and \vec{v} are not parallel, then a parametric equation for your plane will be:

$$\vec{x} = \vec{u} \cdot s + \vec{v} \cdot t + \vec{x}_1$$

Given a plane with parametric equation

$$\vec{x} = \vec{u} \cdot s + \vec{v} \cdot t + \vec{x}_0, \quad s, t \in \mathbb{R}$$

How do you find the point-normal equation?

Given a plane with parametric equation

$$\vec{x} = \vec{u} \cdot s + \vec{v} \cdot t + \vec{x}_0, \quad s, t \in \mathbb{R}$$

How do you find the point-normal equation?

First step: find a normal to the plane. That is, find a vector that is orthogonal to every vector on the plane.

Given a plane with parametric equation

$$\vec{x} = \vec{u} \cdot s + \vec{v} \cdot t + \vec{x}_0, \quad s, t \in \mathbb{R}$$

How do you find the point-normal equation?

First step: find a normal to the plane. That is, find a vector that is orthogonal to every vector on the plane.

Every vector on the plane will be of the form

$$\vec{u} \cdot s + \vec{v} \cdot t, \quad s, t \in \mathbb{R}$$

So it is enough to find a vector that is orthogonal to both \vec{u} and \vec{v} . (Exercise: show both of these statements)

Definition

Given two vectors $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$. Define the **cross product** of \vec{u} and \vec{v} as

Definition

Given two vectors $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$. Define the **cross product** of \vec{u} and \vec{v} as

$$\vec{u} \times \vec{v}$$

Definition

Given two vectors $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$. Define the **cross product** of \vec{u} and \vec{v} as

$$\vec{u} \times \vec{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -(u_1 v_3 - u_3 v_1) \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

Definition

Given two vectors $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$. Define the **cross product** of \vec{u} and \vec{v} as

$$\vec{u} \times \vec{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -(u_1 v_3 - u_3 v_1) \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

Theorem

For any two vectors \vec{u} and \vec{v} , $\vec{u} \times \vec{v}$ is orthogonal to **both** \vec{u} and \vec{v} .

Definition

Given two vectors $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$. Define the **cross product** of \vec{u} and \vec{v} as

$$\vec{u} \times \vec{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -(u_1 v_3 - u_3 v_1) \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

Theorem

For any two vectors \vec{u} and \vec{v} , $\vec{u} \times \vec{v}$ is orthogonal to **both** \vec{u} and \vec{v} .

CAUTION!!!!!!!

Definition

Given two vectors $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$. Define the **cross product** of \vec{u} and \vec{v} as

$$\vec{u} \times \vec{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -(u_1 v_3 - u_3 v_1) \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

Theorem

For any two vectors \vec{u} and \vec{v} , $\vec{u} \times \vec{v}$ is orthogonal to **both** \vec{u} and \vec{v} .

CAUTION!!!!!!!

The cross product ONLY works in \mathbb{R}^3 . This method CANNOT be extended to \mathbb{R}^n for any n except n=7. But even then, the geometry behaves differently.

Given a plane in \mathbb{R}^3 of the form

$$\vec{x} = \vec{u} \cdot s + \vec{v} \cdot t + \vec{x}_0$$

Calculate a normal of the plane

$$\vec{n} = \vec{u} \times \vec{v}$$

Then the point-normal equation of your plane will be

$$\vec{n}\cdot(\vec{x}-\vec{x_0})=0$$

Exercise

Exercise

Find the point-normal equation of the plane going through the three point (3,8,0), (8,4,5) and (5,0,9)

$$\vec{U} = \vec{x}_1 - \vec{x}_0 = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 5$$

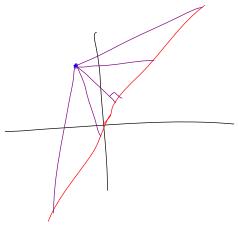
Check:
$$UAV$$
 are not parallel!!

 $\vec{n} = \vec{u} \times \vec{v} = \begin{bmatrix} u_{1}v_{2} - u_{3}v_{1} \\ -(u_{1}v_{3} - u_{3}v_{1}) \\ u_{1}v_{2} - u_{2}v_{1} \end{bmatrix} = \begin{bmatrix} -4\cdot4 - S-4 \\ -(S4-S-S) \\ S-4-(S4S) \end{bmatrix} = \begin{bmatrix} 4 \\ -2S \\ S \end{bmatrix}$

$$\vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{k} \cdot (4x - 35y - 312 - (4.3 - 35.8 - 32.0) = 0$$

Shortest Distance Between a Point and a Line in \mathbb{R}^2

Given a point (x_0, y_0) and a line that goes through the origin $L : \vec{x} = \vec{v}t$, what is the shortest distance between the point and the line?



Patrick Meisner (KTH) Lecture 2 26 / 29

Orthogonal Projection

Definition (Informal)

The **orthogonal projection** of a vector \vec{u} onto a vector \vec{v} is the "shadow" of \vec{u} on \vec{v} .

Definition (Formal)

The **orthogonal projection** of a vector \vec{u} onto a vector \vec{v} is

$$\underline{\operatorname{proj}_{\vec{V}}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{||\vec{v}||^2} \vec{v} \qquad \qquad \begin{aligned} & \tilde{v} \cdot \tilde{v} & \text{is a pendien} \\ & ||\hat{v}||^2 & \text{is a pendien} \end{aligned}$$

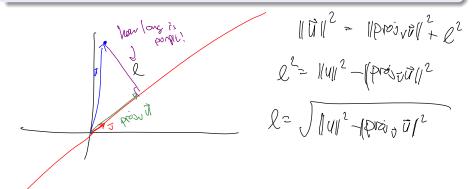
Exercise: Show that these definitions are same. Hint: $\operatorname{proj}_{\vec{v}}\vec{u}$ must be parallel to \vec{v} but $\vec{u} - \operatorname{proj}_{\vec{v}}\vec{u}$ must be orthogonal to \vec{v} .

Shortest Distance Between a Point and a Line in \mathbb{R}^2 2

Theorem

The shortest distance between a point $\vec{u} = (u_1, u_2)$ and the line passing through the origin $L: \vec{x} = \vec{v}t$ will be

$$\sqrt{||\vec{u}||^2-|| extit{proj}_{ec{v}}ec{u}||^2}$$



Patrick Meisner (KTH) Lecture 2 28 / 29

Shortest Distance Between a Point and a Line in \mathbb{R}^2 3

Theorem

The shortest distance between a point $\vec{u} = (u_1, u_2)$ and the line $L: \vec{x} = \vec{v}t + \vec{x_0}$ will be the same as the shortest distance between the point $\vec{w} = \vec{u} - \vec{x_0} = (u_1 - x_0, u_2 - y_0)$ and the line passing through the origin $L': \vec{x} = \vec{v}t$:

$$\sqrt{||\vec{w}||^2 - ||\text{proj}_{\vec{v}}\vec{w}||^2}$$

