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Course Outline

Structure of the course: FFÖFÖS

Seminar problems:

Posted on Mondays

Hand in answers following Monday during the seminar

Get solutions from TA there (no physical solutions will be given)

Bonus points:

1 random question on each seminar will be graded

The clarity and readability of your solution will also be graded

1 bonus point will be awarded for correct seminar assignment (total of
6)

Bonus points can be used only for the first question on the exam
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Topics for Today

Vectors

Vector Spaces: Axioms, Rn

Relations on Rn: Norm, dot product, orthogonality
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Vectors

Definition

A vector is a quantity that is described by a numerical value (length) and
a direction. We will typically denote them ~u or u.

An example of a vector would be velocity: a speed with a direction.

Another example would be an arrow on the cartesian plane. These can be

represented by the end point of the arrow (x , y) or

[
x
y

]
.
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Scalars

We usually talk about a vector space defined over a field. That is, in our
example above, what values x and y can be.

Some examples: Q (rationals), R (reals) or C (complex numbers).

Definition

The elements of the field over which our vector space is defined are called
scalars.
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Vector Space

A vector space V over a field F is a set of vectors that satisfy these 9
axioms

1 (Addition) ~u, ~v ∈ V then ~u + ~v ∈ V

2 (Commutativity) ~u + ~v = ~v + ~u

3 (Associativity) (~u + ~v) + ~w = ~u + (~v + ~w)

4 (Identity) There exists ~0 such that ~u +~0 = ~u

5 (Inverse) For every ~u ∈ V , there exists a ~v ∈ V such that ~u + ~v = ~0.
We denote such a ~v = −~u

6 (Scalar Multiplication) For every c ∈ F , and every ~u ∈ V , c · ~u ∈ V

7 (Identity) For every ~u ∈ V , 1 · ~u = ~u

8 (Associativity) For ever c , d ∈ F and every ~u ∈ V , c · (d · ~u) = (cd) · ~u
9 (Distributivity) For every c, d ∈ F and every ~u, ~v ∈ V ,

(c + d) · ~u = c · ~u + d · ~v and c · (~u + ~v) = c · ~u + c · ~v
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Vector in Rn

We denote the set of vectors

Rn =

~x =


x1
x2
...
xn

 , xi ∈ R

 .

To make this a vector space, we need to define how to add them and
multiply them by scalars:

~x + ~y =


x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn

 c · ~x = c ·


x1
x2
...
xn

 =


cx1
cx2

...
cxn


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Rn is a Vector Space

Theorem

Rn is a vector space.

Exercise

Check that all the axioms are satisfied when we set

~0 =


0
0
...
0

 − ~x =


−x1
−x2

...
−xn



Note that even though we did not define it as such we get that

−~x = (−1) · ~x
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Other Vector Spaces

In a similar manner we can define the vector space F n for any field F .

A more complicated vector space would be the set of all function
f : R→ R.

Exercise

Show that {f : R→ R} is a vector space. What is the 0-vector? What is
a vectors negative?

Unless otherwise stated, the vector space we work with will be Rn for
some n.
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some n.
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Examples

Vectors in R2 are arrows:

~u = (−1, 2) ~v = (3, 4)

Addition: placing one arrow at the
tip of the other

~u + ~v = (2, 6)

Negation: changing the direction of
the arrow

−~v = (−3,−4)

Scalar multiplication: strecthing or
shrinking the arrow:

2~u = (−2, 4) 0.5~u = (−0.5, 1)
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Parallel and Norm

Definition

We say that ~u and ~v are parallel if there is a scalar c such that ~u = c · ~v .

Definition

For ~x = (x1, x2, · · · , xn) ∈ Rn we define the norm of ~x as

‖~x‖ =
√
x21 + x22 + · · · x2n .

We can think of the norm of ~x as the ”length of the arrow”.
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Properties of the Norm

Exercise

If ~x ∈ Rn and c ∈ R, then

1 ‖~x‖ ≥ 0

2 ‖~x‖ = 0 if and only if ~x = 0

3 ‖c~x‖ = |c | · ‖~x‖
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Distance Between Two Vectors

The distance between two vectors is
the “distance between the tips of the
arrows”.

Thus we see that the distance
between the two vectors ~u and ~v will
be the length of ~v − ~u.

Hence, we may define

d(~u, ~v) := ‖~v − ~u‖

Exercise: Show that
d(~u, ~v) = d(~v , ~u).
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Unit Vectors

Definition

We say a vector ~x is a unit vector if ‖~x‖ = 1

For any vector ~x , the vector

~e~x =
1

‖~x‖
~x

is a unit vector. Moreover ~e~x is parallel to ~x .
By moving from ~x to ~e~x we say we have normalized ~x and say that ~e~x is
the normalization of ~x .
We denote

~e1 = (1, 0, 0, . . . , 0), ~e2 = (0, 1, 0, . . . , 0), . . . , ~en = (0, 0, . . . , 0, 1).

Then each ~ei is a unit vector and we call them the standard unit vectors.
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Exercises

Let ~u = (4, 4,−2), ~v = (2, 2, 1)

1 Are ~u and ~v parallel?

2 Find the distance between ~u and
~v .

3 Find a unit vector that is
parallel to ~v .
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Linear Combinations

We say ~u is a linear combination of the m vectors ~v1, ~v2, . . . , ~vm if there
exists m scalars a1, a2, . . . , am such that

~u = a1~v1 + a2~v2 + · · ·+ am~vm.

Every vector ~x ∈ Rn can be written as a linear combination of the
standard unit vectors ~e1, . . . , ~en. Indeed, if ~x = (x1, . . . , xn), then we see

~x = x1~e1 + x2~e2 + · · ·+ xn~en

where we recall that

~ei = (0, . . . , 0, 1, 0, . . . , 0)
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Dot Product in Rn

For

~x =


x1
x2
...
xn

 ~y =


y1
y2
...
yn


we define the dot product of the two vectors as

~x · ~y = x1y1 + x2y2 + · · ·+ xnyn.

NOTE: ~x · ~y is a scalar and NOT a vector!

Observe that if we let ~x = ~y , then we get that

‖~x‖ =
√
~x · ~x
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Properties of the Dot Product

If ~x , ~y , ~z ∈ Rn and c ∈ R, then

1 ~x · ~x ≥ 0

2 ~x · ~x = 0 if and only if ~x = ~0.

3 ~x · ~y = ~y · ~x
4 ~x · (~y + ~z) = ~x · ~y + ~x · ~z
5 (c~x) · ~y = ~x · (c~y) = c(~x · ~y)
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Theorem of the Dot Product

Theorem (Section 1.2)

For ~x , ~y ∈ Rn

1 ~x · ~y = ‖~x‖ ‖~y‖ cos(θ) where θ is the angle between the two vectors.

2 |~x · ~y | ≤ ‖~x‖ ‖~y‖ (Cauchy-Schwartz inequality)

3 ‖~x + ~y‖ ≤ ‖~x‖+ ‖~y‖ (Triangle Inequality)
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Proofs
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Orthogonal Vectors

From the first part of the theorem, we see that

~x · ~y = ‖~x‖ ‖~y‖ cos(θ)

and since ‖~x‖ and ‖~y‖ is never 0 (unless ~x or ~y themselves were 0), we
get that

~x · ~y = 0 if and only if cos(θ) = 0 if and only if θ = π/2 or 3π/2.

Definition

Two vectors ~x and ~y are said to be orthogonal if ~x · ~y = 0.

Patrick Meisner (KTH) Lecture 1 21 / 23



Pythagorean Theorem

Theorem

If ~x · ~y = 0 then ‖~x + ~y‖2 = ‖~x‖2 + ‖~y‖2.
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Exercise

1 Let

~w =

1
2
2

 ~z =

 2
2
−1


Find the angle between them.

2 Find a vector orthogonal to

~u =

[
1
2

]
.
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