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Course Outline

Structure of the course: FFOFOS

Seminar problems:

@ Posted on Mondays

@ Hand in answers following Monday during the seminar

@ Get solutions from TA there (no physical solutions will be given)
Bonus points:

@ 1 random question on each seminar will be graded

@ The clarity and readability of your solution will also be graded

@ 1 bonus point will be awarded for correct seminar assignment (total of

6)

@ Bonus points can be used only for the first question on the exam
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Topics for Today

@ Vectors
@ Vector Spaces: Axioms, R”

@ Relations on R": Norm, dot product, orthogonality
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Definition

A vector is a quantity that is described by a numerical value (length) and
a direction. We will typically denote them & or u.
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Definition
A vector is a quantity that is described by a numerical value (length) and
a direction. We will typically denote them & or u.

Slkmm  narh

An example of a vector would be velocity: a speed with a direction.
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Definition

A vector is a quantity that is described by a numerical value (length) and
a direction. We will typically denote them & or u.

Sty MNor th

An example of a vector would be velocity: a speed with a direction.

Another example would be an arrow on the cartesian plane. These can be

represented by the end point of the arrow (x, y) or [;] 3 ~(?<Ly)
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Scalars

We usually talk about a vector space defined over a field. That is, in our
example above, what values x and y can be.
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Scalars

We usually talk about a vector space defined over a field. That is, in our
example above, what values x and y can be.

Some examples: Q (rationals), R (reals) or C (complex numbers).
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Scalars

We usually talk about a vector space defined over a field. That is, in our
example above, what values x and y can be.

Some examples: Q (rationals), R (reals) or C (complex numbers).

Definition

The elements of the field over which our vector space is defined are called
scalars.
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A vector space V over a field F is a set of vectors that satisfy these 9
axioms
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A vector space V over a field F is a set of vectors that satisfy these 9
axioms

Q@ (Addition) u, vV € V then
@ (Commutativity) o+ v =V
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A vector space V over a field F is a set of vectors that satisfy these 9
axioms
© (Addition) i,V € V then i
@ (Commutativity) o+ v =V
@ (Associativity) (0'+ V) +w = o+ (V+ w)

vev addi vron exreks
0‘4«(’ M,,,)({S
Stise.
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A vector space V over a field F is a set of vectors that satisfy these 9
axioms

© (Addition) 7,V € V then ’+ vV eV
(Commutativity) 7+ vV =v+ i

@ (Associativity) (Z+ V) +w = i+ (V+ w)
(Identity) There exists 0 such that 7+ 0 = i
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A vector space V over a field F is a set of vectors that satisfy these 9

axioms
© (Addition) 7,V € V then ’+ vV eV
@ (Commutativity) 4+ vV =vV+ o
@ (Associativity) (0'+ V) +w = o+ (V+ w)
@ (ldentity) There exists 0 such that 740 = &
O (Inverse) For every if € V, there exists a vV € V such that i+ v = 0.
We denote such a v = —if
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A yector space V over a field ,"/-_ is a set of vectors that satisfy these 9
axioms Q.

© (Addition) 7,V € V then ’+ vV eV

@ (Commutativity) 4+ vV =vV+ o

@ (Associativity) (0'+ V) +w = o+ (V+ w)

@ (ldentity) There exists 0 such that 740 = &

O (Inverse) For every if € V, there exists a vV € V such that i+ v = 0.
We denote such a v = —u col

@ (Scalar Multiplication) For every c € F, and every 1€ V, c- i€ V
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A vector space V over a field F is a set of vectors that satisfy these 9
axioms

© (Addition) 7,V € V then ’+ vV eV

@ (Commutativity) 4+ vV =vV+ o

@ (Associativity) (0'+ V) +w = o+ (V+ w)
@ (ldentity) There exists 0 such that 740 = &

O (Inverse) For every if € V, there exists a vV € V such that i+ v = 0.
We denote such a v = —if

@ (Scalar Multiplication) For every c € F, and every 1€ V, c- i€ V
@ (ldentity) Forevery te V, 1-d=1d
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A vector space V over a field F is a set of vectors that satisfy these 9

axioms N . * we  com ”“””'P’%

: Eéddltlon) unvevV the_u veV by our buse Srerd (42>
ommutativity) i+ vV=vV+J o oy o

@ (Associativity) (0'+ V) +w = o+ (V+ w) beice,

@ (ldentity) There exists 0 such that 740 = &

O (Inverse) For every if € V, there exists a vV € V such that i+ v = 0.
We denote such a v = —if

@ (Scalar Multiplication) For every c € F, and every 1€ V, c- i€ V
e (Identity) Forevery e V, 1-d=1d
@ (Associativity) For ever c,d € F and every € V, c-(d-d) = (cd) -
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A vector space V over a field F is a set of vectors that satisfy these 9

axioms b Nedur odd o
© (Addition) 7,V € V then ’+ vV eV 0 wlhiy,

ASR

@ (Commutativity) &'+ vV = vV + & c-a(,%

Melle s
@ (Associativity) (F+ V) +w = i+ (V+ w) e

@ (ldentity) There exists 0 such that 740 = &

O (Inverse) For every if € V, there exists a vV € V such that i+ v = 0.
We denote such a v = —if

@ (Scalar Multiplication) For every c € F, and every 1€ V, c- i€ V
@ (ldentity) Forevery te V, 1-d=1d
@ (Associativity) For ever c,d € F and every € V, c-(d-d) = (cd) -
% @ (Distributivity) For every c,d € F and every i,V € V,
(c+d)-bd=c-d+d-Vandc-(G+V)=c-d+c-V
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We denote the set of vectors
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We denote the set of vectors

To make this a vector space, we need to define how to add them and
multiply them by scalars:
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We denote the set of vectors

To make this a vector space, we need to define how to add them and
multiply them by scalars:

X1 Y1
I X2 Y2
X+y= + 1.

Xn Yn
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We denote the set of vectors

To make this a vector space, we need to define how to add them and
multiply them by scalars:

X1+xn
X2+ Y2

Xn +{n
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We denote the set of vectors

To make this a vector space, we need to define how to add them and
multiply them by scalars:

X1 n X1+xn X1
L. X2 2 X2+ y2 . X2
X+y= + .| = . c-X=c-

Xn Yn Xn + Yn Xn
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We denote the set of vectors

To make this a vector space, we need to define how to add them and
multiply them by scalars:

X1 n X1+xn X1 €x1
. X2 y2 X2+ y2 . X2 cx2
X+y= .| = : c-X=c- =

Xn Yn Xn + Yn Xn CXn
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R"™ is a Vector Space
R” js a vector space. I
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R"™ is a Vector Space
R” js a vector space.

Exercise

Check that all the axioms are satisfied when we set

0 —X1
. 0 —X2
0 —Xp
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R"™ is a Vector Space
R” js a vector space.

Exercise

Check that all the axioms are satisfied when we set

0 —X1
. 0 —X2
0 —Xp

Note that even though we did not define it as such we get that

—R=(-1)-%
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Other Vector Spaces

In a similar manner we can define the vector space F" for any field F.
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Other Vector Spaces

In a similar manner we can define the vector space F" for any field F.

A more complicated vector space would be the set of all function
f:R—R.
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Other Vector Spaces

In a similar manner we can define the vector space F" for any field F.

A more complicated vector space would be the set of all function
f:R—R.

Show that {f : R — R} is a vector space. What is the 0-vector? What is
a vectors negative? Wit t> o Soder) Wit Sobor ol liphccdion
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Other Vector Spaces

In a similar manner we can define the vector space F" for any field F.

A more complicated vector space would be the set of all function
f:R—R.

Show that {f : R — R} is a vector space. What is the 0-vector? What is
a vectors negative?

Unless otherwise stated, the vector space we work with will be R” for
some n.
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Examples

Vectors in R? are arrows:
i=(-1,2) v=(3,4)

Addition: placing one arrow at the
tip of the other

i+ 7 =(2,6)

Negation: changing the direction of
the arrow

V= (-3,-4)

Scalar multiplication: strecthing or
shrinking the arrow:

20=(-2,4) 05F=(-05,1)

Patrick Meisner (KTH) Lecture 1 10/23



Parallel and Norm

Definition

We say that & and V are parallel if there is a scalar ¢ such that &' = c - V.

Definition

For X = (x1,x2,- -+ ,x,) € R" we define the norm of X as

IR = /¢ +3+ 2.

We can think of the norm of X as the "length of the arrow”.

g
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Properties of the Norm

If X € R" and ¢ € R, then

Q |x][=0

Q@ |%| =0ifandonly if x=0

Q |[cx|| = [c] - [I¥]]
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Distance Between Two Vectors

The distance between two vectors is R
the “distance between the tips of the -7 W=
W)

arrows” . JW;

Thus we see that the distance
between the two vectors & and Vv will
be the length of v — iI.

<)

Hence, we may define

<L
SL

d(d,v) = [|v—d

Exercise: Show that
d(a,v) =d(v, ).
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Unit Vectors

Definition

We say a vector X is a unit vector if ||x]| =1

=
For any vector X, the vector RJ/
N L~ e % = g 1

ey = TS
T i

is a unit vector. Moreover € is parallel to X.
By moving from X to € we say we have normalized x and say that € is
the normalization of X.

1
We denote AR "

s 6 !
é =(1,0,0,...,0),& =(0,1,0,...,0),...,€, = (0,0,...,0,1).
Then each €& is a unit vector and we call them the standard unit vectors.
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Exercises

\3 BT gl el toa-

(piy= 3= S G o
Need e~ | ey, -
Let & = (4,4,-2), V= (2,2,1) No o sl o

7and v ?
© Are 7 and V parallel? D d(g ): KU v( (-2 Lg}y

@ Find the distance between 7 and

© Find a unit vector that is &7 [[V[(: *i Ry~

parallel to V.

— R = . ; 3‘ \ .

eﬁ’é[ v (L/ 203 > w unt vedur wlye
> Pectle | L T/J

Patrick Meisner (KTH) Lecture 1 15/23



Linear Combinations

We say i/ is a linear combination of the m vectors Vi, V5, ..., Vy, if there
exists m scalars aj, ap, ..., am such that

U= aivi+ ax¥o + -+ amVm.
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Linear Combinations

We say i/ is a linear combination of the m vectors Vi, V5, ..., Vy, if there
exists m scalars aj, ap, ..., am such that

U= aivi+ ax¥o + -+ amVm.
Every vector X € R" can be written as a linear combination of the
standard unit vectors €}, ..., €,. Indeed, if X = (x1,...,x,), then we see
X = X161+ X& + - + Xn€p
where we recall that it pasition
)

<

& =(0,...,0,1,0,...,0)
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Dot Product in R”

For
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Dot Product in R”

For
X1 n
. X2 R Y2
Xn Yn

we define the dot product of the two vectors as

)_('.yley1+X2y2+...+Xnyn.

NOTE: X -y is a scalar and NOT a vector!
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Dot Product in R”

For
X1 n
. X2 R Y2
Xn Yn

we define the dot product of the two vectors as

)_('.yley1+X2y2+...+Xnyn.

NOTE: X -y is a scalar and NOT a vector!

Observe that if we let X = y/, then we get that

%] = VX % = J e et
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Properties of the Dot Product

XC xer‘a7¢f

I MH‘AG
R" and c € R, then Q(\O >

0
X-%x=0if and only if ¥ = 0.
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Theorem of the Dot Product

Theorem (Section 1.2)

For X,y € R”
O x-y = || ||yl cos(@) where 0 is the angle between the two vectors.
Q [X-y| < |[X|||I¥|l (Cauchy-Schwartz inequality)
© %+ 71| < %]l + 7] (Triangle Inequality)

sl 2 2
19 ~%1= 130 gy — QIR con 0@1
T-RE, NS 3y
[ ~( C‘ﬁ@ €+ ~yy-97-z, Fx

Ay > AR [ s

X[ .
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Orthogonal Vectors

;\JMJ / N K
@ T _{( J

From the first part of the theorem, we see that

“
Xy = [IX] Iyl cos(6) V3
and since [|X|| and ||y is neverg (unless X or y themselves were“m, we
Ky
get that O, the wmVer B, e e

X -y =0if and only if cos(¢) = 0 if and only if 6 = /2 or 37 /2.

Definition

Two vectors X and y are said to be orthogonal if X -y = 0.
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Pythagorean Theorem

If%-7 =0 then ||X+ 7| = |IX]|* + |7

(%917 Rep- crey)

2 - X‘X}{" Y, g -
S 4 e THY ey Y
= [

i d M +0 v+ o « I/Y//a

~ e 1y




Exercise

K
2) F [] ST
P erel se ) v)°
O Let —_— a?
1 2 AR
WH 2{2] e U E?]‘O
2 -1

Find the angle between them.

@ Find a vector orthogonal to

-

let K= O~ L\Zz: -1
e Z_Z(’] oty 4o 7
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