SF 1684 Algebra and Geometry Lecture 1

Patrick Meisner

KTH Royal Institute of Technology

Course Outline

Structure of the course: FFÖFÖS

Course Outline

Structure of the course: FFÖFÖS

Seminar problems:

- Posted on Mondays
- Hand in answers following Monday during the seminar
- Get solutions from TA there (no physical solutions will be given)

Course Outline

Structure of the course: FFÖFÖS

Seminar problems:

- Posted on Mondays
- Hand in answers following Monday during the seminar
- Get solutions from TA there (no physical solutions will be given)

Bonus points:

- 1 random question on each seminar will be graded
- The clarity and readability of your solution will also be graded
- 1 bonus point will be awarded for correct seminar assignment (total of
 6)
- Bonus points can be used only for the first question on the exam

Patrick Meisner (KTH) Lecture 1 2/23

Topics for Today

- Vectors
- Vector Spaces: Axioms, \mathbb{R}^n
- Relations on \mathbb{R}^n : Norm, dot product, orthogonality

Vectors

Definition

A **vector** is a quantity that is described by a numerical value (length) and a direction. We will typically denote them \vec{u} or \mathbf{u} .

Vectors

Definition

A **vector** is a quantity that is described by a numerical value (length) and a direction. We will typically denote them \vec{u} or \mathbf{u} .

5 km/h north

An example of a vector would be velocity: a speed with a direction.

Vectors

Definition

A **vector** is a quantity that is described by a numerical value (length) and a direction. We will typically denote them \vec{u} or \mathbf{u} .

Swy/h Nor +h An example of a vector would be velocity: a speed with a direction.

Another example would be an arrow on the cartesian plane. These can be represented by the end point of the arrow (x, y) or $\begin{bmatrix} x \\ y \end{bmatrix}$.

take valves in our field

We usually talk about a vector space defined over a **field**. That is, in our example above, what values x and y can be.

We usually talk about a vector space defined over a **field**. That is, in our example above, what values x and y can be.

Some examples: \mathbb{Q} (rationals),

We usually talk about a vector space defined over a **field**. That is, in our example above, what values x and y can be.

Some examples: \mathbb{Q} (rationals), \mathbb{R} (reals)

We usually talk about a vector space defined over a **field**. That is, in our example above, what values x and y can be.

Some examples: \mathbb{Q} (rationals), \mathbb{R} (reals) or \mathbb{C} (complex numbers).

Patrick Meisner (KTH) Lecture 1 5/23

We usually talk about a vector space defined over a **field**. That is, in our example above, what values x and y can be.

Some examples: \mathbb{Q} (rationals), \mathbb{R} (reals) or \mathbb{C} (complex numbers).

Definition

The elements of the field over which our vector space is defined are called scalars.

A **vector space** V over a field F is a set of vectors that satisfy these 9 axioms

- (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u} + \vec{v} \in V$
- ② (Commutativity) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$

- **1** (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u} + \vec{v} \in V$
- ② (Commutativity) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ ③ (Associativity) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

- **1** (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u} + \vec{v} \in V$
- ② (Commutativity) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- **3** (Associativity) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- **(**Identity) There exists $\vec{0}$ such that $\vec{u} + \vec{0} = \vec{u}$

- **1** (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u} + \vec{v} \in V$
- ② (Commutativity) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- **3** (Associativity) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- **(**Identity) There exists $\vec{0}$ such that $\vec{u} + \vec{0} = \vec{u}$
- **1** (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u} + \vec{v} = \vec{0}$. We denote such a $\vec{v} = -\vec{u}$

- (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u} + \vec{v} \in V$
- ② (Commutativity) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- **3** (Associativity) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- **(**Identity) There exists $\vec{0}$ such that $\vec{u} + \vec{0} = \vec{u}$
- (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u} + \vec{v} = \vec{0}$. We denote such a $\vec{v} = -\vec{u}$
- **(**Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V$, $c \cdot \vec{u} \in V$

- **1** (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u} + \vec{v} \in V$
- ② (Commutativity) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- **3** (Associativity) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- 4 (Identity) There exists $\vec{0}$ such that $\vec{u} + \vec{0} = \vec{u}$
- **1** (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u} + \vec{v} = \vec{0}$. We denote such a $\vec{v} = -\vec{u}$
- **(**Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V$, $c \cdot \vec{u} \in V$
- **(Identity)** For every $\vec{u} \in V$, $1 \cdot \vec{u} = \vec{u}$

A vector space V over a field F is a set of vectors that satisfy these 9 axioms

* We can moltiply

- **1** (Addition) $\vec{u}, \vec{v} \in V$ then $\vec{u} + \vec{v} \in V$
- ② (Commutativity) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- **3** (Associativity) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- (Identity) There exists $\vec{0}$ such that $\vec{u} + \vec{0} = \vec{u}$
- **1** (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u} + \vec{v} = \vec{0}$.
- We denote such a $\vec{v} = -\vec{u}$
- **(**Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V$, $c \cdot \vec{u} \in V$
- (Identity) For every $ec{u} \in V$, $1 \cdot ec{u} = ec{u}$
- (Associativity) For ever $c,d\in F$ and every $\vec{u}\in V$, $c\cdot (d\cdot \vec{u})=(cd)\cdot \vec{u}$

Patrick Meisner (KTH)

by our base field (R)

A **vector space** V over a field F is a set of vectors that satisfy these 9 axioms

- **(** $Addition) \vec{u}, \vec{v} \in V \text{ then } \vec{u} + \vec{v} \in V$
- $(Commutativity) \vec{u} + \vec{v} = \vec{v} + \vec{u}$
- $(Associativity) (\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- (Identity) There exists $\vec{0}$ such that $\vec{u} + \vec{0} = \vec{u}$
- **1** (Inverse) For every $\vec{u} \in V$, there exists a $\vec{v} \in V$ such that $\vec{u} + \vec{v} = \vec{0}$. We denote such a $\vec{v} = -\vec{u}$

and scalar undtiplication

Mokes sense.

- **(**Scalar Multiplication) For every $c \in F$, and every $\vec{u} \in V$, $c \cdot \vec{u} \in V$
- **(Identity)** For every $\vec{u} \in V$, $1 \cdot \vec{u} = \vec{u}$
- **1** (Associativity) For ever $c, d \in F$ and every $\vec{u} \in V$, $c \cdot (d \cdot \vec{u}) = (cd) \cdot \vec{u}$
- * ① (Distributivity) For every $c, d \in F$ and every $\vec{u}, \vec{v} \in V$, $(c+d) \cdot \vec{u} = c \cdot \vec{u} + d \cdot \vec{v}$ and $c \cdot (\vec{u} + \vec{v}) = c \cdot \vec{u} + c \cdot \vec{v}$

Patrick Meisner (KTH) Lecture 1 6/23

We denote the set of vectors

vectors
$$\mathbb{R}^{n} = \left\{ \vec{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}, x_{i} \in \mathbb{R} \right\} \begin{array}{l} \text{Set of ordered} \\ \text{fulles of length} \\ \text{in in } \mathbb{R} \\ \text{on the cartesian} \\ \text{plane} \\ \text{these points in} \\ \text{2d-space} \end{array}$$

We denote the set of vectors

$$\mathbb{R}^n = \left\{ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, x_i \in \mathbb{R} \right\}.$$

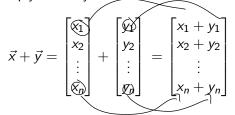
We denote the set of vectors

$$\mathbb{R}^n = \left\{ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, x_i \in \mathbb{R} \right\}.$$

$$\vec{x} + \vec{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

We denote the set of vectors

$$\mathbb{R}^n = \left\{ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, x_i \in \mathbb{R} \right\}.$$



We denote the set of vectors

$$\mathbb{R}^n = \left\{ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, x_i \in \mathbb{R} \right\}.$$

To make this a vector space, we need to define how to add them and multiply them by scalars:

$$\vec{x} + \vec{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix} \qquad c \cdot \vec{x} = c \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Patrick Meisner (KTH) Lecture 1 7 / 23

We denote the set of vectors

$$\mathbb{R}^n = \left\{ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, x_i \in \mathbb{R} \right\}.$$

$$\vec{x} + \vec{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix} \qquad c \cdot \vec{x} = c \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix}$$

\mathbb{R}^n is a Vector Space

Theorem

 \mathbb{R}^n is a vector space.

Theorem

 \mathbb{R}^n is a vector space.

Exercise

Check that all the axioms are satisfied when we set

$$\vec{\mathsf{O}} = egin{bmatrix} 0 \ 0 \ dots \ 0 \end{bmatrix}$$

$$\vec{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad -\vec{x} = \begin{bmatrix} -x_1 \\ -x_2 \\ \vdots \\ -x_n \end{bmatrix}$$

\mathbb{R}^n is a Vector Space

Theorem

 \mathbb{R}^n is a vector space.

Exercise

Check that all the axioms are satisfied when we set

$$\vec{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad -\vec{x} = \begin{bmatrix} -x_1 \\ -x_2 \\ \vdots \\ -x_n \end{bmatrix}$$

Note that even though we did not define it as such we get that

$$-\vec{x} = (-1) \cdot \vec{x}$$

8/23

In a similar manner we can define the vector space F^n for any field F.

In a similar manner we can define the vector space F^n for any field F.

A more complicated vector space would be the set of all function $f : \mathbb{R} \to \mathbb{R}$.

In a similar manner we can define the vector space F^n for any field F.

A more complicated vector space would be the set of all function $f: \mathbb{R} \to \mathbb{R}$.

Exercise

Show that $\{f: \mathbb{R} \to \mathbb{R}\}$ is a vector space. What is the 0-vector? What is a vectors negative? What is scalar? What is scalar multiplication?

In a similar manner we can define the vector space F^n for any field F.

A more complicated vector space would be the set of all function $f: \mathbb{R} \to \mathbb{R}$.

Exercise

Show that $\{f: \mathbb{R} \to \mathbb{R}\}$ is a vector space. What is the 0-vector? What is a vectors negative?

Unless otherwise stated, the vector space we work with will be \mathbb{R}^n for some n.

Patrick Meisner (KTH) Lecture 1 9/23

Examples

Vectors in \mathbb{R}^2 are arrows:

$$\vec{u} = (-1, 2)$$
 $\vec{v} = (3, 4)$

Addition: placing one arrow at the tip of the other

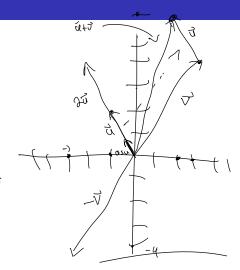
$$\vec{u} + \vec{v} = (2,6)$$

Negation: changing the direction of the arrow

$$-\vec{v} = (-3, -4)$$

Scalar multiplication: strecthing or shrinking the arrow:

$$2\vec{u} = (-2, 4)$$
 $0.5\vec{u} = (-0.5, 1)$



Parallel and Norm

Definition

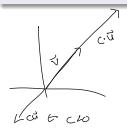
We say that \vec{u} and \vec{v} are **parallel** if there is a scalar c such that $\vec{u} = c \cdot \vec{v}$.

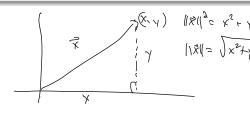
Definition

For $\vec{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ we define the **norm** of \vec{x} as

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}.$$

We can think of the norm of \vec{x} as the "length of the arrow".





Properties of the Norm

Exercise

If $\vec{x} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, then

- **1** $\|\vec{x}\| \ge 0$
- $\|\vec{x}\| = 0$ if and only if $\vec{x} = \vec{0}$

1)
$$\|\vec{x}\| - \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
 20 P(causa) is always positive (if it exists)

The square rect durays makes seen as $x_1^2 + x_1^2 + \dots + x_n^2 \geq 0$

2) $\|\vec{x}\| = 0$ (con $x_1^2 + \dots + x_n^2 = 0$ (con $x_1^2 + \dots + x_n^2 = 0$)

3) $\|\vec{x}\| = 0$ (con $x_1^2 + \dots + x_n^2 = 0$) $\|\vec{x}\| = 1$ (con $x_1^2 + \dots + x_n^2 = 0$)

3) $\|\vec{x}\| = 1$ (con $x_1^2 + \dots + x_n^2 = 0$) $\|\vec{x}\| = 1$ (con $x_1^2 + \dots + x_n^2 = 0$) $\|\vec{x}\| = 1$ (con $x_1^2 + \dots + x_n^2 = 0$)

Distance Between Two Vectors

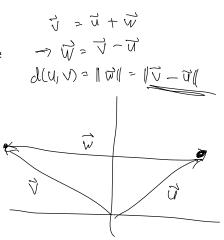
The distance between two vectors is the "distance between the tips of the arrows".

Thus we see that the distance between the two vectors \vec{u} and \vec{v} will be the length of $\vec{v} - \vec{u}$.

Hence, we may define

$$d(\vec{u}, \vec{v}) := \|\vec{v} - \vec{u}\|$$

Exercise: Show that $d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$.



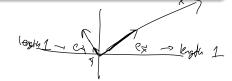
Unit Vectors

Definition

We say a vector \vec{x} is a **unit vector** if $||\vec{x}|| = 1$

For any vector \vec{x} , the vector

$$\vec{e}_{\vec{x}} = \frac{1}{\|\vec{x}\|} \vec{x}$$



is a unit vector. Moreover $\vec{e}_{\vec{x}}$ is parallel to \vec{x} .

By moving from \vec{x} to $\vec{e_x}$ we say we have **normalized** \vec{x} and say that $\vec{e_x}$ is the **normalization** of \vec{x} .

We denote
$$\vec{e_1} = (1,0,0,\dots,0), \vec{e_2} = (0,1,0,\dots,0),\dots, \vec{e_n} = (0,0,\dots,0,1).$$

Then each $\vec{e_i}$ is a unit vector and we call them the **standard unit vectors**.

Exercises

No seek al

Let
$$\vec{u} = (4, 4, -2), \ \vec{v} = (2, 2, 1)$$

• Are
$$\vec{u}$$
 and \vec{v} parallel?

- 2 Find the distance between \vec{u} and
- \vec{v} .

• Are
$$\vec{u}$$
 and \vec{v} parallel?
• Find the distance between \vec{u} and \vec{v} .
• Find a unit vector that is \vec{v} .

S Find a unit vector that is 3) || V|| = √v + v + √v = √√v + √v = √√v + √√v = √√ parallel to \vec{v} .

$$\tilde{c}_{\tilde{v}} = \frac{1}{3} \tilde{v} = \left(\frac{2}{3}, \frac{3}{3}, \frac{1}{3}\right)$$
 is a unit verter which

is parallel to it

Linear Combinations

We say \vec{u} is a linear combination of the m vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ if there exists m scalars a_1, a_2, \dots, a_m such that

$$\vec{u}=a_1\vec{v}_1+a_2\vec{v}_2+\cdots+a_m\vec{v}_m.$$

Linear Combinations

We say \vec{u} is a linear combination of the m vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ if there exists m scalars a_1, a_2, \dots, a_m such that

$$\vec{u} = a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_m\vec{v}_m.$$

Every vector $\vec{x} \in \mathbb{R}^n$ can be written as a linear combination of the standard unit vectors $\vec{e_1}, \dots, \vec{e_n}$. Indeed, if $\vec{x} = (x_1, \dots, x_n)$, then we see

$$\vec{x} = x_1\vec{e}_1 + x_2\vec{e}_2 + \cdots + x_n\vec{e}_n$$

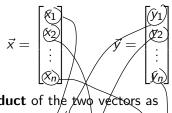
where we recall that

$$\vec{e_i} = (0, \dots, 0, 1, 0, \dots, 0)$$

16/23

Dot Product in \mathbb{R}^n

For



we define the **dot product** of the two vectors as

$$\vec{x}\cdot\vec{y}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

Dot Product in \mathbb{R}^n

For

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

we define the dot product of the two vectors as

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$$

NOTE: $\vec{x} \cdot \vec{y}$ is a scalar and *NOT* a vector!

Dot Product in \mathbb{R}^n

For

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

we define the dot product of the two vectors as

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$$

NOTE: $\vec{x} \cdot \vec{y}$ is a scalar and *NOT* a vector!

Observe that if we let $\vec{x} = \vec{y}$, then we get that

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}} = \int \vec{x}^2 + \vec{x} \cdot \vec{x} + \cdots + \vec{x} \cdot \vec{x}$$

Properties of the Dot Product

If $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, then

- $\vec{x} \cdot \vec{x} = 0$ if and only if $\vec{x} = \vec{0}$.
- $\vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = \vec{\mathbf{y}} \cdot \vec{\mathbf{x}}$
- $\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$
- $(c\vec{x}) \cdot \vec{y} = \vec{x} \cdot (c\vec{y}) = c(\vec{x} \cdot \vec{y})$
- is essectially the as distributing multiplication into addition in regular

Same

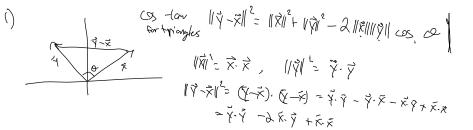
Theorem of the Dot Product

Theorem (Section 1.2)

For $\vec{x}, \vec{y} \in \mathbb{R}^n$

1
$$\vec{x} \cdot \vec{y} = ||\vec{x}|| \, ||\vec{y}|| \cos(\theta)$$
 where θ is the angle between the two vectors.

- $|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| \, ||\vec{y}|| \,$ (Cauchy-Schwartz inequality)



Proofs

2) Show
$$|\hat{x},\hat{y}| \leq ||\hat{x}| \cdot ||\hat{y}||$$

 $\frac{2}{|\hat{x},\hat{y}|} = ||\hat{x}|| \cdot ||\hat{y}|| = ||\hat{x}|| ||\hat{y}|| ||\cos\phi| \leq ||\hat{x}|| \cdot ||\hat{y}||$

3) Show
$$\|\dot{x} + \ddot{y}\| \le \|\ddot{x}\| + \|\ddot{y}\|$$

$$\frac{2(\cos^{2})}{(x)} = \int \ddot{x} + \ddot{y}\| = \int \ddot{x} \cdot \ddot{x} + \partial \ddot{x} \cdot \ddot{y} + \ddot{y} \cdot \ddot{y}$$

$$\frac{2(\cos^{2})}{(x)} = \int |\ddot{x} + \ddot{y}| = \int |\ddot{x} \cdot \ddot{x} + \partial \ddot{x} \cdot \ddot{y} + \ddot{y} \cdot \ddot{y}$$

$$= \int |\ddot{x}| + \partial |\ddot{x}| |\ddot{x}| + |\ddot{x}| |\ddot{x}| + |\ddot{x}| |\ddot{x}|$$

$$= \int |\ddot{x}| + \partial |\ddot{x}| |\ddot{x}| + |\ddot{x}| |\ddot{x}| + |\ddot{x}| |\ddot{x}|$$

$$= \int |\ddot{x}| + \partial |\ddot{x}| |\ddot{x}| + |\ddot{x}| |\ddot{x}|$$

$$= \int |\ddot{x}| + |\ddot{x}| |\ddot{x}| + |\ddot{x}| |\ddot{x}| + |\ddot{x}| |\ddot{x}|$$

$$= \int |\ddot{x}| + |\ddot{x}| |\ddot{x}| + |\ddot{x}| |\ddot{x}| + |\ddot{x}| |\ddot{x}|$$

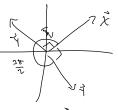
$$= \int |\ddot{x}| + |\ddot{x}| + |\ddot{x}| |\ddot{x}| + |\ddot{x}| |\ddot{x}| + |\ddot$$

= 1171 1171

Orthogonal Vectors

From the first part of the theorem, we see that

$$\vec{x} \cdot \vec{y} = \|\vec{x}\| \, \|\vec{y}\| \cos(\theta)$$



and since $\|\vec{x}\|$ and $\|\vec{y}\|$ is never 0 (unless \vec{x} or \vec{y} themselves were 0), we get that

 $\vec{x} \cdot \vec{y} = 0$ if and only if $cos(\theta) = 0$ if and only if $\theta = \pi/2$ or $3\pi/2$.

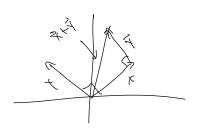
Definition

Two vectors \vec{x} and \vec{y} are said to be **orthogonal** if $\vec{x} \cdot \vec{y} = 0$.

Pythagorean Theorem

Theorem

If
$$\vec{x} \cdot \vec{y} = 0$$
 then $||\vec{x} + \vec{y}||^2 = ||\vec{x}||^2 + ||\vec{y}||^2$.



$$||\vec{x}_{1}\vec{y}||^{2} = (\vec{x}_{1}\vec{y}) - (\vec{x}_{1}\vec{y})$$

$$= \vec{x}_{1}\vec{x}_{1} + \vec{x}_{1}\vec{y}_{1} + \vec{y}_{1}\vec{y}_{1} + \vec{y}_{1}\vec{y}_{1} + \vec{y}_{1}\vec{y}_{1} + \vec{y}_{1}\vec{y}_{1} + \vec{y}_{1}\vec{y}_{1}^{2}$$

$$= ||\vec{x}||^{2} + ||\vec{x}||^{2}$$

Exercise

1 et

$$\vec{w} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \quad \vec{z} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$

Find the angle between them.

Find a vector orthogonal to

$$\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

2) If
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 onth to \ddot{u} the \ddot{u} . $\begin{pmatrix} x \\ y \end{pmatrix} = 0$ $x + 2y = 0$

Let
$$x = \lambda$$
 ℓ $\gamma = -1$
He \int_{-1}^{27} orth to \vec{q} .