
Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Introduction

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

©Michael Hanke 2018 1 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Outline

1 Introduction

2 A First C++ Program

3 Compiling and Debugging

4 A Simple Example: Newton’s method

5 Functions, References, Pointers

6 Summary

©Michael Hanke 2018 2 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

From Mathematical Formulae to
Scientific Software

• Motivations
• Computer simulation of physical processes
• Physical process −→ mathematical model −→algorithm
−→software program −→ simulation result

• Application of numerical algorithms (discrete approximations of
analytical solutions)

• Widely used:
• Simulation of natural phenomena
• Applications in industry
• Applications in medicine
• Applications in finance

© Tryggve Kastberg Nilssen and Xing Cai

©Michael Hanke 2018 3 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Scientific Software

• Desired properties
• Correct
• Efficient (speed, memory, storage)
• Easily maintainable
• Easily extendible

• Important skills
• Understanding the mathematical problem
• Understanding numerics
• Designing algorithms and data structures
• Selecting and using libraries and programming tools
• Verify the correctness of the results
• Quick learning of new programming languages

© Tryggve Kastberg Nilssen and Xing Cai

©Michael Hanke 2018 4 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

A Typical Scientific Computing
Code

• Starting point
• Computational problem

• Pre-processing
• Data input and preparation
• Build-up of internal data structure

• Main computation
• Post-processing

• Result analysis
• Display, output and visualization

© Tryggve Kastberg Nilssen and Xing Cai

©Michael Hanke 2018 5 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

A Two-Step Strategy

• Correct implementation of a complicated numerical problem is a
challenging task

• Divide the task into two steps:
• Express the numerical problem as a complete algorithm
• Translate the algorithm into a computer code using a specific

programming language

© Tryggve Kastberg Nilssen and Xing Cai

©Michael Hanke 2018 6 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Choosing a Programming Language

• There exists hundreds (if not thousands) of different
programming languages

• In Scientific Computing, only a few received wider attention:
Fortran (77, 95, 2003, 2008), C, C++, Matlab (GNU Octave),
Python, Maple/Mathematica (you may have other preferences)

• Issues that influence the choice of the programming language:
• Computational efficiency
• Costs of development cycle, maintainability
• Built-in high performance utilities
• Support for user-defined data types

• For different parts of the project, different programming
languages may be suitable: Interoperability

©Michael Hanke 2018 7 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Properties

• Codes in compiled languages
• run normally fast
• longer development cycle

• Codes in interpreted languages
• run normally slow
• often fast development cycle (very high-level built-in numerical

functionality)

• Different compiled languages may have different efficiency

©Michael Hanke 2018 8 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

User-Defined Data Types

• Built-in primitive data types may not be enough for complicated
numerical programming

• Need to “group” primitive variables into a new data type:
• struct in C (only data, no function)
• class in C++, Java & Python (and Fortran 2003)
• Class hierarchies are a powerful tool: Object-oriented

programming (OOP)

• OOP may lead to huge slow-down of your executables!

© Tryggve Kastberg Nilssen and Xing Cai

©Michael Hanke 2018 9 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Course Contents

• Object-oriented programming, basic notions in, and syntax of,
C++

• Objects, classes and its definition, constructors and destructors
• Operators, operator overloading, polymorphism
• Basics of abstract classes, inheritance, generic programming
• Selected components of the C++ standard library
• Structured and unstructured grids, data structures for their
implementation

• Implementation of numerical methods for partial differential
equations

• Efficient implementation of numerical algorithms

©Michael Hanke 2018 10 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Prerequisites

• Basic course in programming and computer science
• Basic course in numerical analysis
• Recommended: Advanced course in numerical analysis

©Michael Hanke 2018 11 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Outcomes

The aim of the course consists of providing knowledge how advanced
numerical methods and complex algorithms in Scientific Computing
can be implemented in C++.
After completion of the course the students can

• Construct simple classes for often used mathematical objects;
• Create abstract classes and define simple template classes;
• Implement data structures for manipulating realistic geometry
and complex grids for numerically solving partial differential
equations;

• Optimize data structures and algorithms in C++ with respect to
efficient computations for large-scale problems.

©Michael Hanke 2018 12 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Formalities

• PRO1: 3 homework projects (from simple to advanced)
• TEN1: Written examination (a 4th homework can give up to 3
bonus credits)

• The forth homework is compulsory for doctoral students!
• Literature:

• Primary: Stanley B. Lippman, Josée Lajoie, Barbara E. Moo:
C++ Primer (5th ed.). Addison-Wesley, 2013

• Jan Skansholm: C++ direkt (3:e upplagan). Studentlitteratur,
2013

• Suely Oliveira, David Steward: Writing Scientific Software: A
Guide to Good Style. Cambridge University Press, 2006

• Yair Shapira: Solving PDEs in C++ (2nd ed.). SIAM, 2012

• Register yourself in MyPages at latest on 2nd September!

©Michael Hanke 2018 13 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Fibonacci’s Numbers

The sequence of Fibonacci’s numbers fi is defined by the recursive
definition

f0 = 0, f1 = 1,
fi = fi−1 + fi−2, i = 2, 3, . . .

©Michael Hanke 2018 14 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Compute Fibonacci’s Numbers:
matlab

% Computation of the first 10 numbers
clear
n = 10;
f = zeros(1,n); % Not necessary, but useful
f(1) = 0;
f(2) = 1;
for i = 3:n
f(i) = f(i-1)+f(i-2);

end
fprintf(’%8d’,f)

©Michael Hanke 2018 15 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Compute Fibonacci’s Numbers:
Java

// Computation of the first 10 numbers
import java.lang.*;
import java.io.*;
class fibonacci {
public static void main(String [] str) {
int i, n = 10;
int [] f = new int[n];
f[0] = 0;
f[1] = 1;
for (i = 2; i < n; i++) {
f[i] = f[i-1]+f[i-2];

}
for (i = 0; i < n; i++)
System.out.print(f[i] + “, “);

System.out.println(“ “);
}

}
©Michael Hanke 2018 16 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Basic C++ Syntax
General:

• C++ is case sensitive.
• All valid statements are terminated by a semi-colon, i = i+1;
• Several statements can be collected in a compound statement,
{i = i+1; j = j+2;}

• All variables must have a specified type.
• All names must be declared (or defined) before use!

Comments:
• everything between /* and */
• from // to end of line

Short-hand operators:
• The following two statements are equivalent: a = a+b; and a
+= b; (-=, *=, /=).

• The following are equivalent: i = i+1; i++; and ++i; (as far as
the effect on i is concerned!)

©Michael Hanke 2018 17 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Fibonacci’s Numbers: C++

// Implementation: C-style
#include <iostream>
#include <iomanip>
#define n 10 /* Convention: Use caps: N */
int main() {
int i, f[n];
f[0] = 0;
f[1] = 1;
for (i = 2; i < n; i++) {
f[i] = f[i-1]+f[i-2];

}
for (i = 0; i < n; i++)
std::cout << std::setw(8) << f[i] << “, “;

std::cout << std::endl;
return 0;

}

Note: C++ and Java are really different programming languages!

©Michael Hanke 2018 18 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Access to Library Functions

• Most of the functionality of C++ is included in libraries
• Two types of libraries: General functions vs Standard Template
Library (STL)

• In order to get access to the libraries, their declarations must be
included by issuing a preprocessor directive

#include <library>

• The C-libraries are compatible with C++. In order to get access
to them, a modified version of the C header file should be
included: For example, the mathematical library math.h can be
used via

#inlcude <cmath>

©Michael Hanke 2018 19 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Namespaces

• Every name belongs to a namespace.
• Namespaces are used to avoid collisions between identifiers in
libraries and our own definitions.

• All names of the C++ standard libraries belong to the
namespace std.

• Names in namespaces can be accessed via the double colon
notation,

std::cout

• A namespace can be made “visible” by using the following
construct:

using namespace std;

• Warning: Be careful to ambiguities when opening many
namespaces!

©Michael Hanke 2018 20 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Scope of a Name
• At a particular point in a program, each name refers to a specific
entity.

• However, a given name can be reused to refer to different
entities at different points in a program.

• Names are visible from the point they are declared until the end
of the scope in which the declaration appears.

• Example:

#include <iostream>
int main() {
int sum = 0;
for (int i = 1; i <= 10; i++) sum += i;
std::cout << sum << std:endl;
return 0;

}

main has global scope, sum is visible inside the main block, i is
only visible in the for loop.

• It is completely valid to have nested scopes!
©Michael Hanke 2018 21 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Understanding the Compilation
Process: Preprocessor

• The compilation of a source file into an object code proceeds in
two steps:

• Execution of a preprocessor: Generation of the “pure” C++ code
• Invokation of the compiler

• The preprocessor interpretes Preprocessor directives:
#<directive > [<parameters >]

• Most important directives:
• #include (inclusion of a header file)
• #define (definition of macros)
• #ifdef ... #else ... #endif (conditional compilation)
• #ifndef (analogous)

©Michael Hanke 2018 22 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Preprocessor (cont)

• An important usage example:

#define DEBUG 1
...
#ifdef DEBUG
... (code for debugging program version)
#endif

• Macros can be defined on the compiler command line.
• Note: By convention, the macro NDEBUG is used for switching
debugging mode!

©Michael Hanke 2018 23 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Basic I/O

• I/O is organised by using streams.
• The I/O functionality is provided in the iostream (and iomanip)
libraries.

• The standard output stream is cout, the standard input stream
cin.

• cout and cin are streams of characters.
• For each item to transfer, automatic conversion to/from
character streams will take place.

• std::setw(int) sets the length of the output field
• std::endl is the end-of-line marker.
• cin works as expected for terminal input.
• cerr is the standard output for error and debug messages.

©Michael Hanke 2018 24 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

I/O Example

#include <iostream>
int main() {
int i;
std::cout << “Enter an integer: “;
std::cin >> i;
std::cout << “You entered “ << i << std::endl;

}

The C I/O routines can also be used. However, one should avoid to
use both for the same streams!

©Michael Hanke 2018 25 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Flow Control: for Statement

Loops iterate over statements

for statement
for (expr1; expr2; expr3)

statement

The expressions should be interpreted as follows:
expr1 Executed before the first iteration
expr2 Iterate while expression is true
expr3 Executed at the end of each iteration

expr1 and expr3 may contain several comma separated statements
(not terminated by ;)

©Michael Hanke 2018 26 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Statements

• A statement is either a simple statement or a compound
statement.

• A simple statement is an expression followed by a semicolon (;).
• A compound statement has the syntax (note the missing
semicolon at the end!)

{ statement; statement; ... }

©Michael Hanke 2018 27 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Flow Control: if Statement

An if statement allows the program to select different execution
paths depending on the data.

if statement
if (expression)
statement

else
statement

• Any valid statements are allowed including compound
statements and new if statements.

• The else clause is optional.

©Michael Hanke 2018 28 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

if Statement (cont)

Example for computing max(a, b):

if (a > b)
max = a;

else
max = b;

Useful operators:
• Equality: ==, !=
• Relational: <, <=, >=, >
• Logical: && (and), || (or), ! (not)

©Michael Hanke 2018 29 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Understanding

What is the difference between the following code snippets?
• Example 1:

#define MAX(a,b) ((a) > (b) ? (a) : (b))

• Example 2:

max = a > b ? a : b;

• Example 3:

if (a > b) max = a;
else max = b;

©Michael Hanke 2018 30 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Example: if Statements

Which of the following code snippets is syntactically correct? Why or
why not?

• Example 1:

if (a > b) {
max = a;

};
else {
max = b;

}
c = max;

• Example 2:

if (a > b) {
max = a;

};
c = max;

©Michael Hanke 2018 31 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Flow Control: while Statement

while and do/while statements

while (expr1)
statement

do statement
while (expr2);

The statements should be interpreted as follows:
while The statement is executed as long as expr1 is true

(possibly never).
do The statement is executed at least once until expr2

becomes false.
expr1 and expr2 may contain several comma separated statements
(not termnated by ;).

©Michael Hanke 2018 32 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Example: while Statement

What is the result of the following code snippet?

int i = 0, j = 0;
while (i < 2, j < 10) { i++; j++; }
cout << i << endl << j << endl;

©Michael Hanke 2018 33 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Flow Control: switch Statement

switch statement
switch (expr) {
case const1 :

statement11; ... statement1N_1;
...
case constM :

statementM1; ... statementMN_M;
default:

statementdq; ... statementdN_d ;
}

expr expression that evaluates to a value of integer type
constm constant values of an integer type, pairwise different

• The default clause may be missing.
• The list of statements in any clause may be empty.

©Michael Hanke 2018 34 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

switch Statement (cont)

The semantics is as follows:
1 expr will be evaluated.
2 The result will be compared with constm .
3 If equality is determined, execution will continue with the

statement following constm .
4 If no case applies, execution will continue with the statement

following default (if present).
5 Execution will continue until the closing brace is met

(fall-through).
Notes:

• The fall-through behavior is different from the matlab version of
switch.

• Most often, statementmN_m is break;
• Forgetting a break; is a common source of bugs.

©Michael Hanke 2018 35 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Example: switch Statement

Counting vowels and consonants in a string

char str[80];
// initialize str
int vct = 0, cct = 0;
for (int i = 0; i < 80; i++)
switch (tolower(str[i])) {
case ’a’: case ’e’: case ’i’: case ’o’: case ’u’:
++vct;
break;

default:
++cct;
break; // Not necessary

}

©Michael Hanke 2018 36 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Flow Control: break Statement

The statement break; terminates the nearest while, do while,
for, or switch statement.
Example: Ending an infinite loop

for (;;) {
...
if (expr) break;
...

}

©Michael Hanke 2018 37 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Flow Control: continue Statement

The statement continue; terminates the current iteration of the
nearest enclosing loop and immediately begins the next iteration.
It is, therefore, only valid inside a for, while, or do while
statement.

©Michael Hanke 2018 38 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Compilation

• The extensions for C++ source files are .cpp, .cc, .C
• g++

• g++ -Wall -o prog prog.cpp
• Add -g to enable debugging
• Add -O, -O2, -O3 for optimization (until -O6)
• The program is automatically linked against standard libraries.
• Always check correctness of output when using optimization!

• Optimizing compilers
• Good for performance, usually not as good as g++ with respect

to error messages and warnings
• Examples: Intel’s icpc, Portland’s pgc++, Sun’s CC
• I am using g++ 4.8.5 in all my examples.
• Check C++11 compatibility!

©Michael Hanke 2018 39 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Debugging

Fact
The best and most efficient way of debugging is writing a clear and
well structured code.

• Together with your code, develop a debugging strategy
• Instrument your code with debugging instructions

• #include <cassert>
assert(...);

• #ifndef NDEBUG
cerr << “I am alive”;
cerr << __FILE__ << “, “ << __LINE__ << endl;
#endif

• In C++, there are very elegant ways to implement debugging
routines. (operator overloading)

©Michael Hanke 2018 40 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Debugging Tools

• gdb: Very basic, tedious to use
• g++ -g -Wall -o prog prog.cpp
• gdb prog

• In gdb: type run to start your program
• bt: prints current call stack (list of nested functions)
• p x: prints value of variable x
• break file.c:123: sets break point
• continue: continues execution
• clear 1: removes break point 1
• l: lists program code

• Valgrind: memory debugger; uses emulation

©Michael Hanke 2018 41 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

ddd

©Michael Hanke 2018 42 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Performance Tools

• A profiler gives time spent in various functions (subroutines)
• gprof (Read the compiler manual!)

• compile with -pg
• run prog
• run gprof ./prog >prog.prof
• look at statistics in prog.prof

©Michael Hanke 2018 43 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

IDE: Code::Blocks

Other IDEs: Eclipse, codelite, commercial ones, many more
©Michael Hanke 2018 44 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

The Task

Consider the nonlinear equation

x = cos x , x ∈ R.

Find a solution!
• It is easy to see that this equation has exactly one solution.
• We estimate that the solution is close to 0.7.
• Newton’s method is an appropriate method for solving the
equation.

• It’s convergence depends on a good initial guess.

©Michael Hanke 2018 45 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

The Algorithm

• Let f (x) = x − cos x .
• Iteration:

xi+1 = xi −
f (xi)

f ′(xi)

• In order to find an appropriate initial guess: Let us experiment
with x0.

©Michael Hanke 2018 46 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

The Code
#include <iostream>
#include <cmath>
using namespace std;
int main() {
cout << "Give initial guess " << endl;
double x;
cin >> x;
double err, tol=1e-12, x1;
int it, maxit=100;
it = 0;
err = tol + 1;
while(err > tol && it < maxit) {
x1 = x - (x-cos(x))/(1+sin(x));
err = fabs(x1 - x); x = x1; it++;

}
if(err <= tol) cout << "The root is " << x << endl;
else cout << "Error, no convergence \n";

}

©Michael Hanke 2018 47 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

C++ Standard Types

Integer types char, short int, int, long int, long long int, bool
Integer types can have the attribut unsigned (like in
unsigned char).

Float types float, double, long double
Pointers Contain addresses of objects

References Explained later
Void Describe “nothing”

©Michael Hanke 2018 48 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Function Definition
Function definition

return-type function-name(parameters) {
// statements
return value;

}

return-type type of value returned or void if none
function-name name

parameters comma separated list of types and names of
parameters

value value returned upon termination (not needed if
return-type is void)

• The function name and the sequence of parameter types are
called the signature of the function.

• Several functions can have the same name if only their signature
differs (function overloading): Extremely important for
object-oriented programming.

©Michael Hanke 2018 49 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Function Definition (cont)

• Example:

double average(double x, double y) {
return 0.5*(x+y);

}

©Michael Hanke 2018 50 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

The main Function

• Every program must have exactly one (nonmember) main
function.

• Program execution starts at the main function.
• The signatures of main may be:

int main()
int main(int argc, char *argv[])

• argc is the number of arguments given to the program, while
argv contains argc of (C-style) strings (the actual arguments).

• A return of 0 means generally success.
• However, it is safer to use predefined variables: EXIT_SUCCESS,
EXIT_FAILURE etc.

©Michael Hanke 2018 51 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Function Declarations

• A function definition includes a complete description of the
internals. It will be compiled if available.

• What about incremental compilation?
• Assume that we have written a function becoming part of a
library. Later on, it shall be used in a main program.

• Since the internals are unimportant for the main program, it is
sufficient to know the interface to that function. Such
functionality is provided by a function declaration:

Function declaration
return-type function-name(parameters);

©Michael Hanke 2018 52 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Function Call

• A function is called by giving its name and the parameters in
sequence. The parameters must have a type corresponding to
the functions definition:

function-name(parameters)

• By default, all parameters are copied into local variables in the
function body (call by value).

• Hence, changes made to the parameters have no effect outside
the function.

• If changes of parameters should have effect outside the function,
the argument must be passed by reference.

• Passing by reference is indicated by the &-operator:

type function-name(atype& byref, ...);

• Note: In order to avoid excessive memory copying for huge
objects, call by reference should be used.

©Michael Hanke 2018 53 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Example: Call by Reference

#include <iostream>
using namespace std;
void change(int val, int& ref) {
val = 1;
ref = 1;

}

int main() {
int i = 0, j = 0;
cout << i << j << “ --> “;
change(i,j);
cout << i << j << endl;

}

Output: 00 --> 01

©Michael Hanke 2018 54 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Reference Variables

• In the same way as pointer variables, reference variables can be
defined:

int n;
int &ri = n;

Semantics: ri is a (constant!) pointer to n. Logically, it is
simply another name for n.

• Since a reference variable cannot change its value, it must
always be initialized when defined!

• However, an expression ri = 5; is well-defined and leads, in our
example, to setting n to 5.

©Michael Hanke 2018 55 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Parameters With Default Values

• Sometimes, certain parameters for a function may include
reasonable defaults.

• Example: A standard value for the second argument of our
average function (y) could be 1.

• There are two possibilities to resolve this situation:
• Define two versions of the average function with different

signature:

double average(double x, double y);
double average(double x);

• Use default values:

double average(double x, double y = 1.0);

• Note: If one parameter in the parameter list has a default value,
all subsequent must have it, too.

©Michael Hanke 2018 56 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

C-Style Arrays
All basic and derived types (including classes) can be extended to be
vector-valued,

C-style array

type name[N];

• Memory for N type-objects is allocated (statically) when the
variable enters scope.

• Note: The size N must be known at compile time!
• Elements are accesses by name[i] where 0 ≤ i < N− 1.
• Example:

double gridpoint[5];
for (int i = 0; i < 5; i++)
gridpoint[i] = 0.25*i;

• Note: Indexing errors are not caught by the compiler and may
cause strange behavior at run time.

©Michael Hanke 2018 57 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Multi-Dimensional Arrays

Arrays can be extended to several dimensions,

Multi-dimensional arrays

type name[N1]...[Nk];

• Elements are accessed by name[i1]...[ik], where
0 ≤ ij < Nj.

• If possible, multi-dimensional arrays should be avoided for
efficiency.

• Multi-dimensional arrays should be mapped directly to
one-dimensional ones by using an appropriate index mapping.
Example: Fortran-style mapping of an M × N-matrix:

a(i , j) 7→ a[i + j ∗ N]

©Michael Hanke 2018 58 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Pointers

• A pointer is an object containing an address of main memory.
• A pointer is allowed “to point” to objects of a certain type.
• Pointer variables can be used as any other objects.
• A pointer may be uninitialized or pointing to a non-existing
object (for example if a variables leaves scope). This is called a
hanging pointer.

• Using a hanging pointer is forbidden!
• Note: Using a hanging pointer is one of the most common
programming mistakes and extremely hard to debug!

Definition of pointers

type *p;

Note: In the definition type *p, q; q is not a pointer but a variable
of type type!

©Michael Hanke 2018 59 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Operations With Pointers

• Making a pointer to an object:

type a;
type *b = &a;

• Dereferencing: Finding the value of an object a pointer is
pointing to.

int *p, a = 1;
p = &a;
cout << *p << std::endl;

©Michael Hanke 2018 60 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Examples: Pointers 1

#include <iostream>
using namespace std;
void change(int val, int& ref, int *ptr) {
val = 1;
ref = 1;
*ptr = 1;

}

int main() {
int i = 0, j = 0, k = 0;
cout << i << j << k << “ --> “;
change(i,j,&k);
cout << i << j << k << endl;

}

Output: 000 --> 011
Using pointers in function calls is not recommended! The only
exception are C-type arrays.

©Michael Hanke 2018 61 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Examples: Pointers 2

#include <iostream>
using namespace std;
int main() {
int a = 1, *p, *q;
p = &a;
q = p;
*q = 2;
cout << *p << *q << endl;

}

What is the output of this program?

©Michael Hanke 2018 62 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Pointers and Arrays

• In a definition of an array type a[n], the variable a is of type
type *!

• Example:

double a[10];
double *p1, *p2;
p1 = &a[0];
p2 = a;

The expression p1 == p2 evaluates to true.
• Pointer arithmetic: For any nonnegative integer i, *(a+i) and
*(i+a) are identical to a[i].

• Recommendation: In function declarations use type a[]
instead of type *a (even if they are equivalent).

©Michael Hanke 2018 63 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Application of Pointer Arithmetic

When traversing an array, the following two code snippets are
identical:

• Example 1

double a[10];
for (int i = 0; i < 10; i++) a[i] = 0.0;

• Example 2

double a[10];
for (double *p = a; p < a+10; p++) *p = 0.0;

©Michael Hanke 2018 64 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Dynamic Arrays

Observations:
• The definition double a[10]; allocates memory for 10 double
objects at compile time, and stores a pointer to the memory
block in a.

• The definition double *p; allocates memory for an address,
only.

Dynamic arrays must be allocated at run time. So a different
mechanism is needed.

©Michael Hanke 2018 65 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Dynamic Arrays (cont)

• Dynamic arrays can be allocated by

pointer-var = new type[size];

• new allocates memory for size objects and returns the address of
this block.

Example:

double *x;
int n;
cin >> n;
x = new double[n];
for (int i = 0; i < n; i++) x[i] = 0.1*i;

• Memory no longer needed should be deallocated such that it can
be used for other purposes:

delete [] pointer-var;

©Michael Hanke 2018 66 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Some Tips And Pitfalls

• Allocating and deallocating is associated with an overhead. Try
to “reuse” memory if possible.

• Memory should be deallocated before a pointer exits scope
(Danger of memory leak!).

• Acessing a deallocated object or using an uninitialized pointer is
forbidden (unpredictable program behavior!).

• In particular, if two pointer point to the same memory region,
deallocating one of them invalidates the other, too!

• In order to allow for garbage collection it is always a good idea
to deallocate memory in the opposite order of allocation.

• Deallocating memory is often the main purpose of class
destructors.

• Not recommended: Explicit usage of malloc/free.

©Michael Hanke 2018 67 (68)

Introduction

Michael
Hanke

Introduction

A First C++
Program

Compiling and
Debugging

A Simple
Example:
Newton’s
method

Functions,
References,
Pointers

Summary

Summary

• Basic C++ syntax has been introduced.
• Pointers and references have been discussed.
• C-style arrays are introduced.
• We wrote our first C++ program.
• We know how to compile and run a C++ program.

• What will come next?
• A more advanced example.

©Michael Hanke 2018 68 (68)

	Introduction
	A First C++ Program
	Compiling and Debugging
	A Simple Example: Newton's method
	Functions, References, Pointers
	Summary

