Example: Partial Differential Equations

Michael Hanke

School of Engineering Sciences

Program construction in $\mathrm{C}++$ for Scientific Computing

Outline

(1) Introduction
(2) Finite Difference Approximations
(3) Implementation of Differential Operators
(4) Boundary Conditions
(5) Summary of the Course

Michael
Hanke

What Do We Have

- Two simple classes for structured grids (Domain, Curvebase)
- A simple implementation of a matrix class (Matrix; don't use it for production codes!)

What Do We Want

- A class for representing grid functions
- Imposing boundary conditions
- A class for solving PDEs

Our running example will be the heat equation in 2D,

$$
\frac{\partial}{\partial t} u=\frac{\partial^{2}}{\partial x^{2}} u+\frac{\partial^{2}}{\partial y^{2}} u
$$

The Domain Class

This is what we have so far:

```
class Domain {
    public:
    Domain(Curvebase&, Curvebase&, Curvebase&,
                    Curvebase&);
        void generate_grid(...);
        // more members
    private:
        Curvebase *sides[4];
        // more members
};
```

- We will need additional members for handling grids. Since grids do not allow any algebraic manipulation, using our Matrix class is not appropriate.
- We will use C-style arrays.
- It might be more convenient to use STL containers (e.g., vector).

Michael

Hanke

The Domain Class: Enhanced

```
class Domain {
    public:
    Domain(Curvebase&, Curvebase&, Curvebase&,
        Curvebase&) : m(0), n(0), x(nullptr),
        y(nullptr) {}
    void generate_grid(int m_, int n_);
    int xsize() { return m; }
    int ysize() { return n; }
    Point operator()(int i, int j);
    bool grid_valid() { return m != 0; }
    // more members
    private:
    Curvebase *sides[4];
    int m, n;
    double *x, *y;
    // more members
};
```

Michael
Hanke

One Dimensional Differences 1

- Consider a grid Ω_{h},

$$
a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{m}=b
$$

- Let $h_{i}=x_{i}-x_{i-1}$. Then define, for a grid function $u: \Omega_{h} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& D_{-} u_{i}=\frac{u_{i}-u_{i-1}}{h_{i}} \\
& D_{+} u_{i}=\frac{u_{i+1}-u_{i}}{h_{i+1}}
\end{aligned}
$$

- If u is the restriction of a smooth function onto Ω_{h}, these approximations are first order accurate.
- If the grid is equidistant, $D_{+} D_{-}$is a second order accurate approximation of $u^{\prime \prime}\left(x_{i}\right)$ and

$$
D_{+} D_{-} u_{i}=\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}
$$

Michael
Hanke

Introduction
Finite Difference Approximations

Implementation of Differential Operators

One Dimensional Differences 2

$$
D u_{i}=\frac{u_{i+1}-u_{i-1}}{2 h}
$$

- First oder approximation to u^{\prime} on a general grid
- Second order accuracy on a constant stepsize grid

Michael Hanke

Boundaries

- The operators introduced above are not applicable at boundaries.
- Possibility 1: One-sided differences

$$
\begin{aligned}
D u_{0} & =\frac{3 u_{0}-4 u_{1}+u_{2}}{3 h} \\
D u_{m} & =\frac{u_{m-2}-4 u_{m-1}+3 u_{m}}{3 h}
\end{aligned}
$$

- Possibility 2: Use ghost points

$$
\begin{aligned}
D u_{0} & =\frac{u_{1}-u_{-1}}{2 h} \\
D u_{m} & =\frac{u_{m+1}-u_{m-1}}{2 h}
\end{aligned}
$$

How to get values for the ghost points?

Nonuniform Grids

- Order of approximation is determined using Taylor expansions.
- Ansatz:

$$
u^{\prime}\left(x_{i}\right) \approx a_{-} u\left(x_{i-1}\right)+a_{0} u\left(x_{i}\right)+a_{+} u\left(x_{i+1}\right)=: D_{0} u\left(x_{i}\right)
$$

- Taylor expansion:

$$
\begin{aligned}
& u\left(x_{i-1}\right)=u\left(x_{i}\right)-h_{i} u^{\prime}\left(x_{i}\right)+\frac{1}{2} h_{i}^{2} u^{\prime \prime}\left(x_{i}\right)+O\left(h^{3}\right) \\
& u\left(x_{i+1}\right)=u\left(x_{i}\right)+h_{i+1} u^{\prime}\left(x_{i}\right)+\frac{1}{2} h_{i+1}^{2} u^{\prime \prime}\left(x_{i}\right)+O\left(h^{3}\right)
\end{aligned}
$$

Nonuniform Grids (cont)

- Inserting into the expression for $D_{0} u$, we obtain after coefficient comparison

$$
\begin{aligned}
a_{-} & =\frac{-h_{i+1}}{h_{i}\left(h_{i}+h_{i+1}\right)} \\
a_{0} & =\frac{h_{i+1}-h_{i}}{h_{i} h_{i+1}} \\
a_{+} & =\frac{h_{i}}{h_{i+1}\left(h_{i}+h_{i+1}\right)}
\end{aligned}
$$

and

$$
D_{0} u\left(x_{i}\right)-u^{\prime}\left(x_{i}\right)=\frac{1}{6} h_{i} h_{i+1} u^{\prime \prime \prime}\left(x_{i}\right)+\ldots
$$

- For an equidistant grid, the coefficients reduce to $a_{-}=-1 / 2 h$, $a_{0}=0, a_{+}=1 / 2 h$.
- One sided expressions??

Michael
Hanke

An Alternative Idea

- Assume that the grid is created using a mapping $\phi:[0,1] \rightarrow[a, b]$ with $x_{i}=\phi\left(s_{i}\right), i=0, \ldots, m$ with a uniform grid

$$
s_{i}=i \sigma, \quad \sigma=m^{-1}
$$

- Then, $d u / d s=d u / d x \cdot d x / d s$, and

$$
u_{x}\left(x_{i}\right) \approx \frac{1}{d x\left(s_{i}\right) / d s} \frac{u_{i+1}-u_{i-1}}{2 \sigma}
$$

is a second order approximation.

Michael Hanke

And Another Idea

- If the derivative $d x / d s$ is not known, it can be approximated with second order accuracy by

$$
\frac{d x}{d s}\left(s_{i}\right) \approx \frac{x_{i+1}-x_{i-1}}{2 \sigma}
$$

such that

$$
u_{x}\left(x_{i}\right) \approx \frac{u_{i+1}-u_{i-1}}{x_{i+1}-x_{i-1}}
$$

is second order accurate!

- Needed: ϕ is a smooth mapping!
- Note: We need only two grid points in order to obtain the same order of accuracy as in the approximation in physical domain.

Michael
Hanke

Approximation of $u^{\prime \prime}$

Going either way, we have an approximation

$$
u^{\prime}\left(x_{i}\right) \approx D_{0} u_{i} .
$$

A second order approximation to the second derivative can be defined by

$$
u^{\prime \prime}\left(x_{i}\right) \approx D_{2} u_{i}=D_{0} D_{0} u_{i} .
$$

This approximation evaluates to a five-point stencil!

Michael Hanke

Example: Comparison of Accuracy

$$
\begin{aligned}
& u(x)=\sin x \\
& x(s)=2 \pi \frac{1+\tanh (\delta(s-1) / 2)}{\tanh (\delta / 2)}, \quad \delta=5
\end{aligned}
$$

Hyperbolic tangent stretching, 100 gridpoints.

Michael
Hanke

Conclusions

- All approximations are 2nd order accurate.
- In this simple example, approximation in physical domain is more accurate.
- The stencil (number of grid points used) is larger in physical domain for obtaining the same order of accuracy.

Michael
Hanke

2D: Physical Domain

Ansatz:

$$
u_{x}\left(x_{i, j}, y_{i, j}\right) \approx \sum_{k, l} a_{k l} u_{i+k, j+l}
$$

Taylor expansion around $\left(x_{i, j}, y_{i, j}\right)$:

$$
\begin{aligned}
& \sum_{k, l} a_{k, l} u_{i+k, j+l} \\
& \quad=\sum_{k, l} a_{k, l} \sum_{\nu=0} \frac{1}{\nu!}\left(\left(x_{i+k, j+l}-x_{i, j}\right) \frac{\partial}{\partial x}+\left(y_{i+k, j+l}-y_{i, j}\right) \frac{\partial}{\partial y}\right)^{\nu} u \\
& \quad=\sum_{\nu=0} \sum_{p=0}^{\nu}\left[\sum_{k, l} a_{k, l} \frac{1}{\nu!}\binom{\nu}{p}\left(x_{i+k, j+I}-x_{i, j}\right)^{p}\left(y_{i+k, j+l}-y_{i, j}\right)^{\nu-p}\right] \frac{\partial^{p}}{\partial x^{p}} \frac{\partial^{\nu-p}}{\partial y^{\nu-p}} u
\end{aligned}
$$

Michael Hanke

First order:

Finite Difference Approximations

$D_{0, x}$ in Physical Domain

$$
\begin{aligned}
\sum_{k, l} a_{k, l} & =0 \\
\sum_{k, l} a_{k, l}\left(x_{i+k, j+l}-x_{i, j}\right) & =1 \\
\sum_{k, l} a_{k, l}\left(y_{i+k, j+l}-y_{i, j}\right) & =0
\end{aligned}
$$

Second order additionally:

$$
\begin{aligned}
\sum_{k, l} a_{k, l}\left(x_{i+k, j+l}-x_{i, j}\right)^{2} & =0 \\
\sum_{k, l} a_{k, l}\left(x_{i+k, j+l}-x_{i, j}\right)\left(y_{i+k, j+l}-y_{i, j}\right) & =0 \\
\sum_{k, l} a_{k, l}\left(y_{i+k, j+l}-y_{i, j}\right)^{2} & =0
\end{aligned}
$$

So we expect 6 gridpoints necessary for second order accuracy!

Michael
Hanke

Stencil in Reference Coordinates

Remember:

- Let Φ to a (smooth) one-to-one mapping $\Phi:[0,1]^{2} \rightarrow \Omega$.
- For given m, n, a uniform grid on $[0,1]^{2}$ can be defined by:

$$
\begin{array}{ll}
\xi_{i}=i h_{1}, & h_{1}=1 / m, \quad i=0, \ldots, m \\
\eta_{j}=j h_{2}, & h_{2}=1 / n, \quad j=0, \ldots, n
\end{array}
$$

- A strucured grid on Ω can then simply be obtained via

$$
x_{i j}=\Phi_{x}\left(\xi_{i}, \eta_{j}\right), \quad y_{i j}=\Phi_{y}\left(\xi_{i}, \eta_{j}\right), \quad i=0, \ldots, m, j=0, \ldots, n
$$

Reference Coordinates (cont)

- Using the chain rule of differentiation, we obtain

$$
\begin{aligned}
\frac{\partial u(x, y)}{\partial \xi} & =\frac{\partial u}{\partial x} \cdot \frac{\partial \Phi_{x}}{\partial \xi}+\frac{\partial u}{\partial y} \cdot \frac{\partial \Phi_{y}}{\partial \xi} \\
\frac{\partial u(x, y)}{\partial \eta} & =\frac{\partial u}{\partial x} \cdot \frac{\partial \Phi_{x}}{\partial \eta}+\frac{\partial u}{\partial y} \cdot \frac{\partial \Phi_{y}}{\partial \eta}
\end{aligned}
$$

Since the transformation Φ_{x}, Φ_{y} is known, this is a linear system for the partial derivatives $\partial u / \partial x, \partial u / \partial y$.

- Let

$$
J=\left(\begin{array}{cc}
\frac{\partial \Phi_{x}}{\partial \xi} & \frac{\partial \Phi_{y}}{\partial \xi_{y}} \\
\frac{\partial \Phi_{x}}{\partial \eta} & \frac{\partial \phi \phi_{y}}{\partial \eta}
\end{array}\right)
$$

Then

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{1}{\operatorname{det} J}\left(\frac{\partial u}{\partial \xi} \cdot \frac{\partial \Phi_{y}}{\partial \eta}-\frac{\partial u}{\partial \eta} \cdot \frac{\partial \Phi_{y}}{\partial \xi}\right) \\
& \frac{\partial u}{\partial x}=\frac{1}{\operatorname{det} J}\left(\frac{\partial u}{\partial \eta} \cdot \frac{\partial \Phi_{x}}{\partial \xi}-\frac{\partial u}{\partial \xi} \cdot \frac{\partial \Phi_{x}}{\partial \eta}\right)
\end{aligned}
$$

Michael
Hanke

Referens Coordinates (cont)

- The derivatives with respect to reference coordinates can be approximated by standard stencils (4-point stencil).
- Once all partial derivatives $w r t \xi$ have been evaluated, the necessary partial derivatives $\mathrm{wrt} x, y$ can be computed.

Class for Grid Functions: Requirements

- (Scalar) grid functions are defined on grids.
- We are using structured grids as represented in the class Domain.
- Operations allowed with grid functions:
- Addition, multiplication by a scalar (they form a vector space)
- Pointwise multiplication (together, this becomes a commutative algebra)
- Differentiation (e.g., by finite differences)
- Computation of norms
- Integration (? maybe)

Further Considerations

- In the two-dimensional case, many of these operations are already implemented in the Matrix class!
- However, some operations are not meaningful for grid functions, e.g., matrix-matrix multiplication.
- A grid functions lives only on a specific grid:
- Shall the grid be part of an object?
- Many grid functions share the same grid!
- Algebraic manipulations are only defined for grid functions living on the same grid

Michael
Hanke

oduction

Remember: The Matrix Class

```
class Matrix {
    int m, n; // should be size_t
    double *A;
public:
    Matrix(int m_ = 0, int n_ = 0) : m(m_), n(n_),
                A(nullptr) {
        if (m*n > 0) {
        A = new double[m*n];
        std::fill(A,A+M*n,0.0);
        }
}
// etc
};
```

Michael
Hanke

Implementation of Grid Functions

```
class GFkt {
        private:
            Matrix u;
            Domain *grid;
        public:
            GFkt(Domain *grid_) : u(grid_->xsize()+1,
                        grid_->ysize()+1), grid(grid_) {}
            GFkt(const GFkt& U) : u(U.u), grid(U.grid) {}
            GFkt& opearator=(const GFkt& U);
            GFkt operator+(const GFkt& U) const;
            GFkt operator*(const GFkt& U) const;
// etc
};
```

Michael Hanke

A Sample Implementation

```
GFkt GFkt::operator+(const GFkt& U) const {
    if (grid == U.grid) { // defined on the same grid?
        GFkt tmp(grid);
        tmp.u = u+U.u; // Matrix::operator+()
        return tmp;
    }
    else error();
}
GFkt GFkt::operator*(const GFkt& U) const {
    if (grid == U.grid) { // defined on the same grid?
        GFkt tmp(grid);
        for (int j = 0; j <= grid.ysize(); j++)
        for (int i = 0; i <= grid.xsize(); i++)
            tmp.u(i,j) = u(i,j)*U.u(i,j);
        return tmp;
    }
    else error();
}
```

Michael Hanke

A Problem And Its Solution

- The grid is handled by the caller.
- In the above implementation, the caller may delete the grid such that all objects referring to it have a dangling pointer!
- In C++ 11 there is a solution: smart pointers
- Smart pointers belong to the C++ library, include file: memory

Smart Pointers

- There are two types of them: shared_ptr and unique_ptr.
- Both classes are in fact template classes: The template argument is a typename.
- shared_ptr uses a reference count: As soon as the reference count reaches 0 , the dynamic object will be destroyed. But not earlier!
- This way, all resources will be freed (including dynamic memory).
- C-type pointers and smart pointers cannot be mixed! There is always an explicit type cast necessary! Recommendation: Avoid mixing.

Smart Pointers (cont)

- Create a smart pointer, initialize it to 0 (nullptr): shared_ptr<class> p1;
- The equivalent of new:
shared_ptr<class> p2 = make_shared<class>(args);

The following statement is in error:
shared_ptr<class> p3 = new class(args); // Error!

But this works:

$$
\begin{aligned}
& \text { shared_ptr<class> p3 }= \\
& \text { shared_ptr<class>(new class(args)) }
\end{aligned}
$$

- There is no equivalent of delete needed.

Michael Hanke

A Better Implementation of GFkt

```
class GFkt {
        private:
            Matrix u;
            shared_ptr<Domain> grid;
        public:
            GFkt(shared_ptr<Domain> grid_) :
                                    u(grid_->xsize()+1,grid_->ysize()+1),
                    grid(grid_) {}
            GFkt(const GFkt& U) : u(U.u), grid(U.grid) {}
// etc
};
```

Notes:

- We assume silently that, once a grid has been generated, it will never be changed!
- It is most probably a good idea to use shared pointers in Domain, too:
shared_ptr<Curvebase> sides [4];

Implementation of $D_{0, x}$

```
GFkt GFkt::DOx() const {
    GFkt tmp(grid);
    if (grid->grid_valid()) {
        // generate derivative in tmp
        // according to one of the possibilities above
    }
    return tmp;
}
```

- The function D0y can be implemented similarly.
- In order to reduce overhead, it might be a good idea to implement even void GFkt: : D0xy (GFkt *dx, GFkt *dy) const;

Michael
Hanke

Boundary Conditions

Introduction

Name	Prescribed	Interpretation
Dirichlet	u	Fixed temperature
Neumann	$\partial u / \partial n$	Energy flow
Robin (mixed)	$\partial u / \partial n+f(u)$	Temperature dependent flow
Periodic		

Boundary conditions have a crucial impact on the solution.

Michael Hanke

What are Boundary Conditions?

(1) The mathematician's point of view:
domain

+ differential equation
+ boundary conditions
(2) The physicist's point of view:

(3) The software engineer's point of view:

differential equation	\longrightarrow	expression of differentials
domain	\longrightarrow	grid
boundary conditions	\longrightarrow	what??

Michael Hanke

Object-Oriented Representation

- As part of the PDE
- mathematical interpretation
- requires high-level representation of equation and discretization
- difficult to obtain efficiency
- As part of the grid function
- mathematically correct
- no class for PDEs needed
- convenient for exlicit time-stepping
- As part of the operator (e.g., D_{0})
- convenient for implicit and explicit methods
- can be difficult to implement
- may encounter mathematical contradictions if used wronly

A First Attempt

Associate boundary conditions with grid functions:

```
class Solution {
    public:
        Solution(Domain *D) : sol(D) {}
        ~Solution();
        void timesteps(double dt, int nsteps);
        void init(); // Set initial condition
        void print();
    private:
        GFkt sol;
        void impose_bc();
};
```

impose_bc() will be called in timesteps() for imposing the boundary conditions.

Discussion

- The proposed implementation is questionable because the boundary conditions and timestepping are "hardwired".
- It is better to have a class for boundary conditions:

```
class BCtype {
    public:
    BCtype(GFkt& u, int boundary_id);
    virtual void impose(GFkt& u) = 0;
};
```

- The actual definition of the boundary condition takes place in derived classes.
- This way, several boundaries can share the same condition (e.g., homogeneous Dirichlet conditions).
- Classes can be derived for Dirichlet, Neumann, Robin boundary conditions.

Example Implementation

Assumptions:

- The grid has four distinct edges (as ours in the previous Domain class).
- Each edge is associated with one boundary condition, only.

Then:

```
class Solution {
    public:
            Solution(Domain *D) : sol(D) {}
            ~}\mathrm{ Solution();
            void print();
            private:
            GFkt sol;
            shared_ptr<BCtype> bcs[4];
            virtual void init() = 0;
            virtual void bc() = 0;
};
```

We have separated: the grid, the equation, the initial conditions, and the boundary conditions.

Time Stepping

For the heat equation in 2D, we can implement the explicit Euler method now:

```
Solution u(&d);
u.init();
for (int step=0; step < maxsteps; step++) {
    u += dt*(u.D2x()+u.D2y());
    t += dt;
    u.bc();
}
```

(Provided the missing functions are implemented along the lines provided before)

Michael
Hanke

Summary

- Finite difference approximations on structured grids.
- Smart pointers
- Implementation strategies for differential operators, boundary conditions, and time steppers.

Michael Hanke

Course Summary

C++

- Basic elements of $\mathrm{C}++$
- Abstract data types, C++ classes
- Constructors, destructors, memory management, copy, move
- Operator overloading
- Inheritance, abstract classes
- Templates, STL
- I/O

Scientific Computing

- Structured grids, differential operators, boundary conditions
- Implemetation strategies and their C++ tools
- Efficient programming
- Scientific libraries

