
Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Operator Overloading

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

c©Michael Hanke 2018 1 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Outline

1 Introduction

2 Copy-Assignment

3 Operator Overloading

4 Good Practices

5 Overloading I/O Operators

6 Summary

c©Michael Hanke 2018 2 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Introduction

• Our Point class is a model for the vector space R2. In this
space, operations like vector addition and multiplication by a
scalar are defined.

• What we can do right now: Define a function

const Point add(const Point &P, const Point &Q);
Point W = add(P,Q);

Note: The symbol = indicates an initialization of W. This is the
copy constructor.

• Wish: How can we make sense to statements like

Point P, Q, W;
W = P+Q;

Note: Here, the = symbol stands for the assignment operator.
We will need another type of constructor here
(copy-assignment).

c©Michael Hanke 2018 3 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Operators

Operator Overloading
In C++, operators are considered to be special kind of function (with
predefined structure of the argument list, compatible with the C++
syntax). So they can be redefined for new data types. This is called
overloading.

c©Michael Hanke 2018 4 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Lvalues and Rvalues

• In C, lvalues are expressions which can appear at the left-hand
side of the assignment operator; rvalues appear on the
right-hand side of it:

lvalue = rvalue;

• The semantics is that rvalue will be evaluated and assigned to
the lvalue.

• The assignment operator is right-associative meaning that a =
b = c; is equivalent to a = (b = c);

• Consequence: An assignment a = b has a value!
• Question: What is the result of (a = b) = c;? (Demo!)

c©Michael Hanke 2018 5 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Lvalues and Rvalues (cont)

• Operators differ as to wether they require an lvalue or an rvalue
as operands or wether they return lvalues or rvalues.

• C++ has a rather complex behavior here.
• Heuristically:

• When we use an object as rvalue, we use the object’s value (its
contents).

• When we use an object as lvalue, we use the object’s identity
(its address).

• Most often, an lvalue can be used when an rvalue is required.
• Example: An expression like a + b can never be an lvalue.
Why?

c©Michael Hanke 2018 6 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Operators in C++

• Arithmetic operators (+,-,*,/, %) - standard precedence and
associativity rules

• Logical and relational operators - standard precedence and
associativity rules

• Assinment operator (=) - right associative, lowest precedence
• Increment and decrement operators (i++, ++i, i--, --i)
• Member access operator (left associative), function call,
subscript (., (), [])

• many more

All these operators can be overloaded (exception here: member
access operator)!

c©Michael Hanke 2018 7 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

A Final Bit To Know: this

• When calling a member function there is always a concrete
object involved:

Point P, Q; P.X();

The latter will return the contents of x of the instance P.
• How can the runtime system decide between x belonging to P
and the one belonging to Q?

• The distinction is provide by an implicit variable defined by the
compiler for every class:

class *this;

• In our example, the statement return x; is interpreted as

return (*this).x;

equivalently, return this -> x;
• All member functions have the implicit first argument this.

c©Michael Hanke 2018 8 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Aim

How to define a version of the assignment operator such that an
assignment of the kind

P = Q = W;

makes sense?
• Since the interpretation is rather close to the copy constructor,
we should expect similar properties.

• However, as an operator, the assigment must have a value.
• After assignment both objects should be the same (but not
identical!).

• The value returned should be (a reference to) the rightmost
expression.

• For consistency with the built-in types, it should be a reference
to the left-hand operator.

c©Michael Hanke 2018 9 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

The Copy-Assignment Constructor

• The copy-assignment constructor must be a public member
function.

• It must have the form

class& operator=(const class&);

• The this pointer points to the left-hand side operand of the
assignment.

• The argument should be a reference.

c©Michael Hanke 2018 10 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Extending The Point Class

class Point {
private: // Can be omitted here
double x;
double y;

public:
Point(double xx = 0.0, double yy = 0.0) :

x(xx), y(yy) { }
Point(const Point& Q): x(Q.x), y(Q.y) { }
~Point() { }
double X() const { return x; }
double Y() const { return y; }
void zero() { x = y = 0.0; }

};

c©Michael Hanke 2018 11 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

The Point Class (cont)

Point& Point::operator=(const Point& P) {
if (this != &P) {
x = P.x; // equivalent: (*this).x = P.x;
y = P.y;

}
return *this; // dereferencing!

}

• This copy-assignment constructor corresponds to the
automatically generated one.

• As a rule of thumb, an individual version is necessary if you need
an individual copy constructor.

c©Michael Hanke 2018 12 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Remarks

• We can write simply P = Q = W; now if P, Q, and W are
instances of class Point.

• We can even write P = 1.0; since we have available a type
conversion double to Point.

• The latter is slightly inefficient because first, a temporary object
of class point is created and only then the assignment takes
place.

• For efficiency reasons, it might be better to have an explicit
definition:

Point& Point::operator=(const double& xx) {
x = xx;
y = 0.0;
return *this;

}

c©Michael Hanke 2018 13 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

A First Operator

• Previously, we defined the negative of a Point (nonmember
function):

const Point negative(const Point& P) {
return Point(-P.X(),-P.Y());

}

• This can easily transformed in a unary minus operator (member
function):

const Point Point::operator-() const {
return Point(-x,-y);

}

• Note the first implicit parameter this!
• The old object will not change, therefore const.
• As previously, the result cannot be a reference.

• Now we can write

P = -Q;

c©Michael Hanke 2018 14 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Another Operator: +=

It is as simple as this:

const Point& Point::opertor+=(const Point& Q) {
x += Q.x;
y += Q.y;
return *this;

}

• We can write now W = P += Q; but not (P += Q) = W. Why?
Design error?

• We can also write P += 1.0; Might be better to define it
explicitely.

c©Michael Hanke 2018 15 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

And Finally: +

const Point Point::operator+(const Point& Q) const {
return Point(x+Q.x,y+Q.y);

}

Note: Creation of a temporary object!

c©Michael Hanke 2018 16 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Compare

Point& operator= (const Point&);
const Point operator- () const;
const Point& operator+=(const Point&);
const Point operator+ (const Point&) const;

c©Michael Hanke 2018 17 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

A Final Subtlety

• The following code is valid:

Point P, Q(1.0,2.0);
P = Q+3;

Note: The int 3 is converted to a double is converted to a
Point.

• Addition should be commutative. However, the expression P =
3.0+Q; leads to a compile time error. Why?

• Operators defined as member functions are “unsymmetric”!

We will need operators that are not member functions.

c©Michael Hanke 2018 18 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Friend Functions
• For implementing our operation, we would need a nonmember
function of the kind

const Point operator+(double x, const Point& Q);
• Even if this function belongs to the interface, it is not part of
the class. Consequently, it does not have access to the private
members.

• Access can be granted by providing the friend attribut in the
class declaration:

class Point {
friend const Point operator+(const double x,

const Point& Q);
};

• In the implementation, the actual definition takes place:

const Point operator+(double x, const Point& Q) {
return Point(x+Q.x,Q.y);

}
c©Michael Hanke 2018 19 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Remarks

• In the previous case, a non-friend, nonmember implementation
could have been provided:

const Point operator+(double x, const Point& Q) {
return Q+x;

}

• It is slightly more expensive because of the additional function
call.

• It is slightly better maintainable because it does not use the
internals of Point directly.

c©Michael Hanke 2018 20 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Demo

typetst.cpp

c©Michael Hanke 2018 21 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Good Practices

• Define overloaded operators consistently with the user’s
expectations. For example,

• P + Q and P += Q should deliver identical values.
• The operator + should not be overloaded with a subtraction-like

operation.

• If the class does I/O, define the shift operator consistently with
those of the built-in types.

• If a class has operator==, it should also provide operator!=.
• Be careful when overloading logical operators. Evaluation rules
of the built-in functions do not survive (short-circuit evaluation).

• Assignment and compound assignment should return a reference
to the left-hand operand.

• If a (commutative) binary operator accepts operands of different
types, both orders should be available.

c©Michael Hanke 2018 22 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Conventions

• Similarly to arithmetic or assignment operators, both << and >>
should return a reference to its left-hand argument.

• << and >> are left associative. So the left-hand argument is
always a stream.

• So the overloaded operators can neither be a member of the
stream class (we cannot add members to library classes) nor a
member of our own class.

• The declaration looks something like this:

ostream& operator<<(ostream& os, const class& item);
istream& operator>>(istream& is, class& item);

• Note: Input operators must deal with the possibility that the
input might fail; output operators usually don’t bother.

c©Michael Hanke 2018 23 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Example: << for Point

ostream& operator<<(ostream& os, const Point& P) {
os << “(“ << P.X() << “, “ << P.Y() << “)”;
return os;

}

Note: This operator could be made slightly more efficient by defining
it as a friend.
How?

c©Michael Hanke 2018 24 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Example: >> for Point

istream& operator>>(istream& is, Point& P) {
double x, y;
is >> x >> y;
if (is) // Success?
P = Point(x,y);

else
P = Point();

return is;
}

c©Michael Hanke 2018 25 (26)



Introduction

Michael
Hanke

Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

Overloading
I/O Operators

Summary

Summary

• How to overload operators
• Assignment operators
• this
• friend

• What comes next:
• Structured grids and their implementation

c©Michael Hanke 2018 26 (26)


	Introduction
	Copy-Assignment
	Operator Overloading
	Good Practices
	Overloading I/O Operators
	Summary

