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So far we have in the course learned about...

Methods suitable for large sparse matrices

Power method:

largest eigenvalue

Inverse iteration: eigenvalue closest to a target

Rayleigh Quotient Iteration: One eigenvalue based on starting guess

Arnoldi method for eigenvalue problems:
I Outer isolated eigenvalues
I Only requires matrix vector products Ay
I Underlying the matlab command: eigs

Now: QR-method

Underlying the matlab command: eig

Computes all eigenvalues

Suitable for dense problems

Small matrices in comparison to previous algorithms
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Agenda QR-method

1 Decompositions
I Jordan form
I Schur decomposition
I QR-factorization

2 Basic QR-method
3 Improvement 1: Two-phase approach

I Hessenberg reduction
I Hessenberg QR-method

4 Improvement 2: Acceleration with shifts

5 Convergence theory

Reading instructions

Point 1: TB Lecture 24 (background.pdf)
Points 2-4: Lecture notes (qrmethod.pdf)
Point 5: Lecture notes (qrmethod.pdf) (TB Chapter 28)
(Extra reading: TB Chapter 25-26, 28-29)
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Similarity transformation

Suppose A ∈ Cn×n and V ∈ Cn×n is an invertible matrix. Then

A

and
B = VAV−1

have the same eigenvalues.

Numerical methods based on similarity transformations

If B is triangular we can read-off the eigenvalues from the diagonal.

Idea of numerical method: Compute V such that B is triangular.
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First idea: compute the Jordan canonical form

Jordan canonical form (JCF)

Suppose A ∈ Cn×n. There exists an invertible matrix V ∈ Cn×n and a
block diagonal matrix such that

A = VΛV−1

where

Λ =

J1
. . .

Jk

 ,

where

Ji =


λi 1

. . .
. . .
. . . 1

λi

 , i = 1, . . . , k
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Common case: distinct eigenvalues

Suppose λi 6= λj , i = 1, . . . , n. Then,

Λ =

λ1 . . .

λm

 .

Common case: symmetric matrix

Suppose A = AT ∈ Rn×n. Then,

Λ =

λ1 . . .

λn

 .
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Example - numerical stability of Jordan form

Consider

A =

2 1
2 1

ε 2



If ε = 0. Then, the Jordan canonical form (JCF) is

Λ =

2 1
2 1

2

 .

If ε > 0. Then, the eigenvalues are distinct and

Λ =

2 + O(ε1/3)

2 + O(ε1/3)

2 + O(ε1/3)

 .

⇒ JCF not continuous with respect to ε
⇒ JCF is often not numerically stable
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Schur decomposition (essentially TB Theorem 24.9)

Suppose A ∈ Cn×n. There exists an unitary matrix P

P−1 = P∗

and a triangular matrix T such that

A = PTP∗.

The Schur decomposition is numerically stable.
Goal with QR-method: Numercally compute a Schur factorization
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Outline:
1 Decompositions

I Jordan form
I Schur decomposition
I QR-factorization

2 Basic QR-method
3 Improvement 1: Two-phase approach

I Hessenberg reduction
I Hessenberg QR-method

4 Improvement 2: Acceleration with shifts

5 Convergence theory
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QR-factorization

Suppose A ∈ Cn×n. There exists a unitary matrix Q ∈ Cn×n and an upper
triangular matrix R ∈ Cn×n such that

A = QR

Note: Very different from Schur factorization

A = PTP∗

QR-factorization can be computed with a finite number of operations

Schur decomposition directly gives us the eigenvalues
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Basic QR-method

Didactic simplifying assumption: All eigenvalues are real

Basic QR-method = basic QR-algorithm

Simple basic idea: Let A0 = A and iterate:

Compute QR-factorization of Ak = QR

Set Ak+1 = RQ.

Note:

A1 = RQ = Q∗A0Q ⇒ A0,A1, . . . have the same eigenvalues

More remarkable: Ak → triangular matrix (except special cases)
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Ak → triangular matrix:

* Time for matlab demo *

QR-method lecture 1 13 / 14



Ak → triangular matrix:

* Time for matlab demo *

QR-method lecture 1 13 / 14



Elegant and robust but not very efficient:

Disadvantages

Computing a QR-factorization is quite expensive. One iteration of the
basic QR-method

O(n3).

The method often requires many iterations.

Improvement demo:

http://www.youtube.com/watch?v=qmgxzsWWsNc
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