QR-method lecture 1

SF2524 - Matrix Computations for Large-scale Systems

So far we have in the course learned about...
Methods suitable for large sparse matrices

- Power method:

So far we have in the course learned about...
Methods suitable for large sparse matrices

- Power method: largest eigenvalue

So far we have in the course learned about...
Methods suitable for large sparse matrices

- Power method: largest eigenvalue
- Inverse iteration:

So far we have in the course learned about...
Methods suitable for large sparse matrices

- Power method: largest eigenvalue
- Inverse iteration: eigenvalue closest to a target

So far we have in the course learned about...
Methods suitable for large sparse matrices

- Power method: largest eigenvalue
- Inverse iteration: eigenvalue closest to a target
- Rayleigh Quotient Iteration:

So far we have in the course learned about...
Methods suitable for large sparse matrices

- Power method: largest eigenvalue
- Inverse iteration: eigenvalue closest to a target
- Rayleigh Quotient Iteration: One eigenvalue based on starting guess

So far we have in the course learned about...

Methods suitable for large sparse matrices

- Power method: largest eigenvalue
- Inverse iteration: eigenvalue closest to a target
- Rayleigh Quotient Iteration: One eigenvalue based on starting guess
- Arnoldi method for eigenvalue problems:
- Outer isolated eigenvalues
- Only requires matrix vector products $A y$
- Underlying the matlab command: eigs

So far we have in the course learned about...

Methods suitable for large sparse matrices

- Power method: largest eigenvalue
- Inverse iteration: eigenvalue closest to a target
- Rayleigh Quotient Iteration: One eigenvalue based on starting guess
- Arnoldi method for eigenvalue problems:
- Outer isolated eigenvalues
- Only requires matrix vector products $A y$
- Underlying the matlab command: eigs

Now: QR-method

- Underlying the matlab command: eig

So far we have in the course learned about...

Methods suitable for large sparse matrices

- Power method: largest eigenvalue
- Inverse iteration: eigenvalue closest to a target
- Rayleigh Quotient Iteration: One eigenvalue based on starting guess
- Arnoldi method for eigenvalue problems:
- Outer isolated eigenvalues
- Only requires matrix vector products $A y$
- Underlying the matlab command: eigs

Now: QR-method

- Underlying the matlab command: eig
- Computes all eigenvalues

So far we have in the course learned about...

Methods suitable for large sparse matrices

- Power method: largest eigenvalue
- Inverse iteration: eigenvalue closest to a target
- Rayleigh Quotient Iteration: One eigenvalue based on starting guess
- Arnoldi method for eigenvalue problems:

Outer isolated eigenvalues

- Only requires matrix vector products $A y$
- Underlying the matlab command: eigs

Now: QR-method

- Underlying the matlab command: eig
- Computes all eigenvalues
- Suitable for dense problems

So far we have in the course learned about...

Methods suitable for large sparse matrices

- Power method: largest eigenvalue
- Inverse iteration: eigenvalue closest to a target
- Rayleigh Quotient Iteration: One eigenvalue based on starting guess
- Arnoldi method for eigenvalue problems:

Outer isolated eigenvalues
Only requires matrix vector products $A y$ Underlying the matlab command: eigs

Now: QR-method

- Underlying the matlab command: eig
- Computes all eigenvalues
- Suitable for dense problems
- Small matrices in comparison to previous algorithms

Agenda QR-method

(1) Decompositions

Jordan form
-Schur decomposition
QR-factorization
(2) Basic QR-method
(3) Improvement 1: Two-phase approach

Hessenberg reduction
Hessenberg QR-method
(9) Improvement 2: Acceleration with shifts
(6) Convergence theory

Agenda QR-method

(1) Decompositions

Jordan form
Schur decomposition
QR-factorization
(2) Basic QR-method
(3) Improvement 1: Two-phase approach

Hessenberg reduction
Hessenberg QR-method
(9) Improvement 2: Acceleration with shifts
(6) Convergence theory
Reading instructions
Point 1: TB Lecture 24 (background.pdf)
Points 2-4: Lecture notes (qrmethod.pdf)
Point 5: Lecture notes (qrmethod.pdf) (TB Chapter 28)
(Extra reading: TB Chapter 25-26, 28-29)
(1) Decompositions

- Jordan form
- Schur decomposition
- QR-factorization
(2) Basic QR-method
(3) Improvement 1: Two-phase approach
- Hessenberg reduction
- Hessenberg QR-method
(4) Improvement 2: Acceleration with shifts
(5) Convergence theory

Similarity transformation
Suppose $A \in \mathbb{C}^{n \times n}$ and $V \in \mathbb{C}^{n \times n}$ is an invertible matrix. Then
A
and

$$
B=V A V^{-1}
$$

have the same eigenvalues.

Similarity transformation

Suppose $A \in \mathbb{C}^{n \times n}$ and $V \in \mathbb{C}^{n \times n}$ is an invertible matrix. Then

A

and

$$
B=V A V^{-1}
$$

have the same eigenvalues.

Numerical methods based on similarity transformations

- If B is triangular we can read-off the eigenvalues from the diagonal.
- Idea of numerical method: Compute V such that B is triangular.

First idea: compute the Jordan canonical form
Jordan canonical form (JCF)

First idea: compute the Jordan canonical form
Jordan canonical form (JCF)
Suppose $A \in \mathbb{C}^{n \times n}$. There exists an invertible matrix $V \in \mathbb{C}^{n \times n}$ and a block diagonal matrix such that

$$
A=V \wedge V^{-1}
$$

First idea: compute the Jordan canonical form
Jordan canonical form (JCF)
Suppose $A \in \mathbb{C}^{n \times n}$. There exists an invertible matrix $V \in \mathbb{C}^{n \times n}$ and a block diagonal matrix such that

$$
A=V \wedge V^{-1}
$$

where

$$
\Lambda=\left(\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{k}
\end{array}\right)
$$

where

$$
J_{i}=\left(\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right), \quad i=1, \ldots, k
$$

Common case: distinct eigenvalues
Suppose $\lambda_{i} \neq \lambda_{j}, i=1, \ldots, n$. Then,

$$
\Lambda=\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{m}
\end{array}\right)
$$

Common case: distinct eigenvalues
Suppose $\lambda_{i} \neq \lambda_{j}, i=1, \ldots, n$. Then,

$$
\Lambda=\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{m}
\end{array}\right)
$$

Common case: symmetric matrix
Suppose $A=A^{T} \in \mathbb{R}^{n \times n}$. Then,

$$
\Lambda=\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

Example - numerical stability of Jordan form
Consider

$$
A=\left(\begin{array}{lll}
2 & 1 & \\
& 2 & 1 \\
\varepsilon & & 2
\end{array}\right)
$$

Example - numerical stability of Jordan form

Consider

$$
A=\left(\begin{array}{lll}
2 & 1 & \\
& 2 & 1 \\
\varepsilon & & 2
\end{array}\right)
$$

If $\varepsilon=0$. Then, the Jordan canonical form (JCF) is

$$
\Lambda=\left(\begin{array}{lll}
2 & 1 & \\
& 2 & 1 \\
& & 2
\end{array}\right)
$$

Example - numerical stability of Jordan form

Consider

$$
A=\left(\begin{array}{lll}
2 & 1 & \\
& 2 & 1 \\
\varepsilon & & 2
\end{array}\right)
$$

If $\varepsilon=0$. Then, the Jordan canonical form (JCF) is

$$
\Lambda=\left(\begin{array}{lll}
2 & 1 & \\
& 2 & 1 \\
& & 2
\end{array}\right)
$$

If $\varepsilon>0$. Then, the eigenvalues are distinct and

$$
\Lambda=\left(\begin{array}{ccc}
2+O\left(\varepsilon^{1 / 3}\right) & & \\
& 2+O\left(\varepsilon^{1 / 3}\right) & \\
& & 2+O\left(\varepsilon^{1 / 3}\right)
\end{array}\right)
$$

Example - numerical stability of Jordan form

Consider

$$
A=\left(\begin{array}{lll}
2 & 1 & \\
& 2 & 1 \\
\varepsilon & & 2
\end{array}\right)
$$

If $\varepsilon=0$. Then, the Jordan canonical form (JCF) is

$$
\Lambda=\left(\begin{array}{lll}
2 & 1 & \\
& 2 & 1 \\
& & 2
\end{array}\right)
$$

If $\varepsilon>0$. Then, the eigenvalues are distinct and

$$
\Lambda=\left(\begin{array}{ccc}
2+O\left(\varepsilon^{1 / 3}\right) & & \\
& 2+O\left(\varepsilon^{1 / 3}\right) & \\
& & 2+O\left(\varepsilon^{1 / 3}\right)
\end{array}\right)
$$

\Rightarrow JCF not continuous with respect to ε
\Rightarrow JCF is often not numerically stable

Schur decomposition (essentially TB Theorem 24.9)
Suppose $A \in \mathbb{C}^{n \times n}$. There exists an unitary matrix P

$$
P^{-1}=P^{*}
$$

and a triangular matrix T such that

$$
A=P T P^{*} .
$$

Schur decomposition (essentially TB Theorem 24.9)
Suppose $A \in \mathbb{C}^{n \times n}$. There exists an unitary matrix P

$$
P^{-1}=P^{*}
$$

and a triangular matrix T such that

$$
A=P T P^{*} .
$$

The Schur decomposition is numerically stable. Goal with QR-method: Numercally compute a Schur factorization

Outline:

(1) Decompositions

- Jordan form
- Schur decomposition
- QR-factorization
(2) Basic QR-method
(3) Improvement 1: Two-phase approach
- Hessenberg reduction
- Hessenberg QR-method
(9) Improvement 2: Acceleration with shifts
(6) Convergence theory

QR-factorization

Suppose $A \in \mathbb{C}^{n \times n}$. There exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ and an upper triangular matrix $R \in \mathbb{C}^{n \times n}$ such that

$$
A=Q R
$$

QR-factorization

Suppose $A \in \mathbb{C}^{n \times n}$. There exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ and an upper triangular matrix $R \in \mathbb{C}^{n \times n}$ such that

$$
A=Q R
$$

Note: Very different from Schur factorization

$$
A=P T P^{*}
$$

- QR-factorization can be computed with a finite number of operations
- Schur decomposition directly gives us the eigenvalues

Basic QR-method

Didactic simplifying assumption: All eigenvalues are real

Basic QR-method

Didactic simplifying assumption: All eigenvalues are real
Basic QR-method $=$ basic QR-algorithm
Simple basic idea: Let $A_{0}=A$ and iterate:

- Compute $Q R$-factorization of $A_{k}=Q R$
- Set $A_{k+1}=R Q$.

Basic QR-method

Didactic simplifying assumption: All eigenvalues are real

Basic QR-method = basic QR-algorithm

Simple basic idea: Let $A_{0}=A$ and iterate:

- Compute $Q R$-factorization of $A_{k}=Q R$
- Set $A_{k+1}=R Q$.

Note:

- $A_{1}=R Q=Q^{*} A_{0} Q \Rightarrow A_{0}, A_{1}, \ldots$ have the same eigenvalues

Basic QR-method

Didactic simplifying assumption: All eigenvalues are real

Basic QR-method = basic QR-algorithm

Simple basic idea: Let $A_{0}=A$ and iterate:

- Compute $Q R$-factorization of $A_{k}=Q R$
- Set $A_{k+1}=R Q$.

Note:

- $A_{1}=R Q=Q^{*} A_{0} Q \Rightarrow A_{0}, A_{1}, \ldots$ have the same eigenvalues
- More remarkable: $A_{k} \rightarrow$ triangular matrix (except special cases)
$A_{k} \rightarrow$ triangular matrix:

$A_{k} \rightarrow$ triangular matrix:

* Time for matlab demo *

Elegant and robust but not very efficient:

Elegant and robust but not very efficient:

Disadvantages

- Computing a QR-factorization is quite expensive. One iteration of the basic QR-method

$$
\mathcal{O}\left(n^{3}\right)
$$

Elegant and robust but not very efficient:

Disadvantages

- Computing a QR-factorization is quite expensive. One iteration of the basic QR-method

$$
\mathcal{O}\left(n^{3}\right)
$$

- The method often requires many iterations.

Improvement demo:
http://www. youtube.com/watch?v=qmgxzsWWsNc

