
Application Layer
IK2218/EP2120

Peter Sjödin, psj@kth.se
KTH School of ICT

Acknowledgements

• The presentation builds upon material from
-  Previous slides by György Dan, Markus Hidell, Björn

Knutsson and Peter Sjödin
-  Computer Networking: A Top Down Approach, 6th ed.

Jim Kurose, Keith Ross. Addison-Wesley.
-  TCP/IP Protocol Suite, 4th ed, Behrouz Foruzan.

McGraw-Hill.

2

Outline

• Introduction to application
layer
-  Principles
-  Client-server
-  Peer-to-peer

• Creating network
applications
-  Socket programming API

• Learning by examples
-  Structure of application-layer

protocols

• Web
-  Hypertext Transfer Protocol

(HTTP)
-  Web documents
-  Cookies

• Remote login
-  Telnet and SSH

• Email
-  SMTP
-  POP and IMAP
-  Email message format,

•  RFC-822, MIME

• Multimedia networking
-  Streaming and real-time media
-  RTP

3

What Do We Use the Internet For?

• E-mail
• Web
• Text messaging
• Remote login
• P2P file sharing
• Multi-user online games
• Streaming stored video
and audio
- YouTube, Hulu, Netflix,
Spotify

• Voice over IP
- Skype, Rebtel, SIP

• Real-time video
conferencing

• Social networking
• Search
• Storage

•  Dropbox, Box, SkyDrive,
iCloud, Google Drive

• Remote applications
•  Google Apps, Windows

Office 365, iCloud/iWorks

• …
4

Creating an Application

Write programs that:
• Run on (different) end systems
• Communicate over network

- Web server software communicates
with browser software

Applications run on end-systems only
• new services and applications can be
designed and deployed quickly

• No need to write software for network-
core devices (routers/switches)

5

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application Architectures

• Possible structure of applications:
-  Client-server
-  Peer-to-peer (P2P)

6

Client-Server Architecture

• Server:
-  Always on
-  Permanent IP address
- Well-known port

•  E.g. 80 for HTTP
- Data centers for scaling

• Clients:
-  Communicate with server
- May be intermittently connected
- May have dynamic IP addresses
-  “Ephemeral” ports

•  Short-lived, dynamic
- Do not communicate directly with

each other

client/server

2-7

P2P Architecture

• No always-on server
• Arbitrary end-systems directly

communicate
• Peers request service from other

peers, provide service in return
to other peers
-  Self scalability

•  new peers bring new service
capacity, as well as new
service demands

• Peers are intermittently
connected and change IP
addresses
-  Complex management

peer-peer

2-8

Outline

• Introduction to application
layer
-  Principles
-  Client-server
-  Peer-to-peer

• Creating network
applications
-  Socket programming API

• Learning by examples
-  Structure of application-layer

protocols

• Web
-  Hypertext Transfer Protocol

(HTTP)
-  Web documents
-  Cookies

• Remote login
-  Telnet and SSH

• Email
-  SMTP
-  POP and IMAP
-  Email message format,

•  RFC-822, MIME

• Multimedia networking
-  Streaming and real-time media
-  RTP

9

Socket API

10

• Socket – represents endpoint for
communication

• Socket API
-  Application Programming Interface for

network applications
-  Socket addresses

•  IP address + port number

Datagram from client 1
Datagram from client 2
Datagram from client 3

LegendUDP Client/Server

11

• Sequential server
-  Process one client request at a time

UDP Client/Server Implementation

12

sock = socket(UDP_over_IP)
create socket of given type

sendto(sock, request, server)
send message to destination

(request, from) = recvfrom(sock)
receive a message, together with address it came
from

close(sock)
Terminate socket

bind(sock, server)
Tie an address (well-known port) to socket

Datagram(request)

Datagram(reply)

TCP Client/Server

• Concurrent server
- Handle multiple clients at the same time

13

Well-known port is used for all server
processes – parent and children. (They
use different sockets, though.)

TCP Client/Server Implementation

14

connect(fd, server)
Open connection listen(listfd)

Prepare for incoming connections

accept(listfd)
Get a new incoming connection

fork()
Create a child
process to serve the
new client. Parent
continues to accept
new connections.

Connection handshake

Outline

• Introduction to application
layer
-  Principles
-  Client-server
-  Peer-to-peer

• Creating network
applications
-  Socket programming API

• Learning by examples
-  Structure of application-layer

protocols

• Web
-  Hypertext Transfer Protocol

(HTTP)
-  Web documents
-  Cookies

• Remote login
-  Telnet and SSH

• Email
-  SMTP
-  POP and IMAP
-  Email message format,

•  RFC-822, MIME

• Multimedia networking
-  Streaming and real-time media
-  RTP

15

Application-Layer Protocols

• Application-layer
protocols define
- Types of messages

•  Request, response, etc
- Message syntax

•  Fields in messages
•  How fields are delineated

- Message semantics
•  Meaning of information in

fields
- Rules for sending and
responding
•  When and how processes

send messages

• Open protocols:
- Defined in IETF RFCs
- Allows for interoperability
- HTTP and SMTP for
example

• Proprietary protocols:
- Skype, for example

16

Outline

• Introduction to application layer
-  Principles
-  Client-server
-  Peer-to-peer

• Creating network applications
-  Socket programming API

• Learning by examples
-  Structure of application-layer

protocols

• Web
-  Hypertext Transfer Protocol (HTTP)
-  Web documents
-  Cookies
-  HTTP/2

• Remote login
-  Telnet and SSH

• Email
-  SMTP
-  POP and IMAP
-  Email message format,

•  RFC-822, MIME

• Multimedia networking
-  Streaming and real-time media
-  RTP

17

Web and HTTP

First, a review…
• Web page consists of objects
• Object can be HTML file, JPEG image, Java applet, audio file,…
• Web page consists of base HTML-file which includes several

referenced objects
•  Each object is addressable by a URL, Uniform Resource Locator,

e.g.,

http://www.someschool.edu/someDept/pic.gif

host name path name protocol

18

HTTP Overview

HTTP: hypertext transfer
protocol

• Web application layer
protocol

• client/server model
-  client:

•  browser that requests, receives,
(using HTTP) and “displays” Web
objects

-  server:
•  Web server sends (using HTTP)

objects in response to requests

PC running
Firefox browser

server
running

Apache Web
server

iphone running
Safari browser

19

HTTP Overview (continued)
uses TCP:
• client initiates TCP connection
(creates socket) to server,
port 80

• server accepts TCP connection
from client

• HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web server
(HTTP server)

• TCP connection closed

2-2
0

HTTP is “stateless”
• server maintains no
information about past
client requests

protocols that maintain
“state” are complex!

v  past history (state) must be
maintained

v  if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

HTTP Request Message

• two types of HTTP messages: request, response
• HTTP request message:

-  ASCII text (human-readable format)

request line
(GET, POST,
HEAD commands)

header
 lines

Empty line indicates
end of header lines

GET /index.html HTTP/1.1
Host: www-net.cs.umass.edu
User-Agent: Firefox/3.6.10
Accept: text/html,application/xhtml+xml
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7
Keep-Alive: 115
Connection: keep-alive

21

Uploading form input
POST method:
• web page often includes
form input

• input is uploaded to server
in entity body

URL method:
• uses GET method
• input is uploaded in URL
field of request line:

www.somesite.com/animalsearch?monkeys&banana

22

Method Types

HTTP/1.0:
• GET
• POST
• HEAD

-  asks server to leave requested
object out of response

HTTP/1.1:
• GET, POST, HEAD
• PUT

-  uploads file in entity body to
path specified in URL field

• DELETE
-  deletes file specified in the

URL field

23

HTTP Response Message
status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK
Date: Sun, 26 Sep 2010 20:09:20 GMT
Server: Apache/2.0.52 (CentOS)
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT
ETag: "17dc6-a5c-bf716880”
Accept-Ranges: bytes
Content-Length: 2652
Keep-Alive: timeout=10, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=ISO-8859-1

data data data data data ...

24

HTTP Response Status Codes

200 OK
-  request succeeded, requested object later in this response

301 Moved Permanently
-  requested object moved, new location specified later in this

response (Location:)
400 Bad Request

-  Request not understood by server
404 Not Found

-  requested document not found on this server
505 HTTP Version Not Supported

v  status code appears in first line in server-to-client
response message.

v  some sample codes:

25

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

by typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)
26

Non-persistent Connection

27

• One TCP connection per HTTP
request/response transaction

• Having several TCP
connections could increase
load on network (congestion)
and server

• TCP handshake and slow start
for each HTTP transaction

Persistent Connection

28

• Reuse same TCP connection for
multiple HTTP request/response
transactions
- Default as of HTTP 1.1

• How long should connection
be left open?
- Occupies server resources
-  Controlled by “Keep-Alive”

header

GET /index.html HTTP/1.1
Connection: keep-alive

HTTP/1.1 200 OK
Keep-Alive: timeout=10, max=100
Connection: keep-alive

HTTP request HTTP response

HyperText Markup Language (HTML)

(b)

HTML for sample web page Formatted web page

29

Web Documents

• Static documents
-  Fixed document on server
-  Same for all

• Dynamic documents
- Generated by running a program on the server

•  For each request
• Active documents

-  Server sends a program to run on the client

30

Request1

Static document

2

Dynamic Documents

• Server-side script
-  Embedding scripts in

HTML code
•  PHP, JSP, ASP,

ColdFusion, …

31

Request1

Dynamic document

2

• Common Gateway
Interface (CGI)
-  Rules and formats for

running server program
•  C, C++, sh, bash,

perl, …

Request1

Dynamic document

2

Active Documents

• Java applets
-  Compiled
-  Binary format –

Java bytecode

32

• Client-side script
-  Source code
-  JavaScript, Ajax, …

Request1

Result

Run the applet
to get the result

Active document

2Applet

Request1

Run the JavaScript
(JS) to get the result

Result

2

JavaScript

JS

User-Server State: Cookies

Many Web sites use cookies
Four components:

1) cookie header line of
HTTP response message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed by
user’s browser

4) back-end database at
Web site

Example:
• Susan always accesses
Internet from PC

• visits specific e-commerce
site for first time

• when initial HTTP requests
arrives at site, site creates:
- unique ID
- entry in backend database
for ID

33

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
 entry

usual http response
set-cookie: 1678 ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

34

Cookies (continued)

35

What cookies can be
used for:

• authorization
• shopping carts
• recommendations
• user session state (Web e-
mail)

cookies and privacy:
v  cookies permit sites to

learn a lot about you
v  For instance, you may

supply name and e-mail
to sites

aside

How to keep ”state”:
v  protocol endpoints: maintain

state at sender/receiver over
multiple transactions

v  cookies: http messages carry
state

Controlling cookies:
v  Cookie acceptance policy

in browser
v  List and remove cookies

manually

aside

Laws and Regulations

36

In EU, placing a cookie on a user’s computer requires that the user is informed, and
that the user consents to it. (This applies not only to cookies, but to any similar
technology that stores and accesses information on the user’s device.)

Lagen om elektronisk kommunikation
http://www.pts.se/sv/Bransch/Regler/Lagar/Lag-om-elektronisk-kommunikation/Cookies-kakor 2015-09-21

EU Cookie Law (ePrivacy directive, 2002/58/EC)
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:EN:HTML 2015-09-21

http://www.cookiechoices.org 2015-09-21

Web caches (proxy server)

37

• User configures browser:
Web accesses via cache

• Browser sends all HTTP
requests to cache
-  if object in cache

•  cache returns object

- else
•  cache requests object from

origin server,
•  then returns object to client

goal: satisfy client request without involving origin server

client

proxy
server

client origin
server

origin
server

More About Web Caching

38

• Cache acts as both
client and server
-  server for original

requesting client
-  client to origin server

• Typically cache is
installed by ISP
(university, company,
residential ISP)

Why Web caching?
• Reduce response time for
client request

• Reduce traffic on an
organization’s access link

• Internet dense with
caches: enables ”poor”
content providers to
effectively deliver content
(so too does P2P file
sharing)

HTTP/2

• HTTP performance trends
- More HTTP transfers per page
- More data per transfer
-  Request/response stop-and-wait

• TCP efficiency
-  Congestion control has little effect with many short

connections
-  Redundancy with same information sent many times
-  Stop-and-wait nature of TCP handshakes

• User experience suffers as page load time increases
• Negative influence on server load and performance

39

HTTP/2 (continued)

• Multiplexing to support loading of multiple objects at the
same time over single connection

• More compact header format
-  Binary format (not text)
-  Compression to remove redundancy

• Advanced features, such as server push
-  Server knows which objects the browser will request next

– send them in advance
• Backward compatibility – version negotiation
• Originates from SPDY research project initiative by

Google

•  HTTP/2 home page https://http2.github.io/
•  RFC 7540 – Hypertext Transfer Protocol version 2 (HTTP/2)
•  RFC 7541 – HPACK: Header Compression for HTTP/2

40

Outline

• Introduction to application
layer
-  Principles
-  Client-server
-  Peer-to-peer

• Creating network
applications
-  Socket programming API

• Learning by examples
-  Structure of application-layer

protocols

• Web
-  Hypertext Transfer Protocol

(HTTP)
-  Web documents
-  Cookies

• Remote login
-  Telnet and SSH

• Email
-  SMTP
-  POP and IMAP
-  Email message format,

•  RFC-822, MIME

• Multimedia networking
-  Streaming and real-time media
-  RTP

41

Telnet Remote Login

• Run applications from a CLI
•  Command Line Interface

–  Text commands

•  Windows Command Prompt and PowerShell
•  Unix/Linux shell

–  sh, ksh, csh, tcsh, bash, …

42

Local
login

Remote
login

Telnet

• One of the first
Internet protocols
- RFC 15

• Intended for remote login
- Text commands over TCP
connection
•  Default port 23

• Can be used to test
text-based protocols
in general
- SMTP, HTTP, …

43

~$ telnet server
Trying 192.168.13.14...
Connected to server.
Escape character is '^]'.

Welcome to Ubuntu 14.04.1 LTS

server login:

~$ telnet www.kth.se 80
Trying 130.237.32.143...
Connected to www.kth.se (130.237.32.143).
Escape character is '^]'.
GET / HTTP/1.1
Host: www.kth.se

HTTP/1.1 200 OK
…

SSH – Secure Shell
• Telnet considered insecure

- No encryption – eavesdropping
- No authentication of client/server

• SSH
-  Encryption and authentication
-  Create a secure (encrypted and authenticated)

channel over TCP
- Default port 22

44

Port Forwarding
• Create a secure connection, tunnel, between (TCP) ports on

two machines
• SSH client/server act as proxies
• In this way, any legacy (insecure) application can run over a

secure connection

-  For example, telnet over a secure tunnel:

•  Set up SSH tunnel with port forwarding from port 9023 on
“Client” to port 23 (telnet) on “Server”

•  Command “telnet localhost 9023” on “Client” will connect to
telnet server on port 23 on “Server” via SSH tunnel

45

port 9023

port 23

port 22
SSH SSH

Remote Login Applications

• “telnet” application for command line interface (CLI)
-  Linux/Unix, Windows, …

• OpenSSH
- Open source, part of OpenBSD project
-  CLI

•  “ssh” command
-  Ported to most platforms
-  http://www.openssh.org/

• PuTTY
- GUI-based Windows application
-  SSH and telnet
- Open source, http://www.putty.org/

46

Outline

• Introduction to application
layer
-  Principles
-  Client-server
-  Peer-to-peer

• Creating network
applications
-  Socket programming API

• Learning by examples
-  Structure of application-layer

protocols

• Web
-  Hypertext Transfer Protocol

(HTTP)
-  Web documents
-  Cookies

• Remote login
-  Telnet and SSH

• Email
-  SMTP
-  POP and IMAP
-  Email message format,

•  RFC-822, MIME

• Multimedia networking
-  Streaming and real-time media
-  RTP

47

User Agent and Mail Server
• User Agent

-  “Mail reader”
-  Program to create and read e-mail
-  Examples: Outlook, Thunderbird, Kmail, Envelope, …

• Mail server
-  Keeps users’ e-mail in mailboxes

48

1

2

Message Transfer Agent

• Transfers message to mail server

49

1

2 3 4

5

Sender and receiver on different mail servers

Message Push and Pull

50
Sender and receiver separate from mail servers (network between)

• Sender (Alice) transfers message to outgoing mail server
- MTA

• Receiver (Bob) accesses mail on incoming mail server
- MAA

1

2

3

4 5 6

8

9

Push Pull

Simple Mail Transfer Protocol (SMTP)

• Uses TCP to reliably transfer
email message from client to
server
-  port 25

• Direct transfer: sending server
to receiving server

• Three phases of transfer
-  handshaking (greeting)
-  transfer of messages
-  Closure

• Command/response interaction
(like HTTP, FTP)
-  commands: ASCII text
-  response: status code and phrase

• Messages must be in 7-bit ASCII

51

52

Message Transfer

Try SMTP Interaction for Yourself

• telnet servername 25
• see 220 reply from server
• enter HELO, MAIL FROM, RCPT TO, DATA,
QUIT commands

above lets you send email without using
email client (reader)

53

SMTP Remarks

• SMTP uses persistent
connections

• SMTP requires message
(header & body) to be in 7-
bit ASCII

• SMTP server uses line with
single period (CRLF.CRLF)to
determine end of message

comparison with HTTP:
• HTTP: pull
• SMTP: push

• both have ASCII command/
response interaction, status
codes

• HTTP: each object
encapsulated in its own
response message

• SMTP: multiple objects sent
in multipart message

54

Mail Message Format

55

RFC 5322 (RFC 822):
standard for text message
format:

• header lines, e.g.,
-  To:
-  From:
-  Subject:
different from SMTP MAIL
FROM, RCPT TO:
commands!

• Body: the “message”
-  ASCII characters only

header

body

blank
line

MIME
• Multipurpose Internet Mail Extensions

- RFC 2045 and more
• Content formats and encodings for SMTP (7-bit ASCII)

-  Binary (non-text) objects (binary files)
- Non-ASCII text (“Å”, “Ä”, “Ö” for instance)
- Multi-part message bodies

• Extensions for secure email – S/MIME, PGP, …

MIME-version: 1.0
Content-type: multipart/mixed; boundary="frontier"

This is a multi-part message in MIME format.
--frontier
Content-type: text/plain

This is the body of the message.
--frontier
Content-type: application/octet-stream
Content-transfer-encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB0aGUg
Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cg==
--frontier--

From Wikipedia 56

Base64 Content Encoding

• Three 8-bit words becomes four (7-bit) ASCII
characters

• Intended for binary data

57

Quoted-Printable Content Encoding

• Non-ASCII 8-bit data “qouted”
-  Translated to sequence of 7-bit ASCII data
-  Equals sign “=“ is escape character

• Intended for text interspersed with non-ASCII
-  Such as Swedish…

58

Format of an Email

SMTP

RFC 5322,
MIME, etc

59

Mail Access Protocols

60

• SMTP: delivery/storage to receiver’s server
• Mail access protocol: retrieval from server

- POP: Post Office Protocol [RFC 1939]: authorization,
download

-  IMAP: Internet Mail Access Protocol [RFC 1730]:
more features, including manipulation of stored
messages on server

- HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
 IMAP)

user
agent

user
agent

POP3

authorization phase
• client commands:

-  user: declare username
-  pass: password

• server responses
- +OK
-  -ERR

transaction phase, client:
•  list: list message numbers
• retr: retrieve message by

number
• dele: delete
• quit

61

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

POP3 (more) and IMAP

more about POP3
• Previous example uses POP3
“download and delete” mode
- Bob cannot re-read e-mail
if he changes client

• POP3 “download-and-keep”:
copies of messages on
different clients

• POP3 is stateless across
sessions

IMAP
• Keeps all messages in one
place: at server

• Allows user to organize
messages in folders

• Keeps user state across
sessions:
- Names of folders and
mappings between
message IDs and folder
name

62

Outline

• Introduction to application
layer
-  Principles
-  Client-server
-  Peer-to-peer

• Creating network
applications
-  Socket programming API

• Learning by examples
-  Structure of application-layer

protocols

• Web
-  Hypertext Transfer Protocol

(HTTP)
-  Web documents
-  Cookies

• Remote login
-  Telnet and SSH

• Email
-  SMTP
-  POP and IMAP
-  Email message format,

•  RFC-822, MIME

• Multimedia networking
-  Streaming and real-time media
-  RTP

63

Multimedia Networking

• Multimedia
-  Integration of multiple forms of media
-  Can refer to audio or video only

• Transmission can be
-  Human to human
-  Human to machine
-  Machine to machine

• Continuous consumption
-  Timely delivery
-  Limited loss acceptable

Multimedia Networking vs. Data Transfer
Multimedia
networking

time By
te

s
tr

an
sm

it
te

d

time

By
te

s
re

ce
iv

ed

By
te

s
pr

oc
es

se
d

time

Data
transfer

network
delay

File processed
when all data
arrive

time By
te

s
tr

an
sm

it
te

d

time

By
te

s
re

ce
iv

ed

Data arriving
played out with
some delay -
buffering By

te
s

pr
oc

es
se

d
time

network
delay

Playout delay

Jitter and Playout Buffer

• Client-side buffering to delay the playout – Playout buffer
-  Compensates for delay jitter
-  Playout delay can be dynamically adapted

buffered
video

variable fill
rate, x(t)

constant
 drain
rate, d

l Media play out at fixed rate

l Jitter – Internet end-to-end delay varies over time
-  Jitter -> late delivery -> appears as loss

Multimedia Networking Applications

• Interactive applications
-  Strict delay constraints (e.g., telephony,

videoconferencing)
-  Session management, locating users, option

negotiation
•  H.323 (ITU) and SIP (IETF)

• Streaming applications

-  Limited delay-sensitivity (e.g., Video-on-demand, live
streaming)

-  Interactivity creates strict delay constraints
•  VCR like functionality: FF, Rewind, Pause, Seek
•  Acceptable response times and initial delay

TCP or UDP?

• Arguments for UDP
-  Multimedia can tolerate some loss
-  Minimum overhead
-  Short delay

•  No retransmissions
•  No congestion control, slow start, etc.

• Arguments for TCP
-  Multimedia can tolerate some delay
-  Congestion control

•  Fairness towards other TCP applications
•  Helps to avoid overloading the network

-  Well integrated with HTTP
•  Multimedia on the web

-  Passes through firewalls

68

Real-time Transport Protocol

• RTP, RFC 3550 and more
• Mechanisms to synchronize and order data
• Runs on top of UDP

RTP Message

•  Payload type – different encoding formats
• Sequence number – for receiver to detect out-of-order delivery
•  Timestamp – allows receiver to schedule playback (relative)
• Synchronization source – session coordinator/mixer
• Contributor – allows for multiple sources (contributors) per session

RTP

• Often used together with Real-Time Control Protocol
-  RTCP
-  Feedback to sender about channel state

• Examples
-  SIP (Voice over IP, Video conferencing)
- Digital Video Broadcast (DVB) over IP

Application Layer Summary

• Client-server and peer-to-peer
• Application design

-  Concurrency – client-server
-  Socket API

• Example application layer protocols
- Web and HTTP
-  Remote login

•  Telnet and SSH
-  Email

•  SMTP, POP, IMAP for message transfer and access
•  RFC-822, MIME for message formats

• Multimedia networking
-  TCP or UDP
-  RTP

72

