

EP2120 Internetworking

IK2218 Protocols and Principles of the Internet

Introduction

Lecture 1

György Dán KTH/EE/LCN

Literature:

Forouzan, TCP/IP Protocol Suite (3^{ed} Ch 1,2,3)(4^{ed} Ch 1,2,3)

What is the Internet?

Global information infrastructure

Introduction

What is the Internet?

• Network of networks = Internetwork

Example IXP: NetNod

- Netnod: Swedish IXP
 - Locations: Stockholm, Göteborg, Malmö, Sundsvall, Luleå
 - 272 ASs: Tele2, Breadband2, TeliaSonera, Comhem, Telenor, Riksnet, Bahnhof, Akamai, ...
 - Technology: 1G/10G/100G Ethernet
 - Price (2x10G)
 - 22KEUR/y

Introduction

Example IXP: AMS-IX

- Amsterdam Internet Exchange
 - Location: multiple in Amsterdam
 - 801 ASs: Tele2, TeliaSoneraIC, Telenor, Bahnhof, Akamai, Deutche Telekom, Orange, AT&T, Verizon, NTT, Google, Amazon, Yahoo, ...
 - Technology: 1G/10G/100G Ethernet
 - Price (10G):
 - 15KEUR/y

http://www.ams-ix.net/statistics

Quiz

- You transfer 1GB of data from Host A to Host B. Because of this data transfer:
 - 1) AS1 will have to pay to AS2
 - 2) AS2 will have to pay to AS1
 - 3) AS1 will have to pay to AS3
 - 4) AS3 will have to pay to AS4
 - 5) AS3 will have to pay to AS2
 - 6) None of the above

Communication Protocols

- All Internet communications follow some protocol
- Defines
 - Syntax format
 - Synchronization order of messages sent and received among entities
 - Semantics actions taken upon sending and receiving
- Level of openness
 - Proprietary
 - De-facto standard
 - Standard

Interoperability Market competition

Layered Protocol Stack

- Modular design for complex system
 - Modules implement functionality
 - Interfaces define services towards other modules
 - Explicit structure to express relationships

- · Easier maintenance and change management
 - Can change the implementation of a module
- Layering
 - One dimensional hierarchy of modules
 - Functions with related uses constitute a layer

Standards and Policy Organizations

- · Internet specific
 - Internet Society (ISOC)
 - IAB- Internet Architecture Board
 - IETF Internet Engineering Task Force
 - Internet Corporation for Assigned Names and Numbers (ICANN)
 - Internet Assigned Numbers Authority (IANA)

ISOC

IAB

- Not Internet specific
 - ISO International Standards Organization
 - IEEE Institute of Electrical and Electronics Engineers
 - ITU-T International Telecommunications Union Telecom Standards
 - W3C World Wide Web Consortium

Internet Engineering Task Force

- Primary standardization body of Internet protocols
 - Layers 3 to 5
- Work structure
 - Working groups in thematic areas
 - Mailing lists and periodic meetings
 - Open to anyone
 - Requirement specification to standards
- Standards called Request for Comments (RFC)
 - ~7000 RFCs defining Internet protocols (some obsolete)

Read: https://www.ietf.org/about/

Introduction

Internet Design Goals

- Primary
 - "effective technique for multiplexed utilization of existing interconnected networks"
- Secondary
 - "Internet communication must continue despite loss of networks or gateways."
 - "The Internet must support multiple types of communications service."

- ...

D. Clark, "The Design Philospophy of the DARPA Internet Protocols," in Proc. of SIGCOMM, 1988

Goal 1: Inter-networking

"effective technique for multiplexed utilization of existing interconnected networks"

- Interconnection existing networks
 - ARPANET and ARPA packet radio program, others to come
 - Enable providing larger service
 - Networks administered independently
 - Serves as a glue between networks interoperability
- Multiplexing based on packet switching
 - ARPANET and ARPA used packet switching
 - Primary application remote login
- Effective "store and forward"
 - Gateways (routers) deliver packets between networks

Introduction

Goal 2: Survivability

"Internet communication must continue despite loss of networks or gateways."

- Communication should continue in case of a network failure once the network is restored
 - State should not be lost
- Fate sharing
 - State in end hosts (not in the network)

- Consequence
 - Internet gateways (routers) stateless in principle
 - Hosts more complex, can fail/misbehave

Goal 3: Versatility

"The Internet must support multiple types of communications service."

- End-to-end Argument
 - "functions placed at low levels of a system may be redundant or of little value when compared with the cost of providing them at that low level"

Saltzer, Reed, Clark, "End-to-end Arguments in System Design," ACM Transactions on Computer Systems 2 (4), Nov., 1984, pp. 277-288.

- In the Internet: Functions should be simple and general
 - · Low complexity
 - Increases the chances of new applications
- In end-hosts: Application-specific functions
 - Can be optimized for application requirements

Introduction

Summary

- Internet Network of networks
- Edge/Access/Core
- Hierarchical structure 3 Tiers
 - Transit/peering, exchange points
- Protocols, standards, organizations
- Layering, encapsulation, multiplexing
- Design goals of the Internet

