

# What makes the energy future problematic?

## Fossil energy completely dominates..









- Hydro-Elect
- Nat Gas
- Oil
- Coal
- Biofuels



# Populations increase...

# Energy demands increase...





# **Global energy consumption**

Energy use in developing countries is low, but increasing



In 50 years the global population may have

#### **Energy use may have** increased with factor 2-3

**Picture courtesy of NASA/GSFC** 

### Human impact on CO<sub>2</sub> in atmosphere

Since the industrial revolution (19<sup>th</sup> century) man has burnt enormous amounts of fossil fuel, which has changed our atmosphere



## Fossil fuels are problematic

Fossil fuels are currently being burned and lost forever



**GLOBAL WARMING** due to excessive production of greenhouse gases from power stations

Fossil fuels are essential in the petrochemical and pharmaceutical industries

Significant economic and political impact

## We have changed the global temperature



# Sustainable energy sources





Renewables (bio, wind, wave, solar, geothermal, hydro) BUT:

- Low energy density
- Intermittent; need storage systems

## Renewables are not enough...

EU Commission study from 2006: *"Energy Futures -The role of research and technological development"* 

Four long time scenaries for Europa were studied.

Alternative with strong contribution of renewables: *At most 50% of the produced energy is renewable year 2100. biomass 25% solar 11 % wind 7%*.

50% sustainable energy is missing!



#### **ENERGY FUTURES**

The role of research and technological development

#### Europe's energy future, scenarios







EUR 22039



#### Primary energy supply in Europe in the high renewable case



**Europe's energy future, scenario with maximized renewable contribution** 

#### Regional potentials of renewables in energy supply



Europe has weak potential for renewable energy



## European Strategic Energy Technology Plan (SET-Plan)

European Commission December 2007



#### Sweden

#### - electricity development, total

#### DIAGRAM 17\_ TOTAL ELPRODUKTION I SVERIGE 1950-2013 TWh/år 160 Kondenskraft med mera 140 Mottryckskraft 120 Kärnkraft 100 -□ Vindkraft 80 Vattenkraft 60 40 20 0

1970

1980

1990

2012

1950

1960

Källa: Svensk Energi

2013

#### Sweden –

#### electricity development per source

#### DIAGRAM 20\_

#### UTVECKLINGEN AV OLIKA KRAFTSLAG I SVERIGE (ENERGI)



Källa: Svensk Energi

#### Scandinavia – total electricity mix



# In Sweden the use of electricity as energy carrier increases



(Svensk Energi)

#### **EU Energy Dependency**

**EU dependency on import is increasing for all fossil fuels...** Dependency on oil imports reached 83.5% in 2009 and 64.2% for gas.



#### EU-27 Energy import dependency

Source: Eurostat May 2011- \*Coal and other solid fuels

## **Fusion power advantages**

- Negligible climate effect no emission of greenhouse gas
- No long lived radioactive waste, no transports of waste
- No risk for nuclear meltdown
- Fusion energy is SUSTAINABLE ENERGY:
- Fuel for millions of years easily accessible in....



## Did you know that...



TO MEET THE ENERGY NEEDS OF A CITY OF 1 MILLION PEOPLE FOR 1 WEEK YOU WOULD NEED:





OR

20 X 400,000 TONNES OF COAL)

OR

60 KG OF FUSION FUEL



# How shall we develop fusion power?



**Stellarator – early 1950's** 

## The Pinch Effect - 1940's

#### Peter Thonemann and Sir George Thomson's idea



Alan Ware, Thomson Imperial College.



#### UKAEA

## z-pinch instabilities



## ZETA at Harwell - 1950-60s

1954-1958 : a=0.48m, R=1.5m,  $T_e \sim 1,700,000^{\circ}K$ ,  $t_E \sim 1ms$ 

UKAEA

## **The Tokamak- a Soviet invention**



**Tokamak T-3 (1962)** R = 1 m, a = 0,15 m, B = 3,8 T, I = 150 kA Time: 1950-60 Place: Moscow Characteristic: Strong magnetic field

## JET – the world's largest fusion experiment



Location: Culham, England

**European project** 

## JET – the world's largest fusion experiment



JET Tokamak

## Question

Which alternative is true?

- First plasma at JET was in 1983
- JET has reached ignition
- JET routinely uses D-T plasma
- JET has superconducting coils



#### JET, Culham, England

# Participation in the JET campaigns of late 2005 - 2006



## **Diagnostics at JET**







# EFDA EFDA Progress in ITER like Scenario


#### Fusion progress is comparable with other fields



n = Density a measure of the number of reactions we can have

**T** = **Temperature** a measure of the energy given to the fuel particles

 $\tau$  = Confinement time a measure of the thermal insulation of the fuel

# **ITER – nest step towards fusion**



**Location:** Cadarache, France

Collaboration: EU China Japan Russia South Korea India USA

### **History of ITER**



#### "For the benefit of mankind"

The idea for ITER originated from the Geneva Superpower Summit in 1985 where Gorbachev and Reagan proposed international effort to develop fusion energy...

..."as an inexhaustible source of energy for the benefit of mankind".



November 21, 2006: China, Europe, India, Japan, Korea, the Russian Federation and the United States of America sign the ITER Agreement

### **ITER progress**

ITER represents a big step in fusion research but is in line with the continuous progress over the years

More than double the size of JET





### **Comparison JET - ITER**



#### **ITER - Goals**

- Produce 500 MW fusion power.
   (10 times more power than what is needed to run the experiment).
- Smaller than a power station but big enough to prove principle.
- Optimize plasma physics.
- Test technology that is needed for a power station (exception: materials).
- In operation: for 20 years.

#### **Integration - Engineering**



**Courtesy CIEMAT** 

# ITER – next step towards fusion



**Location:** Cadarache, France

Collaboration: EU China Japan Russia South Korea India USA





### ITER -A drone's view, January 2017

https://www.youtube.com/watch?v=1-xejqkjf\_c



#### **Europe provides through** Fusion For Energy (http://fusionforenergy.europa.eu)

### 45 % of **ITER** construction costs 34 % of operation, deactivation, decommissioning







#### ITER Wall sector

### **Experiments at JET prepare for ITER**

ITER – like wall has been installed



The ITER-Like Wall: May 8, 2011





#### **The ITER-Like Wall: Operation limits**



Solid Be Surface temperature < 900°C

W-coated CFC Temperature <1200°C

W stacks Surface temperature limit <1200°C-2200°C

**G. Matthews and ILW Team** 



### **ITER-Like Wall at JET**



### All W divertor & Be wall

# Minimises risk of contamination by carbon.

# Compatibility of JET with beryllium and tritium.

# **Fusion power station**



Blanket, containing lithium, captures energetic neutrons from the fusion reactions.

#### **Blanket serves two purposes:**

- Hot cooling water provides steam for turbines and generators
- Neutrons and lithium combine to tritium which, together with deuterium, is the fuel

### **Fusion Power Plant operation**



UKAEA I



### **Development of fusion energy**



#### Roadmap – Fast Track



## Fusion Roadmap



The missions to the realisation of fusion electricity

## A fusion power station of the future



### **Fusion: safety and environmental issues**

- T-fuel is radioactive (beta decay, 12 y halftime, extremely unlikely loss of 1 kg T causes however only 50 mSv 1 km away; evacuation not needed)
- Reactor walls activated (initial activity as for fission, but within 10-100 y the activity is 4-5 orders of magnitude lower than that of fission)
- **Disruptions** can cause wall damage or harm supraconducting magnets
- Liquid lithium, if used as coolant, is highly reactive



#### **Comparison - radioactivity from fission and fusion after shutdown**



# A MAST plasma



**MAST - Culham, England** 

### Stellarator – Wendelstein 7-X



Max-Planck-Institut für Plasmaphysik EURATOM Assoziation



Frankfurt, 11. Juli 2006

### Stellarator – Wendelstein 7-X



Max-Planck-Institut für Plasmaphysik EURATOM Assoziation



Frankfurt, 11. Juli 2006

## **EXTRAP T2R, Alfvénlaboratoriet, KTH**

Scandinavia's only fusion experiment – a Reversed-field Pinch (RFP)



### Inertial confinement (laser fusion)













### Distributed R&D 26 Associations in an Integrated Programme

#### Euratom - CEA (1958) France Euratom – ENEA (1960) Italy (incl. Malta) Euratom - IPP (1961) Germany Euratom - FOM (1962) The Netherlands • Euratom - FZJ (1962)Germany Euratom - Belgian State Belaium (1969) (incl. Luxembourg) Euratom - RISØ (1973) Denmark Euratom – UKAEA (1973) **United Kingdom** (1976) Euratom - VR Sweden Euratom - Conf. Suisse Switzerland (1979) Euratom - FZK (1982)

Germany Euratom –CIEMAT (1986) Spain Euratom – IST (1990)**Portugal** 

#### **Countries participating in the European Fusion Programme**

#### Memb

Countr Eurato

Labore Fusion

| er States                                      |          | 1 1 1 2 2 3 |
|------------------------------------------------|----------|-------------|
| ies associated to the<br>m Framework Programme |          | 30 30       |
| ntories of Euratom<br>-Associations            |          |             |
|                                                |          |             |
|                                                |          |             |
|                                                |          |             |
|                                                |          |             |
|                                                | <u> </u> |             |
|                                                |          |             |

| Euratom - TEKES<br>Finland (incl. Estonia               | (1995)<br>a) |
|---------------------------------------------------------|--------------|
| <ul> <li>Euratom - DCU</li> <li>Ireland</li> </ul>      | (1996)       |
| • Euratom - ÖAW                                         | (1996)       |
| Eur - Hellenic Rep                                      | (1999)       |
| <ul> <li>Euratom - IPP.CR</li> </ul>                    | )<br>(1999)  |
| <ul> <li>Euratom - HAS</li> </ul>                       | (1999)       |
| <ul> <li>Euratom – MEdC</li> </ul>                      | (1999)       |
| <ul> <li>Romania</li> <li>Euratom – Univ. La</li> </ul> | atvia        |
| Latvia<br>(2002)                                        |              |
| Euratom - IPPLM<br>Poland                               | (2005)       |
| • Euratom - MHEST                                       | (2005)       |
| <ul> <li>Euratom – CU</li> <li>Slovakia</li> </ul>      | (2007)       |
| • Euratom – INRNE                                       | (2007)       |
| <ul> <li>Euratom – LEI</li> <li>Lithuania</li> </ul>    | (2007)       |

### Fusion energy is needed - and is on its way



Cost-optimized for max 550 ppm CO<sub>2</sub> year 2100




## **Base scenario results**



33% of fusion electricity in 2100. 42% of renewables. 23% of fission . 1% gas. Coal phases out around 2060 and gas technologies reduce their share CCS techs play a role in the mid of the century



Centro de investigaciones Energéficas, Medioambientales y Tecnológicas