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* Deep learning-based approaches dominate computer vision field since about 10 years

* Many vision tasks have nowadays been addressed with deep learning

https://thispersondoesnotexist.com/
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Overview: Deep Learning for Vision

General Deep Learning

* Deep learning is function approximation on large datasets
» Given inputs X and corresponding outputs (targets) Y, find f(X)~Y
* In practice: family of function fg with parameters 0

0* = argeminl(fg(X), Y)

+ Goal is that unseen inputs X still produce expected output Y’
* l.e., f should generalize to unseen inputs
+ Generalization comes from

+ Large datasets,
« Architecture and specific function types,
+ Hierarchical representations (deep vs shallow learning),
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Overview: Deep Learning for Vision
Tasks

Various vision tasks can be approached with deep learning

Deep learning nowadays state-of-the-art in all of these tasks
» Well-established tasks (with large benchmarks and datasets available)

» Classification

* Detection

* Instance segmentation
+ Semantic segmentation

» Current research

+ 3D vision
» Pose estimation
+ Image generation
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Overview: Deep Learning for Vision

Classification

+ Normally probability vector as output (one-hot encoding as target)

» Not well-defined in cluttered scenes
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Overview: Deep Learning for Vision

Detection

» Various output representations exist

* More details later
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Overview: Deep Learning for Vision

Semantic Segmentation

* One-hot encoding per-pixel

* Not possible to differentiate different instances
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Overview: Deep Learning for Vision

Instance Segmentation

+ Object detection + segmentation mask prediction

» Stuff (uncountable things) is not segmented / classified
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Overview: Deep Learning for Vision

Panoptic Segmentation

» Combining instance and semantic segmentation
+ Instance segmentation for things (countable)

» Semantic segmentation for stuff (uncountable)
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Object Detection

» Goal: predict bounding box around objects and classify the object

» We provide you with a baseline which should be easy to extend and understand

It
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Object Detection

Bounding Box Parametrization

« Neural network-based detectors follow same priniciples
1. Extract useful image features using larger backbone
2. Predict bounding box position, size and class based on these features
+ Various output parametrizations possible
+ Bounding boxes
* Anchor-based: Default bounding boxes (nominal width + height)
+ Anchor-free: No prior bounding box sizes
+ Classification: one-hot encoding per bounding box (i.e., N-dimensional vector for N
classes)
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%1 Object Detection
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+ Pretrained backbone to speed up training (and improve performance)

+ Be careful not to train too long (overfitting such small datasets easily possible)
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R0 Baseline, Bounding Box Parametrization

» Bounding box represented by 4 parameters: x;;, y;j, wij;, hi;
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wi] Object Detection

S Baseline, Classification

+ Baseline does not output categories yet

+ Idea 1: add category to output volume (see below)

* ldea 2: train separate classification network and only evaluate top-scoring bounding
boxes (two-stage)

cij > 0.5
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Object Detection

Baseline, Classification

+ Baseline does not output categories yet

+ Idea 1: add category to output volume (see below)

* ldea 2: train separate classification network and only evaluate top-scoring bounding
boxes (two-stage)

cij > 0.5
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Object Detection

Baseline, Classification

+ Baseline does not output categories yet

+ Idea 1: add category to output volume (see below)

* ldea 2: train separate classification network and only evaluate top-scoring bounding
boxes (two-stage)

15 Roundabout
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Object Detection

Baseline, Outlook

Synthetic or more real data
Data augmentation
Other backbones (e.g., ResNet)

Other bounding box parametrizations, for example, default bounding boxes with
anchors

Improve speed by reducing input image size (e.g., 320x240)
Network before or after fish-eye undistortion?

Non-maximum suppression / merging of bounding boxes
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Object Detection

Outlook, Non-Maximum Suppression

+ Often multiple bounding boxes are predicted for the same object

+ For all bounding boxes with ToU > t, only keep bounding box with highest
confidence !

» Alternative: merge bounding boxes

! https://pytorch.org/docs/stable/torchvision/ops.html#torchvision.ops.nms
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Object Detection

Outlook, Data Augmentation

+ Performance correlates a lot with amount of training data
+ Idea: generate new training data by using the already existing data
* Many possibilities

» Zoom

* Rotate (how does bounding box change?)

+ Flipping (be careful with mirrored traffic signs...)

+ Color
+ Various noise / occlusions
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Object Detection
Example, YOLOV3

» DarkNet backend
+ Multiple anchor boxes (found with k-means clustering) per feature location

* Bounding box parametrized based on default size

Pt 1 by, _l 7 bymat e,
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Object Detection
Example, FCOS

+ Feature-pyramid network (fuse high-level with low-level features)
+ Prediction at multiple levels, no anchor boxes
» Centerness prediction to improve results
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Object Detection

Training, General

» Training neural networks normally follow the same principle
+ Network fg(z) with network params 6

+ Ideally would do the following optimization
0* = argmini(fo(x'),y’)
(4

where @/, y’ ~ R are unseen samples from the real world

 Reality: use a labelled dataset D ~ R of images x with corresponding labels y
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Object Detection

Training, General

Training Procedure

Initialize network parameters 6

Sample (or generate) batch of inputs and targets X, Y ~ D
Forward pass fo(X) =Y
Compute loss function [ = I(Y,Y)

Update network parameters based on g—é to reduce [

e @ > W Y =

Repeat from step 2
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Object Detection

Training, Target Assignment

+ Need to convert labels (i.e., bounding boxes) to suitable target (i.e., ideal output)
* Bounding boxes
+ Cell of ground truth bounding box center gets confidence 1 (see baseline)
+ Anchor box overlaps sufficiently with ground truth bounding box — 1 (e.g., YOLOv3)
* Regression target for box size (depends on used convention)
» Classification
» One-hot encoding, set nth entry of target vector to 1, otherwise 0
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Object Detection

Training, Losses

+ Goal: l(f’,Y) should measure how close output is to target

» Must be differentiable

- Simple choice: (weighted) mean squared error !

1 N
F¥) = 7 300 - 3)

- Classification often uses cross entropy loss 2

! https://pytorch.org/docs/stable/nn.functional .html#mse-loss

2 https://pytorch.org/docs/stable/nn. functional .html#cross-entropy
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Object Detection

Overfitting and Generalization

» Training for too long will overfit the training data
* Loss will keep going down

» Does not mean that performance is improving
« Solution: evaluate on separate validation set

+ Must be really separate (i.e., different lighting, environment, etc.)
« Naive split of current dataset probably not sufficient

Training Validation Validation

+ Alternative: qualitative assessment of unlabelled validation images
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%1 Object Detection

e o . .
et Evaluation Metrics

+ Goal: assess performance independent of loss function (on validation data)
+ l.e., loss function changes, evaluation metric stays the same

« Allows to compare loss functions

» Allows to assess generalization performance

* loU: Intersection over union to compare two bounding boxes

Tol — Intersection (4)

Union
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Object Detection

Evaluation Metrics

+ Goal: assess performance independent of loss function (on validation data)
* Precision (based on loU threshold)

Precision — TP
recision = oo
* Recall (based on loU threshold)
TP

RCCG” = m
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Object Detection

Evaluation Metrics
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+ Goal: assess performance independent of loss function (on validation data)
+ Precision-recall curve (varying confidence threshold)
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3D Pose Estimation

+ Goal: estimate 6D pose of known object from single image

« General approach
+ Model camera geometry (pinhole camera + nonlinear distortion)
+ Use known object information to derive constraints
+ Features
+ Size
+ Shape
+ Pose constraints

+ Solve equations to estimate pose

s RPL, KTH
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3D Pose Estimation

Pinhole Camera

Camera
center

0
0
0

X FX)Z
X=|[fv]|~|rvz (7)
)-(2)- ()
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3D Pose Estimation

Pinhole Camera

fX +pZ
fY +pyZ

fX/Z + px
fY/Z +py
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3D Pose Estimation

Camera Calibration

Most general matrix
fx T px O
P=10 f, p, O
0 0 1 0

— _ width . height
Normally 7 =0, fx = fy,px = “5°, py = =4
Idea: collect images of easy known, easy to detect 3D points and

find P that minimizes error

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
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3D Pose Estimation

Camera Calibration

* Nonlinear distortions need to be compensated before using pinhole model
* For example, fish-eye distortion

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
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3D Pose Estimation

Feature Extraction

+ Several methods to extract point features
« For example, SIFT, SURF, FAST, BRIEF, ORB, ... 1
« Qutput of feature extractor: position + descriptor

! https://docs.opencv.org/master/db/d27/tutorial _py_table_of_contents_feature2d.html
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3D Pose Estimation
Feature Matching

« Match features based on descriptor
» Brute-force matching (try all combinations)
» Nearest-neighbor matching (faster, but approximate)

+ Ratio-test: keep best 2 matches, only keep best match if one is clearly better

!
diSt(d’ d/2nd best) <r- diSt(d7 d{)est)
» Cross-check: KP1 has to get KP2 and KP2 has to get KP1

https://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html
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3D Pose Estimation
Perspective-N-Point

+ Given 3D < 2D point correspondences, find “T, s.t.,
z, =P CTW X (11)

+ 6 DOFs = 3 correspondences required (still 8 different solutions, 4 behind camera)
* More correspondences = unique solution

+ lterative optimization with initial guess: slow, but most accurate
« Non-iterative: fast, but suboptimal, good to get initial guess

https://docs.opencv.org/master/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d
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3D Pose Estimation
RANSAC

» Matched features will contain outliers

» Use RAndom SAmple Consensus (RANSAC) to robustify estimation
» General idea

« Sample minimum set of matches to estimate pose
» Count number of inliers
+ Repeat N and use set with maximum number of inliers
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3D Pose Estimation

Pipeline, Overview

Feature-based Pose Estimation

RN

Compute features inside detected bounding box
Match features with canonical traffic sign image
Estimate translation and rotation using perspective-n-point with RANSAC

Additional sanity checks to remove errorneous detections
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3D Pose Estimation

Alternatives

+ Learning to predict the pose together with bounding box
+ Labeling quite labor intensive
+ Synthetic data might work, but: domain gap

+ Estimate pose from multiple views

+ Position of bounding box gives bearing
+ Size of bounding box gives distance
« Apply filter to optimize pose from multiple frames

+ Particle filter + photometric comparison (easier to incorporate prior information)
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