

DD2419 Robot Vision

Object Detection and 3D Pose Estimation

Leonard Bruns Robotics, Perception and Learning, KTH Royal Institute of Technology

- Overview: Deep Learning for Vision
- Object Detection
- 3D Pose Estimation

- Deep learning-based approaches dominate computer vision field since about 10 years
- · Many vision tasks have nowadays been addressed with deep learning

https://thispersondoesnotexist.com/

General Deep Learning

- · Deep learning is function approximation on large datasets
- Given inputs $m{X}$ and corresponding outputs (targets) $m{Y}$, find $f(m{X}) pprox m{Y}$
- In practice: family of function $f_{\boldsymbol{\theta}}$ with parameters $\boldsymbol{\theta}$

$$\boldsymbol{\theta}^* = \operatorname*{arg\,min}_{\boldsymbol{\theta}} l(f_{\boldsymbol{\theta}}(\boldsymbol{X}), \boldsymbol{Y})$$
 (1)

- Goal is that unseen inputs X^\prime still produce expected output Y^\prime
 - I.e., f should generalize to unseen inputs
- Generalization comes from
 - Large datasets,
 - Architecture and specific function types,
 - · Hierarchical representations (deep vs shallow learning),

• ...

- · Various vision tasks can be approached with deep learning
- · Deep learning nowadays state-of-the-art in all of these tasks
- Well-established tasks (with large benchmarks and datasets available)
 - Classification
 - Detection
 - Instance segmentation
 - Semantic segmentation
- Current research
 - 3D vision
 - Pose estimation
 - Image generation

- Normally probability vector as output (one-hot encoding as target)
- Not well-defined in cluttered scenes

Detection

----f(x) ----

- Various output representations exist
- More details later

Semantic Segmentation

- One-hot encoding per-pixel
- Not possible to differentiate different instances

f(x)

Instance Segmentation

- Object detection + segmentation mask prediction
- Stuff (uncountable things) is not segmented / classified

Panoptic Segmentation

- · Combining instance and semantic segmentation
- Instance segmentation for things (countable)
- Semantic segmentation for stuff (uncountable)

- · Goal: predict bounding box around objects and classify the object
- We provide you with a baseline which should be easy to extend and understand

Bounding Box Parametrization

- · Neural network-based detectors follow same priniciples
 - 1. Extract useful image features using larger backbone
 - 2. Predict bounding box position, size and class based on these features
- Various output parametrizations possible
 - Bounding boxes
 - Anchor-based: Default bounding boxes (nominal width + height)
 - · Anchor-free: No prior bounding box sizes
 - Classification: one-hot encoding per bounding box (i.e., $N\mbox{-dimensional vector for }N$ classes)

Object Detection Baseline

- Pretrained backbone to speed up training (and improve performance)
- Be careful not to train too long (overfitting such small datasets easily possible)

Baseline, Bounding Box Parametrization

• Bounding box represented by 4 parameters: $x_{ij}, y_{ij}, w_{ij}, h_{ij}$

Baseline, Classification

- Baseline does not output categories yet
- Idea 1: add category to output volume (see below)
- Idea 2: train separate classification network and only evaluate top-scoring bounding boxes (two-stage)

Baseline, Classification

- Baseline does not output categories yet
- Idea 1: add category to output volume (see below)
- Idea 2: train separate classification network and only evaluate top-scoring bounding boxes (two-stage)

Baseline, Classification

- · Baseline does not output categories yet
- Idea 1: add category to output volume (see below)
- Idea 2: train separate classification network and only evaluate top-scoring bounding boxes (two-stage)

Baseline, Outlook

- Synthetic or more real data
- Data augmentation
- Other backbones (e.g., ResNet)
- Other bounding box parametrizations, for example, default bounding boxes with anchors
- Improve speed by reducing input image size (e.g., 320x240)
- Network before or after fish-eye undistortion?
- Non-maximum suppression / merging of bounding boxes

Outlook, Non-Maximum Suppression

- Often multiple bounding boxes are predicted for the same object
- For all bounding boxes with IoU>t, only keep bounding box with highest confidence $^{\rm 1}$
- Alternative: merge bounding boxes

https://pytorch.org/docs/stable/torchvision/ops.html#torchvision.ops.nms

Outlook, Data Augmentation

- · Performance correlates a lot with amount of training data
- · Idea: generate new training data by using the already existing data
- Many possibilities
 - Zoom
 - Rotate (how does bounding box change?)
 - Flipping (be careful with mirrored traffic signs...)
 - Color
 - Various noise / occlusions

- DarkNet backend
- Multiple anchor boxes (found with k-means clustering) per feature location
- · Bounding box parametrized based on default size

Object Detection Example, FCOS

- · Feature-pyramid network (fuse high-level with low-level features)
- · Prediction at multiple levels, no anchor boxes
- · Centerness prediction to improve results

- · Training neural networks normally follow the same principle
- Network $f_{\boldsymbol{\theta}}(x)$ with network params $\boldsymbol{\theta}$
- · Ideally would do the following optimization

$$\boldsymbol{\theta}^* = \operatorname*{arg\,min}_{\boldsymbol{\theta}} l(f_{\boldsymbol{\theta}}(\boldsymbol{x}'), \boldsymbol{y}') \tag{2}$$

where $oldsymbol{x'}, oldsymbol{y'} \sim \mathcal{R}$ are unseen samples from the real world

- Reality: use a labelled dataset $\mathcal{D}\sim\mathcal{R}$ of images x with corresponding labels y

Training, General

Training Procedure

- 1. Initialize network parameters ${m heta}$
- 2. Sample (or generate) batch of inputs and targets $oldsymbol{X}, oldsymbol{Y} \sim \mathcal{D}$
- 3. Forward pass $f_{\boldsymbol{ heta}}(\boldsymbol{X}) = \tilde{\boldsymbol{Y}}$
- 4. Compute loss function $l = l(ilde{m{Y}}, m{Y})$
- 5. Update network parameters based on $\frac{\partial l}{\partial \theta}$ to reduce l
- 6. Repeat from step 2

Training, Target Assignment

- Need to convert labels (i.e., bounding boxes) to suitable target (i.e., ideal output)
- Bounding boxes
 - Cell of ground truth bounding box center gets confidence 1 (see baseline)
 - Anchor box overlaps sufficiently with ground truth bounding box ightarrow 1 (e.g., YOLOv3)
 - Regression target for box size (depends on used convention)
- Classification
 - One-hot encoding, set nth entry of target vector to 1, otherwise 0

Object Detection Training. Losses

- Goal: $l(ilde{m{Y}}, m{Y})$ should measure how close output is to target
- Must be differentiable
- Simple choice: (weighted) mean squared error ¹

$$l(\tilde{\boldsymbol{Y}}, \boldsymbol{Y}) = \frac{1}{N} \sum_{i=1}^{N} (\tilde{Y}_i - Y_i)^2$$
(3)

Classification often uses cross entropy loss ²

¹ https://pytorch.org/docs/stable/nn.functional.html#mse-loss ² https://pytorch.org/docs/stable/nn.functional.html#cross-entropy

Overfitting and Generalization

- Training for too long will overfit the training data
- · Loss will keep going down
 - Does not mean that performance is improving
- · Solution: evaluate on separate validation set
 - Must be really separate (i.e., different lighting, environment, etc.)
 - · Naive split of current dataset probably not sufficient

· Alternative: qualitative assessment of unlabelled validation images

Object Detection Evaluation Metrics

- Goal: assess performance independent of loss function (on validation data)
- I.e., loss function changes, evaluation metric stays the same
 - Allows to compare loss functions
 - Allows to assess generalization performance
- IoU: Intersection over union to compare two bounding boxes

$$IoU = \frac{Intersection}{Union}$$

(4)

- Goal: assess performance independent of loss function (on validation data)
- Precision (based on IoU threshold)

$$Precision = \frac{TP}{TP + FP}$$

• Recall (based on IoU threshold)

$$Recall = \frac{TP}{TP + FN} \tag{6}$$

(5)

- Goal: assess performance independent of loss function (on validation data)
- Precision-recall curve (varying confidence threshold)

3D Pose Estimation

- · Goal: estimate 6D pose of known object from single image
- General approach
 - Model camera geometry (pinhole camera + nonlinear distortion)
 - · Use known object information to derive constraints
 - Features
 - Size
 - Shape
 - Pose constraints
 - ...
 - Solve equations to estimate pose

Most general matrix

$$\mathbf{P} = \begin{pmatrix} f_{x} & \tau & p_{x} & 0\\ 0 & f_{y} & p_{y} & 0\\ 0 & 0 & 1 & 0 \end{pmatrix}$$
(9)

• Normally
$$\tau = 0, f_{\rm x} \approx f_{\rm y}, p_{\rm x} \approx \frac{width}{2}, p_{\rm y} \approx \frac{height}{2}$$

- Idea: collect images of easy known, easy to detect 3D points and find ${\bf P}$ that minimizes error

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html

- Nonlinear distortions need to be compensated before using pinhole model
- For example, fish-eye distortion

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html

3D Pose Estimation

Feature Extraction

- Several methods to extract point features
- For example, SIFT, SURF, FAST, BRIEF, ORB, ... $^{\rm 1}$
- Output of feature extractor: position $+ \mbox{ descriptor}$

¹ https://docs.opencv.org/master/db/d27/tutorial_py_table_of_contents_feature2d.html

3D Pose Estimation

Feature Matching

- Match features based on descriptor
 - Brute-force matching (try all combinations)
 - Nearest-neighbor matching (faster, but approximate)
- · Ratio-test: keep best 2 matches, only keep best match if one is clearly better

$$\operatorname{dist}(d, d'_{2\mathrm{nd}\,\mathrm{best}}) \stackrel{!}{<} r \cdot \operatorname{dist}(d, d'_{\mathrm{best}})$$
(10)

- Cross-check: KP1 has to get KP2 and KP2 has to get KP1

https://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html

- Given 3D \leftrightarrow 2D point correspondences, find $\,^{\mathrm{c}}\mathbf{T}_{\mathrm{w}}^{}$, s.t.,

$$\boldsymbol{x}_i = \mathbf{P} \,^{\mathrm{c}} \mathbf{T}_{\mathrm{w}} \, \boldsymbol{X}_i$$
 (11)

- 6 DOFs \Rightarrow 3 correspondences required (still 8 different solutions, 4 behind camera)
- More correspondences \Rightarrow unique solution
 - · Iterative optimization with initial guess: slow, but most accurate
 - · Non-iterative: fast, but suboptimal, good to get initial guess

https://docs.opencv.org/master/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d

- · Matched features will contain outliers
- Use RAndom SAmple Consensus (RANSAC) to robustify estimation
- General idea
 - · Sample minimum set of matches to estimate pose
 - Count number of inliers
 - Repeat \boldsymbol{N} and use set with maximum number of inliers

3D Pose Estimation

Pipeline, Overview

Feature-based Pose Estimation

- 1. Compute features inside detected bounding box
- 2. Match features with canonical traffic sign image
- 3. Estimate translation and rotation using perspective-n-point with RANSAC
- 4. Additional sanity checks to remove errorneous detections

3D Pose Estimation

Alternatives

- · Learning to predict the pose together with bounding box
 - Labeling quite labor intensive
 - Synthetic data might work, but: domain gap
- Estimate pose from multiple views
 - Position of bounding box gives bearing
 - Size of bounding box gives distance
 - Apply filter to optimize pose from multiple frames
- Particle filter + photometric comparison (easier to incorporate prior information)

References I

- [1] Richard Hartley and Andrew Zisserman. *Multiple View Geometry in Computer Vision*. 2004.
- [2] Alexander Kirillov et al. "Panoptic Segmentation". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 9404–9413.
- [3] Yann Labbé et al. "CosyPose: Consistent Multi-view Multi-object 6D Pose Estimation". In: European Conference on Computer Vision. Springer. 2020, pp. 574–591.
- [4] Tsung-Yi Lin et al. "Microsoft COCO: Common Objects in Context". In: European conference on computer vision. Springer. 2014, pp. 740–755.

References II

- [5] Haojie Ma et al. "Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3". In: *Remote Sensing* 12.1 (2020), p. 44.
- [6] Joseph Redmon and Ali Farhadi. "YOLO9000: better, faster, stronger". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 7263–7271.
- [7] Zhi Tian et al. "FCOS: Fully Convolutional One-stage Object Detection". In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 9627–9636.