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Overview: Deep Learning for Vision

� Deep learning-based approaches dominate computer vision field since about 10 years

� Many vision tasks have nowadays been addressed with deep learning

https://thispersondoesnotexist.com/
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Overview: Deep Learning for Vision
General Deep Learning

� Deep learning is function approximation on large datasets
� Given inputs X and corresponding outputs (targets) Y , find f(X) ≈ Y
� In practice: family of function fθ with parameters θ

θ∗ = argmin
θ

l(fθ(X),Y ) (1)

� Goal is that unseen inputs X′ still produce expected output Y ′

� I.e., f should generalize to unseen inputs
� Generalization comes from

� Large datasets,
� Architecture and specific function types,
� Hierarchical representations (deep vs shallow learning),
� ...
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Overview: Deep Learning for Vision
Tasks

� Various vision tasks can be approached with deep learning

� Deep learning nowadays state-of-the-art in all of these tasks
� Well-established tasks (with large benchmarks and datasets available)

� Classification
� Detection
� Instance segmentation
� Semantic segmentation

� Current research
� 3D vision
� Pose estimation
� Image generation
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Overview: Deep Learning for Vision
Classification
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� Normally probability vector as output (one-hot encoding as target)
� Not well-defined in cluttered scenes
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Overview: Deep Learning for Vision
Detection

f(x)

� Various output representations exist

� More details later
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Overview: Deep Learning for Vision
Semantic Segmentation

f(x)

� One-hot encoding per-pixel

� Not possible to differentiate different instances
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Overview: Deep Learning for Vision
Instance Segmentation

f(x)

� Object detection + segmentation mask prediction

� Stuff (uncountable things) is not segmented / classified
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Overview: Deep Learning for Vision
Panoptic Segmentation

f(x)

� Combining instance and semantic segmentation

� Instance segmentation for things (countable)

� Semantic segmentation for stuff (uncountable)
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Object Detection

� Goal: predict bounding box around objects and classify the object

� We provide you with a baseline which should be easy to extend and understand
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Object Detection
Bounding Box Parametrization

� Neural network-based detectors follow same priniciples

1. Extract useful image features using larger backbone
2. Predict bounding box position, size and class based on these features

� Various output parametrizations possible
� Bounding boxes

� Anchor-based: Default bounding boxes (nominal width + height)
� Anchor-free: No prior bounding box sizes

� Classification: one-hot encoding per bounding box (i.e., N -dimensional vector for N
classes)
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Object Detection
Baseline
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� Pretrained backbone to speed up training (and improve performance)

� Be careful not to train too long (overfitting such small datasets easily possible)
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Object Detection
Baseline, Bounding Box Parametrization

� Bounding box represented by 4 parameters: xij , yij , wij , hij
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Object Detection
Baseline, Classification

� Baseline does not output categories yet
� Idea 1: add category to output volume (see below)
� Idea 2: train separate classification network and only evaluate top-scoring bounding

boxes (two-stage)

p1 . . . pN

x y w h c

20

15

cij > 0.5

Roundabout

pij,1 . . . pij,N

xij . . . hij

640wij

480hij

p1 . . . pN

x y w h c

20

15

cij > 0.5

Roundabout

pij,1 . . . pij,N

xij . . . hij

640wij

480hij 640
20

xij

480
15

yij

08/02/2021 DD2419 Robot Vision Leonard Bruns RPL, KTH 15



Object Detection
Baseline, Classification
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Object Detection
Baseline, Classification
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Object Detection
Baseline, Outlook

� Synthetic or more real data

� Data augmentation

� Other backbones (e.g., ResNet)

� Other bounding box parametrizations, for example, default bounding boxes with
anchors

� Improve speed by reducing input image size (e.g., 320x240)

� Network before or after fish-eye undistortion?

� Non-maximum suppression / merging of bounding boxes
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Object Detection
Outlook, Non-Maximum Suppression

� Often multiple bounding boxes are predicted for the same object
� For all bounding boxes with IoU > t, only keep bounding box with highest

confidence 1

� Alternative: merge bounding boxes

1 https://pytorch.org/docs/stable/torchvision/ops.html#torchvision.ops.nms
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Object Detection
Outlook, Data Augmentation

� Performance correlates a lot with amount of training data

� Idea: generate new training data by using the already existing data
� Many possibilities

� Zoom
� Rotate (how does bounding box change?)
� Flipping (be careful with mirrored traffic signs...)
� Color
� Various noise / occlusions
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Object Detection
Example, YOLOv3

� DarkNet backend

� Multiple anchor boxes (found with k-means clustering) per feature location

� Bounding box parametrized based on default size
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Object Detection
Example, FCOS

� Feature-pyramid network (fuse high-level with low-level features)
� Prediction at multiple levels, no anchor boxes
� Centerness prediction to improve results
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Object Detection
Training, General

� Training neural networks normally follow the same principle

� Network fθ(x) with network params θ

� Ideally would do the following optimization

θ∗ = argmin
θ

l(fθ(x
′),y′) (2)

where x′,y′ ∼ R are unseen samples from the real world

� Reality: use a labelled dataset D ∼ R of images x with corresponding labels y
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Object Detection
Training, General

Training Procedure

1. Initialize network parameters θ

2. Sample (or generate) batch of inputs and targets X,Y ∼ D
3. Forward pass fθ(X) = Ỹ

4. Compute loss function l = l(Ỹ ,Y )

5. Update network parameters based on ∂l
∂θ to reduce l

6. Repeat from step 2
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Object Detection
Training, Target Assignment

� Need to convert labels (i.e., bounding boxes) to suitable target (i.e., ideal output)
� Bounding boxes

� Cell of ground truth bounding box center gets confidence 1 (see baseline)
� Anchor box overlaps sufficiently with ground truth bounding box → 1 (e.g., YOLOv3)
� Regression target for box size (depends on used convention)

� Classification
� One-hot encoding, set nth entry of target vector to 1, otherwise 0

08/02/2021 DD2419 Robot Vision Leonard Bruns RPL, KTH 23



Object Detection
Training, Losses

� Goal: l(Ỹ ,Y ) should measure how close output is to target

� Must be differentiable

� Simple choice: (weighted) mean squared error 1

l(Ỹ ,Y ) =
1

N

N∑
i=1

(Ỹi − Yi)2 (3)

� Classification often uses cross entropy loss 2

1 https://pytorch.org/docs/stable/nn.functional.html#mse-loss
2 https://pytorch.org/docs/stable/nn.functional.html#cross-entropy
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Object Detection
Overfitting and Generalization

� Training for too long will overfit the training data
� Loss will keep going down

� Does not mean that performance is improving
� Solution: evaluate on separate validation set

� Must be really separate (i.e., different lighting, environment, etc.)
� Naive split of current dataset probably not sufficient

Training Validation Validation

� Alternative: qualitative assessment of unlabelled validation images
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Object Detection
Evaluation Metrics

� Goal: assess performance independent of loss function (on validation data)
� I.e., loss function changes, evaluation metric stays the same

� Allows to compare loss functions
� Allows to assess generalization performance

� IoU: Intersection over union to compare two bounding boxes

IoU =
Intersection

Union
(4)
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Object Detection
Evaluation Metrics

� Goal: assess performance independent of loss function (on validation data)

� Precision (based on IoU threshold)

Precision =
TP

TP + FP
(5)

� Recall (based on IoU threshold)

Recall =
TP

TP + FN
(6)
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Object Detection
Evaluation Metrics

� Goal: assess performance independent of loss function (on validation data)
� Precision-recall curve (varying confidence threshold)
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3D Pose Estimation

� Goal: estimate 6D pose of known object from single image
� General approach

� Model camera geometry (pinhole camera + nonlinear distortion)
� Use known object information to derive constraints

� Features
� Size
� Shape
� Pose constraints
� ...

� Solve equations to estimate pose
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3D Pose Estimation
Pinhole Camera
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3D Pose Estimation
Pinhole Camera
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3D Pose Estimation
Camera Calibration

� Most general matrix

P =

fx τ px 0
0 fy py 0
0 0 1 0

 (9)

� Normally τ = 0, fx ≈ fy, px ≈ width
2 , py ≈ height

2

� Idea: collect images of easy known, easy to detect 3D points and
find P that minimizes error

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
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3D Pose Estimation
Camera Calibration

� Nonlinear distortions need to be compensated before using pinhole model
� For example, fish-eye distortion

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html

08/02/2021 DD2419 Robot Vision Leonard Bruns RPL, KTH 33

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html


3D Pose Estimation
Feature Extraction

� Several methods to extract point features
� For example, SIFT, SURF, FAST, BRIEF, ORB, ... 1

� Output of feature extractor: position + descriptor

1 https://docs.opencv.org/master/db/d27/tutorial_py_table_of_contents_feature2d.html
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3D Pose Estimation
Feature Matching

� Match features based on descriptor
� Brute-force matching (try all combinations)
� Nearest-neighbor matching (faster, but approximate)

� Ratio-test: keep best 2 matches, only keep best match if one is clearly better

dist(d, d′2nd best)
!
< r · dist(d, d′best) (10)

� Cross-check: KP1 has to get KP2 and KP2 has to get KP1

https://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html

08/02/2021 DD2419 Robot Vision Leonard Bruns RPL, KTH 35

https://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html


3D Pose Estimation
Perspective-N-Point

� Given 3D ↔ 2D point correspondences, find Tc w, s.t.,

xi = P Tc wXi (11)

� 6 DOFs ⇒ 3 correspondences required (still 8 different solutions, 4 behind camera)
� More correspondences ⇒ unique solution

� Iterative optimization with initial guess: slow, but most accurate
� Non-iterative: fast, but suboptimal, good to get initial guess

https://docs.opencv.org/master/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d
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3D Pose Estimation
RANSAC

� Matched features will contain outliers

� Use RAndom SAmple Consensus (RANSAC) to robustify estimation
� General idea

� Sample minimum set of matches to estimate pose
� Count number of inliers
� Repeat N and use set with maximum number of inliers
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3D Pose Estimation
Pipeline, Overview

Feature-based Pose Estimation

1. Compute features inside detected bounding box

2. Match features with canonical traffic sign image

3. Estimate translation and rotation using perspective-n-point with RANSAC

4. Additional sanity checks to remove errorneous detections
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3D Pose Estimation
Alternatives

� Learning to predict the pose together with bounding box
� Labeling quite labor intensive
� Synthetic data might work, but: domain gap

� Estimate pose from multiple views
� Position of bounding box gives bearing
� Size of bounding box gives distance
� Apply filter to optimize pose from multiple frames

� Particle filter + photometric comparison (easier to incorporate prior information)
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