2. Abstract Algebra

the book Discrete Mathematics and Discret Models we investigated a num-
er of different mathematical operations, and thereby found that several of
them had unexpected similarities. Compare for instance the calculation rules
‘of set theory and of propositional logic, or divisor graphs and subset graphs,
‘and you find remarkable similarities. These similarities can be used, by tak-
‘ing the common properties to make general analyses that can be applied in
all the different situations. In this chapter we are going to look closer on a
_niimber of common structures.

‘his chapter may by the way be somewhat heavy reading, since its character
hat of a dictionary covering concepts in abstract algebra, with a lot of
definitions and few applications. The applications will appear in later chap-
térs. We suggest that you skim this chapter once so that you know what it
is'about, and then return to it when a concept reappears later in the book.

.'.I.Iighlights from this chapter

e A group is an abstract structure consisting of a set G (of elements
. corresponding to numbers) and an operation = that satisfies the group
axioms:

1. closedness: if z and y are group elements in G then z * y is an
clement in G as well; you never leave the group.

2. associativity: it always holds that (z*y) * 2z = z = (y * 2); because
of this you don’t need to put in parentheses, but can write zxy*z.

3. identity: there is an element I in the group G which has the
property that I'+x = z and x+I = =z for all group elements z in &,
an identity element thus leaves the other elements unchanged.

4. inverse: each group element x in G has an inverse, that is to say,
an element £~ with the property that zxz™! = I and 2~ L%z = I.

* A subgroup is a group that is a subset of another group (with the
same operation).

» Lagrange’s theorem for finite groups states that the size of a subgroup
is always a divisior of the size of the group.

» Using power notetion one writes g *x g = g%, etcetera. A group is
- cyclic if there is an element g which generates the whole group, that
istosay, G={...,47 %971, ¢%g% ¢%...

» An Abelian group is a group where the commutative law holds, that
is to say, where = * y = y * x for all group elements z and y.

¢ The groups G and H are isomorphic if there exists a bijection ¢ :
G — H between the groups such that calculations in one of the
groups correspond to calculations in the other one.
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s A lattice is a partial order where each pair of elements, say = and ¥,
has a unique least upper bound x V y and a unique greatest lower
bound = A y.

2.1 Groups

In this section we will study similarities between different operations defined
on different sets. Let’s start by looking at addition of integers, which among
other things has the following properties:

1. The calculations are closed, that is, the sum of two integers is an integer.
(This is not as obvious as it sounds — for instance the guotient of two

integers is not necessarily an integer.)
2. The operation is associative, that is, a+ (6| ¢) = (a +b) +c.

3. The number zero has the very special property that it doesn’t happen
anything if you use it: @ +0 =0 + a = a holds for all integers a.

4. For each integer a you can find another integer (namely —a) such that
the sum of the two numbers is zero.

Now compare these properties to what we find when studying multiplication
of positive real numbers:

1. The calculations are closed, since the product of two positive real numbers
is a positive real number as well.

2. The operation is associative, since a- (b-¢) = (a-b) - ¢

3. The number one has the very special property that it doesn’t happen
anything if you use it: a-1=1-a=a.

4. For each positive real number a you can find a positive real number
{namely 1/a) such that the product of the two numbers is one.

We can see obvious similarities between the two operations. To show that it
doesn’t even have to be numbers that we use in the calculations we finish by
studying the operation composition of functions (denoted o) defined on
the set of bijections on a given set A, for instance A = {a,b,c}. Remember
that a bijection on A4 is a function f : A —+ A such that each element in A
is used as a function value exactly once. For instance,

f: and g:

o oo-a
11
oD 'R
SRS
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are two different bijections on A = {a,b,¢}. The composition f o g is defined
as the function that performs first g and then f, so that it for instance holds
that f o g(a) = f(g(a)) = f(b) = c. For the operation o we can check the

properties above once more:

1. The operation is closed, since the composition of two bijections on A is a
bijection on A.

2. The operation is associative, since (fog)oh has to be the same as fo(goh)
since both map an arbitrary element = in A on f(g(h(:n)))
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2. ABSTRACT ALGEBRA 13

3. The identity function Id is defined by Id(z} = z for all z in A. 1d is clearly
a bijection on A with the very special property that fold = Idof = f
(since f(Id(x)) = f(z) and Id(f(x)) = f{z} for all x).

4. For each bijection f you can find a bijection (namely the inverse f—1)

such that the composition of the two bijections is the identity function.

Apparently all these three mathematical structures had very large similar-
ities. To isolate the similarities, the general concept group has been intro-
duced, meaning all calculation structures having the above properties.

Definition 2.1: Group A group is a set G with an operation * that sat-
isfies the four group axioms:

1. Closedness: if you take two elements in G you get an element in &, that
is to say,
V:c\/y[m eGryeG — (z+y) € G’}.
2. Associativity: It doesn’t matter how we group a calculation including
three objects, that is to say,
VevyVzlz e GAYy e GAzeG = (zry)*z=x+ (y*z).
3. Identity: There is an element I in & that doesn’t affect the others, that
is to say,
AT eG A Vylye G — I*y:y*f:y)].
Instead of identity one sometimes says unit or neutral element.

4, Inverses: For each element in 7 we can find some element in & that
carry us to the identity I, that is to say,

Velre G — Jylye Grzxy=1T).

The group is usually denoted {(F,*). (If the operation is clear from the
context, simply “the group G” is used.) If we let S, denote the set of all
bijections on the set A, we have thus already seen three examples of groups:
(Z,+), (R4, ), and (S4,¢).

S4 is usually called the symmetric group on the set A. It’s a very impor-
tant group to which we’ll return several times both in this chapter and in
chapter 5. |

Exercise 2.1 Determine whether the following structures are groups.
Check all the axioms, even if you find that one of the first ones doesn’t
hold!

(a) (Z,-}, that is to say, the integers under subtraction.

{(b) (Q,-), that is to say, the rational numbers under multiplication.

(e) {P(N),u), that is to say, the power set of N under union.

(d) {Zs,+), that is to say, addition modulo 2.

{e} The solution set of a homogeonous linear system of equations Ax =
0 under vector addition.

Exercise 2.2 What does the smallest group imaginable look like?

Exercise 2.3: Important!

{a) Show that there is only one identity element in a group. (Hint:
agsume that you have two of them, and show that they are identi-
cal))

(b) Show that every group element has only one inverse.
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14 2.1. GROUPS

2.1.1 Abelian Groups

Out of the three examples of groups that we studied initially, two have another
interesting property in common: the commutative rules a + b = b+ e and
a-b =b-a hold! Composition of functions, on the other hand, is not a
commutative operation.

If the operation is commutative the group is called an Abelian group, after
the most distinguished Nordic mathematician, the Norwegian Niels Henrik
Abel.

The smallest non-Abelian group has the size 6, and is precisely the group
{S4,0) that we studied above. There we defined two group elements f and ¢,
and you can easily check for yourself that

a — ¢ a — b

fog: b - b but gof: b — a

c =+ a € = ¢
sofog#ygolf.

2.1.2 Subgroups

A group (G, *} consists as stated of a set G and an operation *. Among all
the subsets of & some of them will be groups in their own right under the
same operation. Such a group {H,*), where H is a subset of G, is called a
subgroup of (G, *).

Example 2.1 The positive real numbers R} under multiplication are a group.
The positive rational numbers @4, which form a subset of R, are a group
under multiplication as well. Check:

1. The set is closed, since /i - ¢/¢ = ac/pd, which is a rational number.

2. The operation is associative, since we are discussing normal multiplica-
tion.

3. There is a neutral element, the rational number 1, with the property that
ofp-1=1-afp=afp

4. To each number o/b we can find a number /. with the property that
afb - bfa = b/a - a6 = 1, 0 there are inverses.

Thus (Q,-) is a subgroup of {Ry,-}. »

Exercise 2.4: Important! Actually, it ought to be possible to take
advantage of the fact that you already know that (G, ¥} is a group when
you check whether (H, %) is a group. How many of the four test we did
when we were checking that (Q,-) is a group were in fact necessary?

Exercise 2.5
(a) Are the positive integers a subgroup of (R, )?
(b) Are the odd numbers a subgroup of (Z,+)7

(c) Are the even numbers a subgroup of (Z, +)7
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2. ABSTRACT ALGEBRA 15

2.1.3 Finite Groups

In this book we’ll mainly have reason to study finite groups, that is, groups
where the set is of finite size.

Some typical finite groups are:
o {Z,,+) for an arbitrary integer n. This group has n elements.
o (Z, % {0}, ) for an arbitrary prime p. This group has p — 1 elements.

e The symmetric group (54, o) for an arbitrary set 4. If |A] = n, this group
has n! elements.

For finite groups you can describe the whole group by writing down its group
table, that is to say, the counterpart of a multiplication table for the opera-
tion in question.

Example 2.2 The group tables of {(Z4, +} and {Zs \ {0},-} are respeciively

+]0 1 2 3 |1 2 3 4
0[]0 I 2 3 1|1 2 3 4
1/1 2 30 and 212 4 1 3
202 3 01 313 1 4 2
3|13 01 2 4]4 3 2 1 B

Note that a group table will always be a Latin square, that is to say, in
each row and column each group element appears exactly once.

Exercise 2.6 Verify that

(2) {Zn,+) is a group for an arbitrary integer n,

(b) {Z,\ {0},-) is a group for an arbitrary prime p,

(e) (Zn \{0},-} isn’t a group if n isn’t prime,

(d) {5a,0) has n! elements if |A| =n *

Exercise 2.7: Imnportant! Show that every group table is a Latin
square.

Exercise 2.8 On the set A = {a, b} the symmetric group S4 has two
elements: the identity function Id and the bijection f that maps @ on b
and vice versa. Write down the group table for (54,0},

2.1.4 Cyclic Groups

If we in a group (G, =) take an element ¢ € & and pair it with itself we
get g+ g. Let’s use normal power notation and denote this element g?. In the
same way we let g7 denote g™+ g1, Finally, we let ¢° mean the identity 1.
Now we can calculate using the normal power rules:

Vgl Th

gmxg" = g™t
For each element g € G we can now define the set of all its powers as {g}:
{9y ={g" IneZ}.
It can be shown that {g) is a group as well, which because of this is called

the group generated by g¢. The element g is called the generator of the
group.

for all integers m, n.

Theorem 2.1 For each element g in a group (G, *), {g) is a subgroup of G.
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16 2.1. GROUPS

Proof. Arbitrary elements in {g) have the form g” for integers n. Thus {(g)
is closed, since g™ % g™ = ¢™™ which belongs to {g). Furthermore, (g) has
an identity, namely g°. Finally each element in {g) has an inverse, since the
inverse of g™ is g~ ™, which belongs to {g). B

A proup generated by an element g is called a cyclic group. We'll soon see
why.

Example 2.3 The group {Z,+) is cyclic, since it is generated by the ele-
ment 1 (because every integer can be written as a sum of a large enough
number of ones or minus ones). This group has as a matter of fact two
generators, since —1 generates the whole of Z as well.

For each integer n, the group (7, +} is also a eyclic group. A group like that
may have even more generators. For instance you can check that Zg = (1) =

(3) = (5) = (7). .

If G is a finite group, of course the subgroup {g) will be finite as well (since it
can at most be of the same size as ). The number of elements in the cyclic
subgroup (g} is called the order of g.

Q
PSRN

From the form of the diagram you can see why the group is said to be “cyclic”.
If you start to list the powers g%, g', g%, ... you will, when (g} is finite, sooner
or later get back to g = /. This must as a matter of fact occur before any
other clement reappears (see exercise 2.10), so the order of the element g can
also be expressed as the least positive power of g that is equal to the identity:

order(g) = min{m € Z; | g™ = I'}.

Example 2.4 We look at the orders of the different elements when adding
in Zg. Zero is already zero, so we don’t have to study it further, and the
analysis can start at one:

14+1=2 24+2=4 3+3=6 4+4=8=2 54+5=4

241=3 442=206 =0 24+4=6 4+5=3

3+1=4 ={ =0 3+b6=2

4+1=5 24+85=1

5+1=6 1+5=0
=0

We thus find that the orders of the elements in the group {Zg, +) are

order{0} =1
order(1) =6
order(2) =

order(3) = 2
order(4) = 3
order(5) =6

1 and 5 are obviously the only generators of the group (Zg, +}.
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2. ABSTRACT ALGEBRA 17

1+14+14+14+14+1=0

1+I+I+i+1:5//’\\\J

]

1+1+1+1:4‘\ /'1+1:2

1+111=3

S+5+4+5+5+54+5=0

5+5+5+5+551//'\\\ﬁ

L]

5+5+5—§—552.\\ /.5+5E4

545 45=3 -

Exercise 2.9 Are you able to see what kind of numbers it was that
appeared as orders of elements in Zg? Do you see any system concerning
which order it is that belongs to which element?

Exercise 2.10 Show that if you list the powers and one element reap-
pears (that is, g” = g™ for some integers m < n) then ¢" ™ = g°, that
is to say, the identity has already reappeared.

Exercise 2.11: Important! If a subset of a group is finite, how many
tests are then needed to check whether it is a subgroup?

Exercise 2.12 The invertible elements in Zg make up a group under
multiplication. Check whether the group is cyclic.

Exercise 2.13 Carry out the same investigation for the invertible el-
ements in Zg.

2.1.5 Cosets and Lagrange’s Theorem

In the previous section we found that the group {Zg, +} had cyclic subgroups
of the sizes 1, 2, 3, and 6. Note that every subgroup-size is a divisor of the
size of the full group! This remarkable relationship will always hold and is
called Lagrange’s theorem.

Why do we say that Lagrange’s theorem is remarkable? Well, we started by
introducing groups as a comprehensive concept for all structures that satisfy
four axioms. We have seen that there exists a large number of such different
structures, and a priori they wouldn’t need to have any other interesting
properties in common except for exactly these four axioms. But by using the
group axioms, you can prove nontrivial things that hold for all groups, such
as for instance Lagrange’s theorem.

The proof of Lagrange’s theorem demands that we introduce the concept
coset of a subgroup. This concept is easiest understood based on the exam-
ple Zg.

Example 2.5: Cosets in Zg The subgroups of (Zs,+) are Hy = {0}, Hy =
{0,3}, and Hs = {0,2,4} (and Zg in itself). A coset of a subgroup is obtained
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18 2.t GROUPS

by taking a number and adding it to all the elements in the subgroup. The
subgroup H; has one element and six cosets:

Hy +0= {0}, Hy +1={1},
H; +2=1{2}, H; +3={3},
Hy +4={4}, Hqy+5={b}.

The subgroup Hy has two elements and three cosets:

H2+03H2+3:{0,3}, H2+1EH2+4:{1,4},
H2+22H2+5:{2,5}.

The subgroup Hs has three elements and two cosets:

H3+0:H3+25H3+4:{0,2,4},
H3+1:H3+3:H3+5:{1,3,5}.

Every time the number of elements in the subgroup times the number of
cosets equal six, the size of the main group. The explanation is that each
element in the group appears in exactly one coset!

OO0 .

Now we'll carry out the general argument. If H is a subgroup of (G, *), then
for each g € G we define its (right) coset as

Hxg={h+g|h€H]}

We will now prove that each element in the group appears in exactly one
coset, that is to say, that if it appears in two cosets, then those cosets are
identical (like Hz +0 and Hz +3in the example above).

Theorem 2.2 If H is a subgroup of the group {G,*) and two of its cosets
have an element in common, then these two cosets are identical.

Proof. If we let = be an element that is included in both coset H * g1
and H # go, we thus have to prove that H #* g, = H * go. That is included
in both the cosets means that

z=hy*g1= ha*g2

for some elements h; and hg in the subgroup H. When multiplying both
sides by hl”l we get the equality

m :hi_l *hg*gz.

Fach element in H * g1 can be written on the form h g for som h € H, and
by rewriting g1 as hylxhaxga, hx g1 can he written as h= hfl # by * go. Since
H is a group and thus closed, h hy ! hg is an element b’ of H as well. Thus
we have written an arbitrary element in the coset H * g1 on the form h % g2
and thereby it’s an element of the coset H * go as well. In the same way we
get that all elements in H = gp belong to H * g1 as well, and thus these two
cosets are identical. n

According to the theorem above we have a situation as in the following figure:
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2. ABSTRACT ALGEBRA 19

G:

The group {7 is partitioned in disjoint cosets. Each coset is of course of the
same size as the subgroup H. If ¢ is finite then the number of elements in G
thus equals the number of cosets times the number of elements in A, This
proves Lagrange’s theorem:

Theorem 2.3: Lagrange’s Theorem If H is a subgroup of the finite group
G then [H| divides |G|. [

Exercise 2.14: Importent! Prove that the order of an element in a
finite group G will always be a divisor of |G].

Exercise 2.15: Important! Galois introduced the concept normal
subgroup for subgroups where the left cosets are identical to the right
cosets. (The definition of left coset is like the definition of right coset,
but with the multiplication in the opposite order.)

(a) Show that in Abelian groups ali subgroups are normal.

(b) Let 54 be the symmetric group on the set {a,b,c}. Let

a — a a = b
I b — ¢ and g: b e
= b c = a

Show that {g) is a normal subgroup of S, but that {f} isn’t a
normal subgroup of S4.

(c) If X is a normal subgroup of G then G/H denotes the quotient
group where the elements are all the cosets of . Cosets are
multiplied elment by element, that is,

(Hxg1)* (H*ga)={h1*gi*haxgo | hi,ho € H}.

Show that the quotient group really is a group.

2.1.6 Group Isomorphisms

Let’s study two different groups: addition in Zs and multiplication of the
invertible elements in Z;. We draw the group tables:

+10 1 2 3 4 5 |11 2 3 4 5 6
0(0 1 2 3 4 5 11 2 3 4 5 6
Ii1 2 3 4 5 0 2(2 4 6 1 3 5
212 3 4 5 01 3(3 68 2 5 1 4
3{(3 45 0 1 2 414 1 5 2 6 3
414 5 01 2 3 55 83 1 6 4 2
516 01 2 3 4 6:6 5 4 3 2 1

Both tables contain 6 - 6 = 36 elements, and no row or column contains
the same element twice, but for the rest they look fairly different. The most
obvious thing in the addition table is the diagonal structure: in each diagonal
directed upwards to the right only one element is represented. Nothing like
this holds in the multiplication table the way it is written here, but if we
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20 2.1.

rearrange the rows and columns in the order 1,3, 2, 6, 4, 5, the tahl
look like this:

1

(SN =~ N T, R
LA e N R U

HoOT s Oy b s o
O U s Y BN

The multiplication table of Z7\{0} now has in principle the same appear.
as the addition table of Zg! You may say that these groups are fundamen
identical; the only difference is the notation used.

This phenomenon, that two apparently different things are identical in ;
ciple, is called isomorphism (a word that ought to be known from Era
theory). The formal definition reads like this in group theory:

Definition 2.2: Isomorphic groups Two groups {Gy, +) and {G'g, 0
isomorphic if there exists a bijection ¢ : 3 — G5 that preserves,
relationships between the elements, that is, such that

Pz *y) = ¢(z) o ¢(y) for all z and y

The bijection in question is called an isomorphism.

In the example above, #(0) =1, ¢(1) = 3, #(2) = 2, ¢(3) = 6, #(4)
#(5) = 5 is an isomorphism between {Zg,+) and {Z7 \ {0}, ).

Exercise 2,16 Calculations in {(Zy x Za,+) is a group. (You calcﬁiat
with ordered pairs from Z,, and add component by component, ) Cal
culations with the invertible elements in Zg under multiplication i

Exercise 2.17 We have two groups: (G, +) and (H, -}, and an isom
phism ¢ between them.

(a) Denote the identities in ¢ and H by ¢ and 1, respectively. She
that ¢(0) = 1. :

(b) Detnote the inverse of an element g € G by —g and denote;ﬁ
inverse of an element A € H by h~'. Show that $(—a) = (8(g))

Exercise 2.18: Important! According to Cayley’s theorem every

finite group (7 is isomorphic to a subgroup of the symmetric group S,
Prove this! :

Example 2.6: The Group Isomorphism of the Slide Rule Oneex .:_
ple of isomorphic groups are the real numbers under addition, and the positi

real numbers under multiplication. Thus there exists a bijection ¢ : R, —.
such that '

¢z - y) = ¢(z) + $(y).

This isomorphism was of very large practical importance until the arrival fo;
the electronic calculator. As anyone who has calculated by hand surely has.
noted, it’s significantly easier to add than to multiply. If vou want to kno

what a-b equals, you can using the isomophism find #{a) and ¢(b), add theny

and using the inverse find ¢~ (pla) + $(b)}) = a - b. The addition is so muc
easier that this roundabout way pays! -
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2.3. MORE EXEE

Exercise 2.33 (If yoy have st’u&iéd?:vecjtb'rsﬁ-}_ For vectors in three-dime;
Space there are severg] Oberations.” Combiriad with which of these opérs
do we have 5 group, and in thig Case, is it Abelian? :

(a) scalar product (also called dot product,).

(b) vector product (also called cross product).

() vector addition.

Exercise 2.34 Show that in €very group (g, =) it holds that
Cxh=gwxe - b=

Write down g the details in the argument!

Exercise 2.35 Prove that the relationship
(meo)yt o g1, a1

holds for arbitrary group elements 7 and .

Exercise 2,36 2Z denotes the even numbers {numbers that can be Wr
as 2 times a number from 7). (27, +) is a subgroup of (7, +).

(b} Same question about ([, .).
Exercise 2.39 Let S denote the group of bijections on {1, 2, 3, 4, 5, 6}

(a) Does Sy have some subgroup of the order 77 Explain!

(b) Find a subgroup of S5 of the order 2,

Counterexample!
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