7. Graph Theory

Graph theory is an enormous area that includes problems of different kinds:
combinatorial problems, opimisation problems, modelling problems, etc.

In this chapter we’ll cover some basic problems and methods in graph theory,
with connections to earlier chapters (for instance Stirling’s formula and op-
timisations problems in chapter 4, generating functions in chapter 6} as well
as to later chapters (graphs as networks in chapter 8, matching in chapter 9).

Highlights from this chapter

s A praph is said to be planar if it can be drawn on a plane without
any edges crossing each other. Then the plane is subdivided into a
number of regions that are called faces.

o Buler’s formula gives the following relationship between the number
of nodes (v}, edges (e), and faces (f) in every connected planar graph:
v—et+f=2

e A graph is homeomorphic to another one if they lock the same
when you ignore the nodes: ® ——@——=@ is thus homeomorphic to
®&—————®. Kuratowski’s theorem says that a graph is planar if
and only if no subgraph is homeomaorphic to Ky or Ks 3.

o An proper colowring of a graph is an assignement of colours to the
nodes so that adjacent nodes don’t have the same colour. The least
number of colours needed for a proper colouring of G is the chromatic
number x{G}. The number of possible proper colourings of G if
) colours are available is the chrematic polynomial Pg(A).

o The famous four-colour theorem states that every planar graph can
be coloured using at most four colours.

e The numbers ¢, = #1_(2;) are called Catalan numbers. The Catalan
numbers count many different combinatorial objects, among others
the number of binary trees with n nodes.

e Cayley’s theorem states that the number of trees with n differently
labeled nodes is given by the simple formula n®~2. This we prove
using the Prifer code, a bijection between trees of this kind and
(n — 2)-tuples of numbers between 1 and n.

o A random walk on a graph is a walk that in each node randomly
chooses which edge it will follow in the next step.

131




132 7.1. PLANAR GRAFPHS

7.1 Planar Graphs

A manufacturer of integrated circuits make up the circuits one layer of con-
ductive connectors at a time. Each layer can be regarded as a graph where
the connectors make up the edges and the connecting points the nodes. To
avoid short circuits, no connectors may cross each other in the same layer. It
must be possible to model the layers using graphs that are planar, that is,
that can be drawn in the plane without any edges crossing each other.

Example 7.1 The complete graph with four nodes, Ky, is planar.

The complete graph with five nodes, K5, is on the other hand not planar.
No matter how you try to draw it some edges will cross — try it yourself!

A formal proof showing that K5 isn’t planar wiil be given below. |

A planar graph drawn in the plane without any intersecting edges will gen-
erate a partitioning of the plane in regions, which are called the faces of
the graph. For instance, K divides the plane into four regions: three inner
ones and one outer one. So the unlimited outer region is counted as a face as
well. The graph below thus has three faces: the square one, the triangular
one, and the area outside.

Note that every limited face is surrounded by edges that form a cycle.

It’s not obvious that every way of drawing the graph will result in the same
number of faces, but this is the case. That follows from Euler’s formula
from 1752:

Theorem 7.1: Euler’s formula In every connected planar graph the fol-
lowing holds:

v—e+ f=2

where v is the number of nodes, e is the number of edges, and f is the number
of faces.

Proof. We make an induction over the number of faces. A planar connected
graph with a single face (the unlimited one) has to be a tree, since it’s a
connected graph without cycles. For all trees, we know that v = e+ 1, and
since f = 1 it satisfies the identity v — e+ f = 2.

Now assume that for some f' > 1 the identity is true for all connected planar
graphs with f’ faces. We are to prove that it then is true for all connected
planar graphs with f = f’+1 > 2 faces. Let G be such a graph with e edges,
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7. GRAPH THEORY 133

v nodes, and [ faces. G will have some limited face. If we remove an edge
from the surrounding cycle, this face will meld into the face on the other side
of the edge. Then we have a new planar graph with ¢ = e — 1 edges and
f=f -1 faces (and v’ = v nodes).

In this new graph the identity, according to the inductive hypothesis,
v' — &' 4 f' =2, is true. Thereby, the same thing holds for the origina) graph:

v—e+f=v—(+ 1)+ ({f+ 1) =0 - +f =2

According to the principle of induction, the identity thus is true for all planar
connected graphs. - |

As an example, we can take another look at the graph

This graph has six nodes, seven edges, and three faces; and indeed 6 — 7+ 3
=2.

With the use of Euler’s formula it can be proved that some graphs can’t pos-
sibly be planar, namely if it’s impossible for them to satisfy the relationship
between the numbers of nodes, edges, and faces. But face is a concept only
defined in planar graphs. Euler’s formula is thus not immediately applicable
until you know whether the graph is planar. But every face in a planar graph
(that isn’t a tree) is surrounded by cycles, and since cycle is a well defined
concept in all kinds of graphs we can use them when calculating.

Example 7.2 We are to prove that Ky isn’t a planar graph.

In a planar graph, each face is surrounded by a cycle. All cycles in K5 of
course cousist of at least three edges. (Besides, a planar graph may include
extra edges that point into the faces.) On the other hand, each edge in a
cycle surrounding a face is bordering to exactly two faces. If there is a large
enough number of edges to surround all the faces in a planar graph, then the
inequality 2e > 3f has to hold, or if you prefer, f < %e. According to Euler’s
formula it would then hold, if K5 were planar, that
2 1
2:v—e+f§v—e+§e='u~§e.

But in K5 v =5 and e = (5) = 10 and it’s not true that 2 <5— % .10. So
Ky can’t be planar. u

In the above example we have proved a corollary of Euler’s formula:
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134 7.1. PLANAR GRAPHS

Corollary 7.2 In every planar graph with v nodes and e > 2 edges it holds
that

e < 3v—6.

(Is derived from Euler’s formula, which includes the condition “connected”,
and is based on the fact that each face has at least three edges, which doesn’t
hold in K5) [ |

The number of edges in a planar graph is thus limitied by a linear function
in the number of nodes. For arbitrary graphs the number of edges can grow
quadratically compared to the number of nodes; Ky has (0} = ”2; o adges.
That means that the proportion of planar graphs decreases the larger the
number of nodes gets.

Example 7.3 We will now prove that the complete bipartite graph K33
isn’t a planar graph.

The graph Ksz hasv=6ande=3-3=19 and thus satisfies the inequality
e < 3v — 6, which according to the corollary above has to hold in all planar
graphs. But we can’t thereby draw the conclusion that K3 g is planar, since
there may exist nonplanar graphs that satisfies the inequality as well.

Instead we are going to sharpen the inequality. Since K33 is a bipartite
graph, all cycles have an even length. All cycles in K33 thus consist of at
least four edges. Thus, according to the same line of reasoning as above, it
holds that if K3 3 were planar the relationship between faces and edges would
satisfy f < %e. According to Euler’s formula it then holds, if K33 were a
planar graph, that

2 +f<w + 2 !
= — —et —e=—v— —e.
e < 1 V=g
We have v = 6 and e = 9, and it isn’t true that 2 g 6— % -9. Thus K3 can’t
be planar. u

We are now going to explain why the two graphs K5 and Ka3 are the most
important nonplanar graphs. By a minor of a graph G is meant a graph that
can be created by performing the following operations on G: It’s permitted
to remove edges and nodes and for nodes with just two edges it’s permitted
1o fuse these edges into one edge (so that the node no longer is a node but
is included as one point out of many on the edge).

It’s clear that if a graph is planar from start it’s still planar if you remove
a node or an edge, as well as if you fuse two edges as described above; no
intersecting edges are formed by these operations. Thereby we have realised
that every minor of a planar graph is planar as well.

Since nonplanar graphs exist there must exist some minimal nonplanar graphs
as well, that is, graphs that aren’t planar while all their minors are pla-
nar. The Polish mathematician Kazimierz Kuratowski (1896-1980) proved
in 1930 that there only exist two minimal nonplanar graphs and these are
Ky and K3 3. All others include one of these as a minor.
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7. GRAPH THEORY 135

Theorem 7.3: Kuratowski’s Theorem A graph is nonplanar if and only
if it includess K5 or K3 3 as a minor. [}

The proof in one direction is in principle already done; a planar graph has
only planar minors but K5 and K33 are nonplanar. Therefor every graph
having K or K3 3 as a minor has to be nonplanar.

In the other direction the proof is complicated and won't be given here.
Instead, we refer to the book Graphs on Surfaces (2001) by the distinguished
graph theorists Bojan Mohar and Carsten Thomassen. This bock contains
algorithms that in linear time determine whether a graph is planar as well.

Exercise 7.1 Show that the following three graphs are planar by draw-
ing them without crossing edges.

*

Exercise 7.2 Count the number of faces of each of the graphs above
and verify that Euler’s formula holds in all of them. *

Exercise 7.3: Important! Give examples of more situation besides
manufacturing of cicuits where planar graphs are useful in modelling.

Exercise 7.4: Important! Two edges that meet at a node of degree
two look like a single edge (since you can imagine the node being a
point, that is, without length and width):

i

*~—8—e =~ o @

The symbol ~ denotes the equivalence relation homeomorphism be-
tween the graps. Two graphs are homeomorphic if they only differ in
nodes of degree two in this way. Prove that if two graphs are homeo-
morphic then either both are planar or both nonplanar.

Exercise 7.5: Important! Express Kuratowski’s theorem using the
concept homeomorphism instead of the concept minor.

Exercise 7.6: Irnportant! Why is a graph nonplanar if some sub-
graph is nonplanar? Give examples showing that the comverse isn’t
frue.

Exercise 7.7 Study a planar connected graph with at least one cycle.
If all the cycles are of length at least &k > 3, derive the inequality

e < (v—2).

k—2
Exercise 7.8 Show that the problem of determining whether a graph
is nonplanar belongs to NP.

Exercise 7.9 Kimmo once got an idea about how to draw even nonpla-
nar graphs without intersecting edges. His innovation was to introduce
two new kinds of nodes, “K,,-nodes” and « m,n-n0des”, that are drawn
like
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7.1. PLANAR GRAPHS

O

These new kinds of nodes are defined so that all nodes in the graphs
that are adjacent to a certain K,,-node are counted as adjacent to each
other, while all nodes in the graph that are adjacent of one side of a
Ko n-node by this are adjacent to all the nodes in the graph that are
adjacent to the other side of the Ky, n-node.

The idea is thus that a number of edges in the original graph are re-
placed by such a modern node and edges to it. For instance the graph

e

means that the three normal nodes are adjacent to each other, while

the graph

means that the two nodes to the left are adjacent to the node to the
right but not to each other.

(a) Show how it’s possible using K,-nodes and K,, ,-nodes to draw
K5 and K3 3 without any intersecting edges.

(b) Kimmo thought that the exercise above combined with Kuratow-
ski's theorem ought to show that all graphs could be drawn without
intersecting edges by using K,-nodes and K,, n-nodes. Explain to
Kimmo why this isn’t correct!

Exercise 7.10: Important! There exist other surfaces than the plane
on which to draw graphs. For instance you can draw on the outside
of a sphere (the outside of a beach ball} or on a torus (the outside of
a swimming ring). If you reflect for a while, you realise that it’s just
as difficult to draw a graph without intersecting edges on a sphere as
on the paper. If you draw a very small graph, the part of the sphere
where you are drawing can be regarded as flat, so everything that can
be drawn without intersecting edges on paper can be drawn on a sphere.
And conversely; if you have drawn on a sphere (say a balloon) you can
cut a small hole in one face and stretch the sphere like a drumhead. No
edge crossings are formed by that operation, so anything that can be
drawn without intersecting edges on a sphere can be draw on a plane
as well.

But it’s easier to draw without intersecting edges on a torus than it

is on a flat paper! A torus can be manufactured by taking a paper,
turning it into a roll and then gluing the ends together:
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7. GRAPH THEORY 137

Figure 7.1: Torodial graph.

When you are drawing on a paper representing a tours you are thus
allowed to draw up to the upper edge and then continue from the cor-
responding point at the lower edge, or to draw out to the right edge
and then continue from the corresponding point af the left edge, since
these points are glued together. Then we can in fact draw both K and
K3 3 without intersecting edges. Let’s say that a graph is torodial if
it can be drawn on a torus without intersecting edges.

(a) Show that Kj is torodial.
(b) Show that K3 3 is torodial.

(c) Why doesn’t the reasoning in Euler’s formula hold when we are
drawing on a torus instead?

On a torus, other graphs than K5 and K 3,3 are the minimal graphs that
can’t be drawn without intersecting edges, and they are a considerably
larger number than two. It’s still not known what all of them are, but
at least it’s known that the number is finite. Read more in the book
by Mohar and Thomassen.

Exercise 7.11 A convex poyhedron is a convex three-dimensional
solid with flat faces, for instance a cube. The faces are in their turn cir-
cumscribed by edges and corners and thus form a graph. For example,
the graph of the cube looks like

Explain why the graph of every polyhedron is planar.
Exercise 7.12 Do all planar graphs correspond to polyhedrons?

Exercise 7.13 A Platonian solid is a polyhedron that is completely
regular. Use Euler’s formula to prove that the only Platonian solids are
the tetrahedron, the cube, the octahedron, the dodecahedron, and the
icosahedron. Draw the solids in a planar way as well.

A <P
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138 7.1. PLANAR GRAPHS

7.1.1 Dual Graphs

For each planar graph G that is drawn without intersecting edges a dual
graph G is defined as

e each region in ( gives a node in the dual graph G+

e cach edge in G gives an edge in the dual graph G, so that adjacent
regions in & correspond to adjacent nodes in G+,

Example 7.4 The figure shows a planarly drawn graph and how we based
on the drawing get the dual graph. (Note that a simple graph can have a
multigraph as its duall}
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Exercise 7.14 Can different ways of drawing a planar graph & give
different nonisomorphic dual graphs?

T P
o

Exercise 7.15 Find the dual graphs of the planar graphs
(a) K2

(b) K

(C) K4

(d) Kzp

(e) o3 *

Exercise 7.16 Find the dual graphs of the planar graphs

(a) Tetrahedron {see exercise 7.13).
(b) Cube.

{c) Octahedron.

(d) Dodecahedron.

{e) Icosahedron.

Exercise 7.17 How can a world map be represented by a graph where
the countries correspond to nodes?

Exercise 7.18 Explain why the dual graph of a planar graph has to
be planar as well. *

Exercise 7.19 What is the dual of the dual (G+)1?
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It’s of special interest to study the dual graphs of the Platonian solids. You
will find that the tetrahedron is its own dual, while cube-octahedron and
dodecahedron-icosahedron are dual pairs. It’s thus possible to inscribe a
octahedron into a cube, that in its turn is inscribed into an octahedron. ...
A consequence of this is that you can make up hybrids of the solids. The
third graph in exercise 7.1 is a cube-octahedron. You can ecither regard
it as a cube where the eight corners have been cut off, resulting in eight
triangular surfaces, or as an octahedron where the six corners have been cut
off, resulting in six square surfaces.

Similar things are of interest in tiling. There are three ways of tiling a floor
using regular polygons: you can use triangles, hexagons, or squares. Triangles
and hexagons are the duals of each other while the square tiling is the dual
of itself,

This in its turn has interesting applications for persons who make bracelets
out of beads. From the triangular tiling you get a structure where loops
consisting of three beads are combined in groups of six; from the hexagonal
tiling one where loops consisting of six beads are combined in groups of three,
And from the square tiling one where loops of four beads are combined in
groups of four.

That the square tiling is the dual of itself gives a form of double symmetry in
the design, since the “loops” and the “crossings” are equal. That in its turn
has interesting consequences when designing the pattern.

Exercise 7.20 If you look att the bead constructions drawn here, you
see that they can be regarded as graphs, with the beads as nodes and
the thread as edges. Then you find that all the nodes have an even
degree. What is the consequence of this?

Exercise 7.21 Of course three-dimensional graphs can be built out
of beads as well. Buy a bag of beads and make the Platonian solids!
(Hint: It’s easier if you put needles at both ends of the thread.) *

7.2 Graph Colouring

An optimisation problem, which is important in radio communication, is the
frequency assignment problem: A number of radio towers are placed in
an area. Some towers are so close that they would interfere with each other
if they were sending on the same frequency. Other towers are so far apart
that they can send on the same frequency without problems. How many
frequencies are needed if one wants to use as few frequencies as possible?
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