Answers

Chapter 1

1.1 Allletters except for A work as gen-
erators. The problem can be expressed
in modular calculations like this: g is
a generator if there for each element z
exists an element y such that yg = =z
(mod 29), since the Swedish alphabet
has 29 letters. According to Discrete
Mathematics and Discrete Models, this
holds for gs that are coprime to 29, that
is, all numbers from 1 to 28 since 29 is a
prime number.

1.2
(a) PERFECT ,

(b) Both the messages M and the
codes C consist of strings from the
normal alphabet.

(c¢) KIMMO
1.3 ©(N?) and ©(N), respectively.
1.4 You just turn the cycles around,

and the the letters are rotated back:

(G N RR H S T F Ri P)
(I. A I O)

1.5 The partitions of 6 where the great-
est part is 3 are: 3+ 3,34+ 24+ 1, and
3414+ 1+ 1. The general statement is
shown using conjugation in chapter 6.

1.6
(a)

04%
%

SODIUM

(b) No! Chapter 7 describes how this
can be proved by finding six nodes
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connected to each other as in the
complete bipartite graph K3 3.

BAKELITE

2
%,

SoDIUM

Remove the acrylate pipe and draw
the aluminium-sodium-lead pipes
as a single edge, and you’ll see K3 3.

SOopiumM

COPPER

(There are alternative, just as good, so-
lutions. But in all of them, the copper,
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laminate, and lead pipes will be filled to
max.) In chapter 8, an algorithm for
finding maximum flows in a systematic
way will be presented.

1.8

(a) Each discussion is beween a person
on an odd level (level 1 or 3) and
a person an an even level (2 or 4).
At level 1 and 3 there are in total
‘four persons, who then can partici-
pate in at most four discussions at
a time.

(b) Several nodes are of degree three,

that is, the persons have to partic-

ipate in three discussion. Thus at

least three rounds of discussions are

needed.

Chapter 2

2.1

(a) Closed, since an integer minus an
integer is an integer. Not associa-
tive, for instance (1 — 2) — 3 =
—1—3 = —4 while1l—-(2-3) =
1—(-1) = 141 = 2. Further-
more no element can be found that
works as a unit both from the left
and from the right. (Zero works
from the right, since z — 0 = z, but
not from the left.) If you don’t have
a unit discussing inverses becomes
a bit tricky, but if we pretend that
zero is the unit, every number is its
own inverse, since z —x = 0. Not a
group.

The calculations are closed, associa-
tive, and have a unit, namely one.
But there is a number which lacks
an inverse: zero. There is no num-
ber which multiplied by zero gives
one. Not a group. (But (Q\ {0},-)
is a group!)

(b)

(c) The calculations are closed (the
union of two sets is a set); the cal-

culations are associative; there is a
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1.9 Since the competitor starts, she
can’t be stopped from placing her two
pipes from the inlet. Her third pipe she
wants to place at the outlet so that both
ways to her earlier pipes still are usuable
~ then she is certain to win, since Good
Connections Inc. only are able to hide

one of them in their next move.
L]

Such a pipe must be possible to put in
place, since there are three alternatives
and Good Connections Inc. can by their
up until now hidden pipes only have sab-
otaged two of them.

neutral element, namely the empty
set. But no inverses exist! Not a

group.
(d) Group.
(e) Group.

2.2 It consists of a single element, that
is both neutral element and its own in-
verse. The thrilling calculation table is
(if the element is named I) I * I = I.

2.3

(a) Assume that we have two identities,
11 and 4. Then what happens if we
combine them?
i1 =141 x i {since 72 identity}

=1y {since %; identity}

They are identical!

Assume that the element a has the
two inverses b and ¢. Then we get

(b)

b=bxid=bx(a*c)=

=(bxa)*xc=1dxc=¢c
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2.4 You have to check that H is closed,
so that it’s impossible to end up outside
it. Furthermore you have to check that
all the elements of H got to bring their
inverses. The associativity, on the other
hand, is inherited from G, and doesn’t
need to be checked again. (If the opera-
tion is associative for all elements in G it
must, among other things, be so for the
elements in H.) And if H is closed and
all elements have their inverses, then for
instance i - k™! = e has to belong to H,
that is to say, the identity is guaranteed
to be there provided that there is any-
thing at all in H, that is to say, provided
that H is non-empty.

2.5

(a) No, the elements (except for 1) lack
inverses. There is for instance no
integer n such that 17n = 1.

(b) No, the set isn’t closed. An odd
number plus an odd number is an
even number, not an odd one!

~ (¢) Yes.

2.7 1If there is a row where some ele-
ment doesn’t appear the row must con-
tain some other element twice. That
means that there are two multiplications
by the same element, say x %y och z *x z
where y and z are different elements,
that give the same result. Multiply both
the expressions from the left by 7' and
we have 27 ' sz xy = o~ x x % z. This
equality can be simplified to Iy = I*z,
that is, to y = z, which contradicts the
assumption that there were two equal el-
ements in the same row in the group ta-
ble.

2.8
o |Id f

2.9 All the orders were divisors of 6,
that is to say, of the number of ele-
ments in the set. (This applies to all
finite groups, see Lagrange’s theorem be-
low.) Furthermore we have the relation-
ship order(k) = 6/gcd(6, k). (The same
thing applies in all groups (Zn,+).)

2.10 Follows directly from the power
rules.

2.11 It’s enough-to check that it’s
closed. If it is and the element g belongs
to the subset then g2, ¢°, and so on will
belong as well. And sooner or later one

of the powers will be equal to g~ *.

2.12 No. 1 has the order 1, the remain-
ing 3 elements have the order 2.

2.13 It’s cyclic; as a generator you can
use 3 or 7.

2.14 FEach element generates a cyclic
subgroup of the same size as the order of
the element. The size of this subgroup
divides according to Lagrange’s theorem
the size of the group.

2.15

(a) We have to show that for Abelian
groups it always holds that g« H =
H % g. The left hand side equals
{g=h | h € H} and the right hand
side equals {h*x g | h € H} and
since g * h = h * g always holds in
an Abelian group these two sets are
identical.

It’s easily verified that f = (g) =
{(g) = f and for reasons of symme-
try this holds even if [ is exchanced
for some other element in G \ {(g).
Thus (g) is a normal subgroup. But
g*x(f) # (f)*g so (f) isn’t a normal
subgroup.

(b)

The closedness axiom is the cen-
tral thing here: Since left and right
cosets are alike it holds that
(Hxg1)* (H*g2) =
"—‘H*(Q1*H)*gz

=Hx*xHx* g1 * g2

=H* (g1 % g*2)

()

for all g1,92 € G. Associativity is

inherited by *. The identity is H,

since

H«(Hxg)=Hxg=
=g+xH=(g+xH)*H

for all g € G. The inverse of H * g

is I % g~ %, since

(Hxg ) x(Hxg)=

=Hxg  xg«H=HxH=H.

2.16 The tables are

+ |00 (0,1 (1,00 (L1
(0,0) | (0,0) (0,1) (1,0) (1,1)
0,1) { (0,1) (0,00 (1,1) (1,0)
(1,0) | (1,0) (1,1) (0,0) (0,1)
1LY | (1,1) 1,00 (0,1) (0,0)
|1 .38 5 7
111 3 5 7
3/3 1 7 5
55 7 1 3
717 5 3 1
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They have exactly the same structure as
it is, so we just have to pair the elements
in corresponding positions: $((0,0)) =
Log((0,1) = 3, ¢(L0) = 5,
#((1,1)) = 7 is an isomorphism.

2.17
(a) For arbitrary g € G it holds that

$(0) - (g) =

{since isomorphism}
=¢(0+9)
= ¢(9)

which means that #(0) = 1.

(b) For arbitrary g € G it holds that
¢(g) - o(—g) =

{since isomorphism}
=¢(g+(~9)

= 4(0)

{according to previous exercise}
=1

and thus ¢(—g) = (¢(g)) ™.

2.18 For each element g in the group G
we define a bijection f; on G as fy(z) =
g*z for all z € G. Let F,; denote the
set of all fy:s. Thereby Fj is a subset
of the symmetric group S,;. Clearly the
mapping g > fg is a bijection from G to
Gy, and for all z € G it holds that

foofu(z) =gxh*xz= fn(z)

and thus fgo fs = fg«r. Thereby Fy is a
group isomorphic to G and a subgroup
of Sg.

2.19 The isomorphism is simply loga-
rithms, and the inverse is exponentia-
tion. You find the logarithms of the two
factors, add the logarithms, and expo-
nentiate, like 100 - 1000 = 10? - 10° =
1%+ = 10° = 100 000, to use two eas-
ily handled numbers as a demonstration.
The conversions were usually done us-
ing tables. (It’s not necessary to use the
base 10, but it’s practical when using
decimal notation.)

2.20 The most famous marginal note
is of course the one where Fermat for-
mulated his famous hypothesis, see sec-
tion 11.4.

2.21 Follows directly from exercise 2.6.
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2.22 The set of polynomials with inte-
ger coefficients is closed under both ad-
dition and multiplication. The identity
elements are 0 and 1, respectively. The
additive inverse of a polynomial p(z) is
simply —p(x). Thereby Z[z] is a ring.
(It’s not a field, though, since even if
multiplication is commutative, the only
elements in the set having a multiplica-
tive inverse are +1.)

2.23 Nothing stops you from having
several minimal elements, all of them
placed along the bottom edge, which are
unrelated to each other. On the other
hand, there can only exist one element
that is the least. A least element is al-
ways a minimal element, but the reverse
doesn’t hold.

2.24 Ason is the only maximal element,
and thereby greatest as well. Eson,
Lson, Mson, Gson, Nson, Oson, Ison,
Json, Pson, Qson, and Rson are all min-
imal elements, no least element exists.

2.25

(a) That said person is the boss of both
of them.

(b) That said person is a subordinate of
both of them.

(¢) Upper bounds: Cson and Ason.
Lower bounds: None.

(d) Upper bounds: Dson and Ason.
Lower bounds: Kson, Pson, Qson,
and Rson.

2.26 A lower bound of m and n divides
both the numbers, that is, it’s a common
divisor of them. An upper bound is di-
vided by both the numbers, that is, it’s a
common multiple. The common divisors
of 12 and 8 are 4, 2, and 1.

2.27 Vz[z = glb(z,y)
(zR2)A(z=y)A

Vu{(w 2 z) A (w<y) = (w < 2)}]
2.28 Least common multiple and
greatest common divisor.

2.29 Cson and nobody, and Kson and
Dson, respectively.»

2.30 No. If you have for instance
two different maximal elements no up-
per bound of them will exist, and the
no least upper bound either. So you can
have at most one maximal and one min-
imal element.
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2.32 A lattice is a partially ordered set,
and can be drawn as a Hasse diagram.
If you have a greatest and a least ele-
ment, the diagram will converge into a
point at top and at bottom. But noth-
ing prevents it from having an infinte
number of levels inbetween (which the
power set of N has) or there being an in-
finite number of elements on each level
(which holds for the subset-relation on
P(N) as well). Bounds don’t guarantee
finiteness.

On the other hand, a finite lattice has to
be bounded.

2.33

(a) No group, since the operation isn’t
closed. A vector dot another vector
equals a number.

(b) No group, since the operation isn’t
associative. For instance ((1,0,0) x
(1,0,0)) x (0,1,0) = (0,0,0) x
(0,1,0) = (0,0,0) while (1,0,0) x
((1,0,0) x (0,1,0)) = (1,0,0) x
(0,0,1) = (0,—1,0). Nor does there
exist any neutral element, since the
cross product of two vectors is per-
pendicular to them both and thus
not equal to either of them. And if
there is no neutral element, talking
about inverses isn’t meaningful.

(c) Abelian group. The neutral element
is the zero vector, (0,0, 0).

2.34 We denote the “invese of ” by ™}
and the unit element in the group by e

axb=axc
a s (axb)=a" % (axc)
(@ xa)xb=(a""xa)xc
exb=exc
b=c

2.35 (m*0)"!is by definition what you
have to pair 7 % o with to get the iden-
tity. Let’s see what happens if we pair

rm+cand ot h:

1 -1

1
* T

T*Oo*0o =g*xidxr” =

—1 .
=gx7w ~ =id

Since we got the identity, what we used
has to be the inverse!

2.36

(a) 2Z does only have one coset besides
itself, namely the numbers you get
if you add a number outside 27Z to a
number in 2Z. The numbers outside
are odd, and an odd number plus an

even number is odd. We can denote
the coset 2Z + 1. The table is

| 22 2z+1
27 2Z  2Z+1
2Z+1|2Z+1 27

(b)

The group, which consists of two el-
ements, is isomorphic to (Zsz, +).

Z/2Z is isomorphic to Zs, which
isn’t isomorphic to any subgroup
of Z, since all subgroups of Z ex-
cept {0} contain an infinite number
of elements (since all numbers have
an infinite order when using normal
addition, since you never return to
zerol)

(c)

2.37 An equivalence relation is reflex-
ive, symmetric, and transitive. Two
groups are isomorphic if there exists a
bijection that preserves relationships be-
tween them.

e Fach group is isomorphic to itself
(with the identity functon as bijec-
tion), so the relation is reflexive.

e If there is a bijection ¢ from Gi to
G then its inverse is a bijection in
the other direction (bijections do al-
ways have an inverse), so the relation
is symmetric.

e If there is a bijection ¢ from G; to Ga
and a bijection % from g to G's, then
1 o ¢ is a bijection from G to Gs,
and that it preserves the operations
follows from the fact that the other
bijections do. So the relation is tran-
sitive.

2.38

() Us = {1, 3,5, 7}). 32 =9 = 1,
52 =25 =1, 72 = 49 = 1. No, the
group isn’t cyclic, since no element
exists that generates it.

Up = {1, 2, 4,5, 7, 8. 2% = 4,
22 =82"=16=7 2" =14 =5,
22 = 10 = 1. We can already
see that the group is cyclic, with
2 as a generator. The question is
whether there are any more gener-
ators. We can without any calcula-
tions realise that order(4) = 3 and
that order(8) = 2 (since 4 = 22 and
8 = 2%) s0 it’s enough to investigate
the remaining elements:

52 =25 =7, 5° = 35 = 8. We can
stop here, since the order has to be
a divisor of the number of elements
in the group, here 6, and we have
by now passed all those except for 6
itself. 5 is a generator of the group.

(b)
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Since 7 = 5% and 5 has the order 6,
7 has to have the order 3, and thus
doesn’t generate the group. The
group is cyclic, with the two gen-
erators 2 and 5.

2.39

(a) Ss contains 6! = 720 elements.
7 doesn’t divide 720, so it’s impos-
sible for a subgroup with this cardi-
nality to exist.

{b) The subgroup then has to consist of

two elements, out of which one has

to be the identity function and the
other one its own inverse. For in-
stance {Id, f}, where f is defined

according to 1 — 2, 2 — 1, 3 — 3,

4= 4 5+ 5 6 — 6 works fine.

(There are several alternative an-

swers!)

2.40

(a) Yes. Take two elements in K N H.
They then belong to both K and H,
so the combination of them will be-
long to both K and H as well (since
the sets are closed) and thereby
in KN H. And the same reason-
ing applies to the inverses. And
the identity is included in every sub-
group, and thereby in the intersec-
tion.

(b) No. The two subgroups are closed

regarded separately, but nothing

says that an element of K paired
with an element of H has to end up

Chapter 3

3.1

(a) Morse code, for instance. It’s
made up from two symbols, long
and short, and the lengths of the
code words are different. The in the
English language common letter e
is encoded -, while the less common
letter h is encoded as the longer se-
quence - - - -

For instance ASCII-code (Ameri-
can Standard Code for Information
Interchange), which is commonly
used to code characters in comput-
ers. There it’s specified which se-
quence of ones and zeros that is to
represent which letter.

(b)

3.2 log,n rounded upwards.
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anywhere special! If we for instance
study the group (Z,+) and its sub-
groups 2Z (the even numbers) and
3Z (the numbers divisible by 3) we
see that 2 € (2Z U 3Z) and 3 €
(2ZU3Z) but 23 =5 ¢ (2ZU3Z).
Not closed, not a group.

2.41
(a) This chapter has to be read first.

(b) This chapter can be read without
having read anything else before it.

(c)

The chapter requires that you have
read both the others.

(d) Chapter 5 and chapter 9, which are
unrelated. No lowest upper bound

exists.
(e) There are no upper bounds at all,
and definitly none that is lowest.

Chapter 6 and chapter 4. Since
chapter 6 is placed above chap-
ter 4, chapter 6 is the greatest lower
bound.

Only chapter 4, which then of
course is the greatest lower bound.

(h) Definitely not!

(f)

(8)

2.43 Ifaxbthenanb=agandaVb=1">
(and the other way around if the rela-
tionship is inverted). Since one of the re-
lationships is guaranteed to hold in a to-
tal order, we are guaranteed that A and
V will always be defined, which is the
requirement for the order to be a lattice.

3.3

(a) If the probability of getting it wrong
is 1 % then the probability of get-
ting it right is 99 %. With ten digits
that gives a probability of 0.991° ~
0.904 = 90.4 %.

‘We have to choose one out of the
ten digit for the error, and the rest
are to be correct: 10-0.01-0.99° ~
0.091 = 9.1 %.

(b)

(c) Choose two of the digits for the er-
rors: (%) - 0.01% - 0.99° ~ 0.004 =

0.4 %.

We can see that it’s true that it’s more
likely that we are affected by one error
than by several. (We have already cov-
ered 99.9 %, so the probability of more °
that two errors has to be very low.)
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3.4 That it contains different code
words that are identicall Not an espe-
cially good idea, if you want people to
understand what you mean. (It’s true
that the code the English language con-
tains words that are written and/or pro-
nounced in the same way but mean dif-
ferent things, but in spite of that you are
usually able to understand the meaning
based on the context.)

24

.5

(010101, 101010) = 6
(010101, 111000) = 4
§(010101,000111) = 2
§(101010, 111000) = 2
§(101010,000111) = 4
§(111000,000111) = 6

The minimum distance is 2.

3.8 000111, that differs from the re-
cieved word at two places. The rest of
the code words differ at at least three
places.

3.9 We group the strings according to
which code word they resembles the
most:

00000 : {00000, 00001, 00010,
00100, 01000, 10000}
00111 : {00111, 00110, 00101,
00011, 01111, 10111}
11100 : {11100,11101, 11110,
11000, 10100, 01100}
11011 : {11011, 11010, 11001,

11111,10011, 01011}

The remaining strings can’t be classi-
fied, since they are at the same distance
from several of the code words. If we
for instance look at 01001 we find that
§(01001, 060000) = 2 = §(01001,11011).
The given code has the minimum dis-
tance 3, which makes it possible to cor-
rect singel-bit errors but not necessarily
two bit errors.

3.11 All the elements are their own in-
verses! (This is a rather unique thing,
and simplifies later calculations a lot,
when you've got used to it.)

3.13 Nothing says that the differences
have to be different!

3.14 Dimension 1 means that we are to
have 2! = 2 words in the code. One of

them has to be the neutral element of
(Z2)*: 0000. The second one (which at
the same time is the inverse of itself) can
be chosen freely. From an error analysis
point of view we want to make the dis-
tance of the code as large as possible,
that is to say, the two code words are to
be as different as possible. Most stupid
choice seems to be something on the line
of {0000, 1000}, which has § = 1, most
clever is {0000, 1111}, which has 6 = 4.

3.16 One method: firstly the subgroup
has to contain the neutral element, the
word with only zeros. Then we can add
another word, which at the same time
is it’s own inverse. Then we have two
code words. If that isn’t enough we can
add another word, and the word we get
if we add the new word to the one we’ve
already got. Then we have four words.
If we want more than that, we take an-
other word, and the words we get if we
pair this word with the old words, and so
on. If you want a small code this way of
finding code words can be simpler than
the one using the system of equations.
But you won’t get the features that will
be described shortly.

3.17

(a) The product is 000, so the word be-
longs to the code.

(b) The product is 010, so the word
doesn’t belong to the code.

3.18 The product was 010, which is
identical to the fourth column in the ma-
trix. Thus it should be the fourth bit
of the word that is wrong, and the cor-
rect message should have been 1111111
(which is a correct code word, which
you’ll see if you multiply it by the ma-
trix).

3.19 Each column consists of four bi-
nary digits, so there are 2* = 16 different
versions. On of them consists of only ze-
ros, thought. Furthermore we can’t use
two columns that are alike, so 16—1 = 15
is the maximum number.

3.20

(a) If we have m rows, we can make
at most 2™ — 1 different non-zero
columns. If the code is to have di-
mension k the number of rows, n,
has to be k more than the number
of rows, that is, m = n — k. To
make it possible for all the columns
to be different, the following condi-
tion has to be met:

"k _1>n
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The simplest way of solving an in-
equality of this kind is testing. k =
3 was given. n = b didn’t work,
since

2272 -1=3%5

n = 6, on the other hand, works
well:

278 _1=7>6

(b)

1 00 1 1 0

01 01 0 1

0 01 0 1 1

is a suggestion of a matrix. (There
are several other matrices that work
just as well.) This matrix generates
the code {000000, 011001, 101010,
110011, 110100, 101101, 011110,
000111},

This time we are looking for the di-
mension, based on n = 5. k =
3 didn’t work, as seen above. But

(e)

272 _1=7>5

A code with the dimension 2, that
is to say, with 2% = 4 code words, is
possible to make.

(d) ,
100 10
01011
00101

is a suggestion. Gives the code
{00000, 01101, 11010, 10111}.

If we settle for the minimum dis-
tance two we can’t have a column
consisting of just zeros, but other-
wise we have no restrictions. The
more rows we have in proportion
to the number of columns in the
matrix, the smaller the dimension
will be. The largest dimension we
get when using the least number of
rows, which ought to be one sin-
gle row. One of the unknowns is
expressed in the other four. That
gives 16 code words.

()

(f) The somewhat degenerate matrix
that achieves this (in this case there

really is just one answer) is
1111 1)

The code is {00000, 10001, 10010,
00011, 10100, 00101, 00110, 10111,
11000, 01001, 01010, 11011, 01100,
11101, 11110, 01111}. The first bit
is. the sum of the remaining four,
which means that we have a code
with even parity. (A code with odd
parity won’t be a linear code, since
it won’t contain the zero word.)
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(g) If we don’t care about error con-
trol we might as well take all 5-bit
strings that exist, that is, all the
2° = 32 ones! The seriously degen-
erate matrix that fix this is

0 00 0 0

3.21 There are several different an-
swers to the question, since both systems
of equations can be written in several
equivalent ways. Here is one version for
the first code:

01 0 0
0 0 1 0
0 0 0 1

We see that there is a column consisting
of zeros only, which gives that the code
has the minimum distance 1. The other
code can be generated from the matrix

1 1 0 0
01 10
0 0 11

No zero-column, no columns that are
alike. Thus § > 3. (Actually, we have
§=4)

3.22 We can use the same line of rea-
soning as for the single-bit errors, and
partition the distance into a sum of
words where a single bit is one. If we
are to correct 2 errors the minimum dis-
tance has to be at least 5. Words con-
taining 3 or 4 ones have to be disallowed.
If a string having 3 ones is a solution
to the system there has to exist three
columns that summed give zero. Then
one of them can be written as the sum
of the other two. The same for 4 ones.
Thus there mustn’t be

Columns consisting of zeros only.
Two columns that are identical

One column that is the sum of two
others

One column that is the sum of three
others

The first two restrictions are easily
checked using inspection, but the last
two seem laborious to investigate. (One
way of doing it is to have a list of pos-
sible columns, and every time you pick
one column you strike out the columns
that suddenly become disallowed from
the list. If the matrix is finished before
the list is exhausted it was possible to
make up a code conforming to the spec-
ifications.) You can check that the sec-
ond matrix in exercise 3.21 doesn’t have
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any column that is the sum of two oth-
ers, while the last column is the sum
of the other three, which gives that this
code has § = 4.

3.23 Yes. It simply has to consist of
one single code word. No matter what
signal you recieve you interprete it as
this word. It’s perhaps not possible to
express yourself in a very nuanced way,
but there are applications for this thing
as well. (“Are you alive?” is a typical
case. If you get any answer whatsoever
you can take for granted that the person
is alive.)

3.24 Well, how do you reach an agree-
ment? You can hardly discuss that via
the unsafe channel! (Crypto keys have
frequently been something that has been
delivered by a courier.)

3.25 Omne method is trial and error. If
it’s shifted one step the first word of the
_ message has to be “Wr”, which doesn’t
seem very likely. We try two steps in-
stead, then three, and so on. At four we
hit something:

Xs fi sv rsx xs fi,
To be or not to be,
xlex mw x1i uyiwxmsr
that is the question

3.26 The English alphabet consists of
26 letters. If you shift firstly 13 steps and
then another 13 steps you are back at the
starting point, so the operation is its own
inverse! That means that the same pro-
gram can be used both to encrypt and to
decrypt, which is practical. The cipher
is mostly used when you don’t want any-
one to be able to read something by mis-
take, since it isn’t a least bit secure. (An
example of an application is when you
want to discuss the ending of a movie,
but don’t know if the other person has
seen it or not. If they haven’t, they don’t
want to know how it ends!)

3.27

(a) No. You can’t be sure that you'll re-
turn to the beginning of the list. A
simple example is if we want to cal-
culate 2'% (mod 16). Then we get
the sequence 2, 4, 8, 0, 0, ....

(b) If we are calculating in a group we
will, using this method, be gener-
ating a subgroup, and sooner or
later return to the number we had
at first. Multiplication modulo a

prime number is a group operation
(se exercise 2.6). Multiplication of
the invertible numbers modulo a
composite number is a group oper-
ation as well, so we’ll return to the
beginning of the list if (and only if)
the modular base and the number
of which we are seeking the powers
are coprime.

3.28 Ifnis a power of two, let’s say n =
2% we need k multiplikations. That’s
the best case. The worst case is if n =
2% — 1. Then k — 1 multiplications are
needed to find all the powers, and an-
other k—1 to combine them. Best case is
log, n operations, worst case 2|log, n|.

3.29 32 (mod 33)

3.33 We can for instance test encrypt
all numbers between 1 and 516. Then
we get a nice dictionary, with the help of
which we can translate intercepted mes-
sages. This method can by the way also
be used to confirm that an intercepted
message is what you believe it is; you en-
crypt the assumed message. If you get
the same thing as the intercepted mes-
sage your guess was correct. (Military
messages, which have rather standard-
ised wordings, are susceptible to this
kind of analysis. You can add an intro-
duction consisting of nonsense to reduce
the risk.)

3.34 p = n/qg = 1961/53 = 37, which
gives m = (37 — 1)(63 — 1) = 1872.
Furthermore we have that 797 - 101 =
1+ 43 - 1872, so the decryption key is
d = 101. 444" = 777 mod 1961, so
the secret message was 777.

3.35 3% =1 (mod 91), but 2°° = 64
(mod 91). 91 is thus a pseudoprime,
which by the way can be factorised as
7-13.

3.36 The sieve of Eratosthenes, writing
a list of all the numbers up to the one
of interest, and crossing out first every
second omne (the even numbers), then ev-
ery third one, and so on until only the
primes are left. Works efficiently up to
the range 10'°, approximately.

Trial division, dividing the number by all
numbers smaller than the square root of
the number in case. If the division comes
out evenly you have found a factor of
the number. Can be speeded up if you
happen to have a list of primes handy,
because then you can settle for dividing
by prime numbers. This as well works

© Studentlitteratur




228

CHAPTER 3

efficiently for small numbers, but not on
numbers in the range used in encryption.

Before starting any advanced test one
can perform some very simple ones: If
the last digit is even the number is di-
visible by two, if the last digit is zero or
five the number is divisible by five, and if
the sum of the digits is divisible by three
the number is divisible by three. You
remove a very large part of the failing
candidates using these simple methods!

3.37

(2)

(b)

(c)

(d)

(e)

()

All the 6 differences are codewords
as well.

6§ = 5, which means that the code
corrects all errors on up to two bits.

The code is characterised by the
fact that the first five bits are iden-
tical, and the last five as well. The
relationships z1 = 22 = 23 = 24 =
Tsy, Tg — L7 — Ty =
can be summarised in the system
of equations below, with the asso-
ciated matrix:

Ty — o

1 =25
T2 = x5 1000100000
_ 0100100000
T3 =5 0010100000
T4 = T5 0001100000
_ 0000010001
L6 =210 0000001001
T7 = T1o 0000000101
s = 10 0000000011
L9 = T10

4(0001100111, 0000000000) = 5,
§(0001100111, 1111111111) = 5,
4(0001100111, 0000011111) = 4,
4(0001100111, 1111100000) = 6.
The word contains (at least) four
errors, and should according to the
nearest neighbour principle be cor-
rected to 0000011111. We may ob-
serve that the answer in (b) guaran-
tees that we can correct all errors
on two bits; it doesn’t say that it
isn’t possible to correct some errors
on more bits than that.

No. Then we would need § = 7,
which means that all the words ex-
cept for the zero has to contain at
least 7 ones (at most 3 zeros). Two
words with the length 10 and 7 ones
can only differ at 6 places, which
means that it’s impossible to make
up the last codeword.

According to the sphere-packing
theorem the following has to be
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3.38

()

(b)

3.40

(a)

true:

256 = 21972 > 1 1. (11())

256 > 166

which is correct! We have to
remember that the sphere-packing
theorem is only able to say that
something is impossible, not that it
actually is possible.

So we have k = 8 and § = 3. Then
n has to satisfy

2 _1>n

We test

n=11:2""° _1=7#11
n=12:2""% _1=15>12

The least possible length is 12 bits.

We need 12 — 8 = 4 rows,
12 columns, mno zero-column,
no columns that are alike, and
4 columns that are independent.
That we can for instance fix using
a Hamming matrix:

000000011

— O

111
001
110
010

b OO

0
1
0

.

111100
001100
010101

O

na=91=7-13,s0 ma =6-12 =
72. We are looking for da:
72=14-542
5=2.2+1
1=5-2-2
=5-—2(72—14-5)
=29-5—-2-72
5.20=1+2.-72
51 =29 (mod 72)

ng=35=5-7,somp=4-6=24.
We are looking for dg:

24=3.7+3
7=2-3+1
1=7-23
=7-224-3-7)
—7.7-2.24
7-7=2.24+41

77" =7 (mod 24)
da=29,ds ="T.
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(b) B starts by decrypting using his
own keys, and gets 237 = 2
(mod 35). This result is encrypted
using A:s keys. 2° = 32 (mod 91).
Thus B shall send 32.

3.41 The main trick is usually to mask
the encrypted message so that it looks
like something else. A message written
in invisible ink in a completely normal
letter, telegrams where the initial letters
in the words spell the real message (usu-
ally fairly easy to detect), and other such
methods are used.

One interesting modern version is to use
pictures. A common way of storing pic-
tures in a computer is to store it as a
sequence of binary numbers, where ev-

Chapter 4

4.1 In M we store the largest value
found this far. We start at one end of

* the sequence. At start, the largest value
found is simply the first value (since it’s
the only one we’ve had the opportunity
to look at). Then we inspect the ele-
ments one by one, and if the one we are
looking at is larger than the largest one
this far we put it down instead of the old
value. When we are finished, we have
the largest number of the sequence.

4.2

(a) ©(n®). We may note that for small
values of n, the quadratic term with
its large coefficient will dominate,
but for large enough ns the cubic
term will “drive by”.

(b) ©((logn)*)
(c) ©(n2")

4.3 So we are to find two constants a
and b such that an < 3logn + 2n < bn.
Firstly, we know that 0 < 3logn (at
least if n > 1, which we can take for
granted). That gives

2n=0+42n < 3logn+ 2n

Furthermore we know that logn < n
(that’s a consequence of the definition
of logarithm). That gives

3logn + 2n < 3n+ 2n = 5n

We have found working values on the

constants: a =2, b=>5.
2n < 3logn 4+ 2n < 5n ifn>1

(There are lots of other values that work
just as well.)

ery number tells what shade of gray a
certain element in the picture is to have.
If you use one byte per picture element
(pixel) that gives 256 different levels of
gray, which is more than what the hu-
man eye is able to differentiate. Because
of this, you can borrow the least sig-
nificant digit of each nnmber, and use
that for your message. The changes in
the picture are not large enough for this
to be noticeable. And files containing
pictures from holidays and other stuff
are regularly distributed! (One common
criticism of NSA’s efforts to keep the rest
of the world from getting access to work-
ing crypto systems is precisely that the
drug maffia and terrorists probably use
methods of this kind and not encryptors
approved by the state.)

4.4

Aln) <€ g1(n) < nli_)n;% =
o )

fa(n) € g2(n) < nlgr;o () =

This gives (according to established
rules for limits)

lim fi(n)fa(n) _

n—oo g1(n)g2(n)

i B0 gy £20)

T noo gy (n) nlimo g2(n)

=0-0=0

4.5

(8) an = (8" +4°

(b) an=2—2"+3"

(c) bn=(3n+5)2"
1 [(14+4B\"

@ fo= 2= (252)

1 <1 -5 ) "
i\ 2 )¢
It’s rather funny that an integer
problem can have an answer look-
ing like this! All the irrational parts
cancel out when you substitute an

integer value of n.

4.6
(a) an=3"—n+2
(b) bp =2"+3"+4"

cm =2"-m

(c)
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4.8 The proportion is
1

2

The reason the results differ is that you
can have a one first in a number, but you
can’t have a zero there.

74n—1

4.10 For all n > 0, —n < 0, obviously
holds. That substituted gives

1

1
E(nQ—n)< L n2—0):2n

< 3

4.11 How much time it takes in the best
case might be of interest as well. But
most thrilling is actually how much time
it takes in the average casel Besides,
not only the usage of time is interest-
ing; the usage of memory is important
as well. (If the algorithm requires too
much memory, operations for the han-
dling of memory are needed as well, and
then the computation may jump into a
completely different complexity class.)

4.16 Merge-Sort uses exactly the same
amount of time irrespective of whether
the input is a complete mess or sorted!
Bubble-Sort on the other hand won’t
perform any éxchanges if the input is in
correct order.

4.17 It depends a bit on how you have
implemented the algorithm, but in prin-
ciple twice the length of the sequence.
One list where data is taken and one
where it is placed. For large amounts of
data, this can be problematic. There are
other sorting algorithms that are as fast
as Merge-Sort, but don’t require more
space than Bubble-Sort, and they are
the ones mostly used. Merge-Sort is used
when one has amounts of data that don’t
fit into primary memory anyway, and
has to be read and written to a file dur-
ing sorting.

4.18 To find the smallest element, one
has to look through the whole sequence,
which gives n — 1 comparisons. (You
compare the first element and the sec-
ond, the smaller of the first and second
and the third, and so on.) Finding the
second smallest takes n— 2 comparisons,
ans so on. In total (n — 1) + (n—2) +
-+ 1 = n(n — 1)/2 comparisons, the
same as for Bubble-Sort.

4.19 If you are unlucky, you have to
move something in all the steps. That
gives n — 1 exchanges, to compare with
the n(n — 1)/2 used by Bubble-Sort.
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4.20

(a) 1 ms and 0.2 ms, respectively.
(b) 0.3 s and 0.07 s respectively.
(c) 69 s and 17 s respectively.

4.21 Exacly what numbers you got we
can’t see here, but one finds that even
if Bubble-Sort and Straight-Selection in
principle are just as good, O(n?), in
practice they are differently effective.
You can’t just look at the general time
complexity when you evaluate an algo-
rithm.

4.24 2™ categories.
4.25 nl

4.26 We have to solve
2™ =nl

We take logarithms and use Stirling’s
formula:

m = log, n!

~ log,(VZr(2)")

1
= log, vV 2m + 5 log, n
+nlog,n —nlog,e

The dominating term is n log n.

4.27 The sorting problem doesn’t get
any easier by being generalised.

4.29 What you have to do is to check
that the graph is connected and that
all nodes (exept for maybe two) have
an even degree. Checking the degrees
of the nodes runs in linear time. (Look
at one node at a time.) Checking that
the graph is connected can be done by
looking at a node. Write down all nodes
connected to this node by an edge. For
all these nodes, write down all the nodes
that are reachable, and add the new ones
to the sequence. For the new ones, write
down which are reachable, and so on un-
til no new nodes are added. Since the
maximum number of edges in a graph
is n(n — 1)/2, this runs in polynomial
time. And if the sequence when we are
done consists of all the nodes, the graph
is connected.

4.30 If somebody says that there is a
Hamiltonian path, said person should be
able to show us the Hamiltonian path.
We have to check that it is a path (lin- -
ear in the number of edges), that all the
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edges used actually exist in the graph
(linear in the number of edges), and that
all the nodes are included (can be done
while we investigate that it is a path).
So it is possible to verify the solution in
polynomial time, and thereby the prob-
lem belongs to NP.

4.31 “Does a clique of this size exist?”
and “Does a route with this length ex-
ist?”, respectively.

4.32 The precise time complexity de-
pends a bit on the implementation. Here
the graph is assumed to be stored in a
matrix A, where a;,; is the weight of the
edge between node 7 and node j. We
note that if the matrix fits into primary
memory, you can pick elements from it
in constant time, if you know which one
you are looking for.

We start by making a list of the edges in
order of weight. The number of edges is
(3) = n(n—1)/2, so the sorting ought to
_run in ©(n?logn). At the same time, we
take the opportunity of listing the exist-
ing nodes and writing down their num-
ber. In the list over the nodes, we also
note how many times they have been
included in the path up to this point.
(From start zero times, at the end they
should all be included twice.) For those
that are included we also note where in
the list over taken edges they aré (which
means that we can search this in con-
stant time).

In a list like this, where the elements
are numbered consecutively, we can find
the infomation about a specific node in
constant time as well. Furthermore, we
make a list over the edges used, and cre-
ate a variable containing accumulated
weight.

We start by picking the lightest edge,
update the information about its nodes,
add its weight to the weight variable,
and remove the edge from the list over
available edges. This runs in constant
time.

After that, in each step we:

e Pick the shortest remaining edge.
(Constant time.)

e Check how many edges that are con-
nected to its ends (constant time).
If two are connected to one of the
ends, the edge is unusuable, throw it
away. If one or no edge is attached
to either end and none to the other,
the edge is usuable, keep it, incre-
ment the accumulator, increment the

number of edges taken, insert it into
the list of edges taken, and update
the information about the ends (con-
stant time). If edges are attached
to both ends, the whole thing is a
bit more complicated, since then the
edge may tie the taken edges into
a cycle. Take one end of the edge,
find the connected edge in the list of
edges, find the other end and keep on
like that until we either reach a node
that doesn’t lead any further (in that
case, the new edge has connected two
pieces of path into a longer path) or
until we get to the other end of the
suggested edge (in that case it ties
the ends of a path into a cycle, which
we don’t want). In the first case we
keep the edge and update, in the lat-
ter case we throw it away. Searching
the list of edges runs in linear time
for each edge, and in the worst case
we have to look through all the up
until now chosen edges. So this may
run in quadratic time.

When we have picked n — 1 edges, we
know that the last edge we need should
connect the two remaining nodes with
just one edge. Find them and the con-
necting edge. (Linear time.)

In the absolutely worst case, when the
heaviest edge is part of the route, we
have to look through all the ©(n?) edges.
The investigation of an edge runs in the
worst case in linear time in the number
of taken edges. The number of taken
edges can’t exceed n. So worst case seem
to be O(n®). In the best case, we simply
have to use the first n edges on the list,
and then the most time-consuming part
is the making of the list.

4.35

(a) ©(logn) (note that log,n® =
2log, n).

(b) ©(2°").

(c) ©3™).

4.36 For a start, both n* and n-2" are

positive for positive n, so

0,01-3"=0+0+0,01-3"
<n*4n-2"+0,01-3"

if n > 0.

Furthermore, n* < 3" when n > 8 and
n - 2" < 3" for all n, so

n*+n-274+0,01-3"
<3"4+3"+0,01-3"=2,01-3"
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when n > 8 so we have

0,01-3" < f(n) <2,01-3" n>8

which means that f(n) € (3").

4.37
(a) an=2"+3" + 4™
(b) bp=2" —5"+n+1

(¢) em = (Mm+2)-3™+m+ 2. Note
that since the right-hand side is a
first degree polynomial you should
try a first degree polynomial, P =
am + b, as the particular solution,
cg) = gm won’t work.

dp = 2 -2+ k-2F  Since the
reasonable guess d,(cp ) = q-2F ap-
pears as a solution of the homoge-

nous equation, you have to correct
it to d) = ak - 2%.

(d)

en = 1 +n+n?+n® This exer-
cise combines the complications of
(c) and (d).

(e)

4.38

(a) bs = 93,by = 130 = 9 cuts are
needed to get more than 100 pieces.

(b) an=1in"+1in+1,
bn=2n®+2n+ 1.

Explanation: The largest number of
newly created volume regions with
one cut is equal to the largest pos-
sible number of area regions in the
cut surface = a,—1 when cut num-
ber n is made.

(c)

4.40 In ordinary exponentiation, the
number of multiplications is one less
than the exponent n. Time complex-
ity ©(n). When exponentiating using re-
peated squaring, in the best case log, n
and in the worst case 2log, n operations
are needes. Time complexityt ©(logn).

4.41 The time needed to plait a plait
is directly proportional to the length of
the plait (which has to be considered as
given) and inversely proportional to the
width of the plait. The width of the
plait is proportional to the square root of
the cross sectional area. The cross sec-
tional area is inversely proportional to
the number of plaits. This means that
the time needed for each plait is propor-
tional to /7, which in total for all the
plaits mean that we are in the time com-
plexity class ©(n+/n).
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4.42

(a) In the worst case the tree doesn’t
branch out, and each new element
glides down until it stops at a new
level, after being compared to all
the previous elements. Gives

do(k=1)=%
k=1

that is, about the same number
as for Bubble-Sort and Straight-
Selection.  This happens for in-
stance if we get data that is al-
ready sorted. (You can modify the
method so that the tree is rebuilt
when needed, to a wider and flat-
ter structure. If you have lots of
data, and intend to use the tree for
searching, this is worth the trouble.)

In the best case we build a max-
imally wide, minimally deep tree.
Then the height is log, n. In a com-
plete tree of this kind, we have a
root, 2 nodes at the first level, 2% =
4 nodes at the second level, and so
on, thatis, n=204+2"+... 4+ 2% =
2%+1 _ 1 nodes. Each node has had
to make the same number of com-
parisons as its level. Then in total

(b)

2042142224+ =
SRy
k=0

=2k 4 1) — 2

~nlog,n

operations have been used, same as
for Merge-Sort. (The sum can be
calculated using the same method
as used to derive the sum of a geo-
metric sequence, see Discrete Math-
ematics and discrete models.) One
such a tree is

4
2/\6
/ N\ / N\
1 3 5 7

We can get a sequence that gen-
erates this tree by traversing it
breadth-first: 4, 2, 6, 1, 3, 4, 7.
(There are several other sequences
that generates this tree as well. But
all of them starts with 4.)

() O(n?).

4.43 If somebody delivers a suggested
solution, it ought to consist of a packing
list. We have to check that the listed ob- -
jects exist (with the stated properties).
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Can be done in linear time for each ob-
ject, gives in worst case quadratic time
for all the objects. Then we have to
check that the sum of the volumes isn’t
too large (runs in linear time) and that
the total value is enough (runs in linear
time as well). So the suggested solution
can be checked in polynomial time, so

Chapter 5

51 [3 2 6 5 1

7 4] and
(1 3 6 7 4 5)(2).

52 (1 5 4 7 6 3)(2)

53 [1 5 6 3 2 7 4]

5.4 The three cycles can be placed in
3! ways. In the 2-cycle there are 2 pos-
sible places to start, in the l-cycle you
have 1 way, and in the 4 cycle you have
4 ways. According to the multiplication
principle: 3!-2-1-4 = 48 ways.

5.5 If we call the total number of cy-
cles m we get (according to, the same line
of argument as in the previous exercise)
ml- 1% .22 .3% . |

5.6 We give all the answers on one-line
form

(@ 5 3 4 2 1]
(b) 65 3 4 2 1]
() [3 5 1 4 2]
(d [4 2 3 5 1]
5.7

(@) 1 5 4 3 2)
(®) (1 3)(2)(4) ()
(© @ 516 9
(d 3 4 1 2 5)

5.8 You get the inverse of a permuta-
tion on cycle form by inverting the order
of each cycle.

5.9 id=[1 2 n] =
(1)(2)...(n).
5.10

(a) An arbitrary permutation x =
[m T2 .. ] is to correspond to
the matrix M., where the one in the
first column is on row 1, the one in

the problem belongs to NP. (It’s by the
way NP-complete. There exist encryp-
tion algorithms based on this problem,
since just like prime factorisation it's a
problem which is very easy to run in one
direction, which here corresponds to un-
packing a knapsack, while it’s super hard
the other way.)

the second column is on row 72, and
so on. Clearly the matrix gets one
one in each column, and since the
permutation includes all elements
from 1 up to n exactly once, the ma-
trix gets exactly one one in each row
as well. Conversely, each permu-
tation matrix generates a permuta-
tion via the row coordinates of the
ones. The correspondence 7 — M,
between permutations and permu-
tation matrices is thus a bijection.
(b) The matrix multiplication M, M,
gives a one in place 75 if and only
if row ¢ in M, has its one in the
same position as column j in M,
(and otherwise we get a zero in
place 45). That corresponds exactly
to the fact that the permutation
multiplication w7 maps § on 7 if and
only if 7 maps j on the same ele-
ment that 7 maps on <.
(c) Inverdion of a permutation means
exchanging the upper and lower
rows in the two-line form. The up-
per row gives the column coordi-
nates and the lower row gives the
row coordinates for the permutation
matrix. Exchanging the rows thus
corresponds exactly to an exchange
of rows and columns, that is to say,
to transposing the permutation ma-
trix.

5.11
(a) Type: {2,2,2,1}, order 2.
(b) Type: {4,3}, order 12.
(c) Cycle form:
(1)(2 7 3 6 5)(4).
Type: {1,1,5}, order 5.

5.12 If you write down the placement
of the cards after the first shuffle you
find that you get a single cycle, with the
length 52. 52 perfect riffle shuffles are
thus needed to restore the pack.

5.13 Since the order is the lem of the

type, the same type gives the same or-
der.
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5.14 Forinstance (1 2)(3 4 5)(6)
and (1 2 3 4 5 6), which both
have the order 6.

5.15 If two permutations belong to the
same conjugacy class they in principle
do the same thing, they just use different
names on the elements. And if we have a
cycle in one of the permutations we must
have a corresponding cycle in the other
one, representing the same move using
other names. Because of this, there has
to be the same number of cycles of the
same sizes, that is to say, the permuta-
tions are of the same type.

5.16 We run Bubble-Sort, and note at
the side which transpositions we do.

4 1 5 32

4 1 5 2><3] (4 5)
4 1 2><5 3] (3 4
174 2 53] (1 2
[1 4><2 3><5} (4 5)
1 2 3 5 (2 3)
1 2 34 3 (3 4)

The factorisation is

(4 5)(3 4)(1 2
(4 5)(2 3)(3 4)
5.17 The shortest factorisation into

transposition can be found wusing
Straight-Selection:

4 1 5 3 2]

17 45 3 2] 1 2
[1 2>53<4} (2 5)
n 2 3><5 4] (3 4)
1 2 3 4><5] (4 5)

The factorisation is

(1 2)(2 5 (3 44 5)

(There are other factorisations of the
same length, but this one was easiest to
find.)

5.18 If you perform a transposition of
the numbers on places ¢ and j in a per-
mutaiton 7 the following pairs will be af-
fected and switch from inversion to non-
inversion or vice versa: For each ele-
ment 7 between the places ¢ and j two
pairs will be affected, namely m;m, and
wpmi. Additionally, the pair m;m; is af-
fected. Thus an odd number of pairs are
affeced, and thus the number of inver-
sions are changed by an odd number.
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If you start with the indentity permu-
tation and create permutations by per-
forming transpositions one at a time,
then the number-of inversions will all the
time have the same parity as the number
of transpositions used up to this point.
Theorem 5.1 thereby follows.

5.20 We can count the inversions, or,
as done here, write the permutations on
cycle form:

() (1 3 2 5 4). 4 transposi-
tions, even permutation.

() (1 3 5)(2 6 4. 2+2 =

4 transpositions, even permutation.

(¢) (1 3 5 7 4 2 6). 6 trans-
positions, even permutation.

5.21 We write the positions on cycle
form:

BN O0 W

permutations, unsolvable.

(b) We start by sliding the 13 to the
side, so that the empty space
end up where it should be. If
we then use cycle form we get

21234)(5678)

9 10 11 12)(13 14 15).
3+ 3+ 3+ 2 = 11 transpositions,
unsolvable.

5.23
(a) Breakpoints after elements 2 and 5. ‘

(b) Two permutations in S, can at the
least have 0 breakpoint (if the per-
mutations are identical) and at the
most n breakpoints (all the ele-
ments have different successors in
the two permutations.)

5.24

(a) Start from [1 2 3 4 5}.
Block inversion of [1 2 3 4]
gives [4 3 2 1 5]. Block in-

version of this whole permutation
gives 5 1 2 3 4].

(b) Start from [1 2 3 4 5]
Block transposition of [2 3:[ to the
end gives [I 4 5 2 3]. Block
transposition of [1 4] in between
2 and 3 gives [5 2 1 4 3].
Block transposition of [2 1] to

the end gives [5 4 3 2 1].
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5.27

(a) Inverses in groups are unique. It's
given that ab is its own inverse.
What do we get if we multiply ab
and ba?

(ab)(ba) = a(bb)a = ala=aa =TI
= ba = (ab)™"

ba is apparently inverse to ab as
well, and must then be equal to ab.

(b) abbaba = alaba = aaba = Iba
= ba.
(c) For a start, all sequences with sev-

eral instances of the same letter can
be shortened to one letter or no let-
ter (depending on whether the num-
ber is odd or even). What remains
is a sequence of alternating letters
(or nothing, I). If the sequence con-
sists of more than two letters, turn
every second pair back to front, and
then everything except for maybe
the first letter or pair of letters will
cancel out.

Since all words can be rewritten
as one out of four alternatives, the
group has just four elements. We
compare the calculation table with
the one for ((Z2)?, +):

(d)

. I a b ab
I | T a b ab
a|la I ab b
bbb ab I «a
ablab b a I
+ (0,0 (0,1) (1,00 (1,1)
(0,0) | (6,0) (0,1) (1,0) (1,1)
(0,1) | (0,1) (0,0) (1,1) (1,0)
(1,0) | (1,0) (1,1) (0,0) (0,1)
(1,1 (1) (1,00 (0,1) (0,0)

The tables have exactly the same
structure. I — (0,0), a — (0,1),
b— (1,0), ab = (1,1) is an isomor-
phism.

5.28

(a) The inverse is what you have to
combine with to get the identity. If
we combine a word with the same
word backwards, the two middle el-
ements will be equal and cancel out,
at which point the next two ele-
ments get into contact and cancel
out, and so on, until the only thing
that remains is id.

(b) If the transpositions overlap, like
(3 4) and(4 5), the composition

is a three-cycle, an element with the

order 3. Whereas if they are dis-
joint the composition is its own in-
vers, that is, an element with the
order 2.

5.29 Closedness: The concatenation of
two sequences of rotations is clearly a
new sequence of rotations. Associativ-
ity: Concatenation of two sequences is
clearly an associative operation. Iden-
tity: If you multiply by the sequence
of zero rotations nothing happens, so
this sequence is an identity. Inwverse:
Each sequence of rotations has an in-
verse, since if you rotate everything back
in the opposite direction so that the cube
looks the same as it did from start (that
is, solve the cube) you could just as well
have done the sequence of zero rotations.

5.30 Every rotation of a single side
(say U) can be written as a power of
the side (U*, U?, or U® = U™1). Al
rearrangements consist of sequences of
rotations of sides.

5.31 (R?U?)® =T
(RU) =1T.

(RU?® = 1.

5.32 Read the sequence of rotations
backwards and make the inverse of ev-
ery side rotation. For instance, the
inverse of RU?LR™'U2L™" is thereby
LU ?RL™'U2R™!

5.34 The inversions are 31, 32, 51, 54,
52, 74, 72, 76, and 42, £(3517426) = 9.

5.35 The permutation can be regarded
as instructions for how something is to
be messed up, and the inverse as instruc-
tions for how to tidy it up again. The
shortest possible tidying up has to con-
sist of the same number of steps as the
shortest possible messing up, and since
£ measures the number of steps, the per-
mutation and its inverse has to have the
same value.

5.37

(a) The reverse permutation.
(b) n{n—1)/2.

(c) The level on which a permutation
is placed is equal to the number
of inversions. We get the maximal
number of inversions when every-
thing has as much as possible on
the wrong side, and that can only
be done in one way. (Put all num-
bers that are smaller on the wrong
side.)
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5.38 7 < ¢ means that 7 is found on
the shortest path from the identity to o.
The shortest path only contains adjacent
transpositions that generate inversions,
none that remove any of them, so all in-
versions in 7 have to be included in o
as well. And the other way around, if
7’s inversions are part of o, it has to be
possible to get to o via m, by firstly do
the adjacent transpositions that gener-
ate the inversions in 7 and afterwards
the remaining inversions. So 7 is found
on the path to o.

5.39 What we have to prove is firstly
that every list of inversions has to fulfil
the requirement and secondly that every
list that fulfils the requirement is a list
of inversions.

If the permutation exists: If (m1,m2)
and (mz, ma) both are incuded in a list
of inversions, that means that firstly
m1 > mg and ma > ms and secondly
that ma1 stands to the left of ma and mgy
stands to the left of ms. Both > and
“stands to the left of” are transitive re-
lations, which gives that mi > ms and
that m; is to the left of mgs in the permu-
tation. In that case, the pair (m1,ms)
has to be included in the list of inver-
sions as well.

To show that something is a valid list of
inversions, we can show that it is pos-
sible to make a pérmutation based on
it. The inversions are really information
about “this one should be put before that
one”. The pairs that aren’t included in
the list are implicit information about
“this one should not be put before that
one”. For a list to be impossible to fol-
low, it has to give contradictory informa-
tion. A contradiction of the type “a both
should and should not be put before b”
can’t arise, since a pair either belongs to
the list or doesn’t. The next kind of con-
tradiction would be something like a is
in front of b which is in front of ¢ which
is in front of a. But this can’t happen,
since a “a in front of ¢” follows automat-
ically from the given constraint.

5.42 Eight. (You have to be grateful
that they don’t have that shape!)

5.43 SIM-cards of mobile phones are
rectangular, but one corner is cut off.
That means that there is only one way
to fit them into the intended hole. Some-
thing like that might be possible. Alter-
natively, you could redesign the machine
so that it doesn’t matter which way the
card is inserted.
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5.44

(a) ((Z2)?,+), or multiplication of the
invertible elements in Zsg, see exer-
cise 2.16 on page 20. Or the group
in exercise 5.27.

(b) Since it’s isomorphic to the group in

exercise 5.27, it can be expressed in

the same way with generators and
relations:

<31’52
(51)" = (s2)" = (s152)* = I)

(¢) If we start at the upper left corner
and then go clockwise, the labels
become

so: (1)(2)(3) (4)
81 : 1 3)(2 4)
sp: (1 4)(2 3)
ss: (1 2)(3 4)

5.45

(a) Six operations (so here we get all
of Sy).
so: Put it back where you took it:
(1) (2) (3)

s1: Rotate 120° clockwise:

(1 2 3)
s2: Rotate 120° counterclockwise:
(1 3 2

s3: Rotate around corner 1 so that
the wrong side is turned up:

1 3

s4: Rotate around corner 2 so that
the wrong side is turned up:

@)@ 1

s5: Rotate around corner 3 so that
the wrong side is turned up:

()@ 2)

Well, as noted in the previous exer-
cise: S3.

(b)
(c)

The subgroups are

1. {so}, means that we aren’t al-
lowed to do anything. Generated
by so.

2. {so,s3}, {so0,ss} and {so,ss}.
Allowed is to rotate around a
corner, nothing else. (As if the
triangle was attached by the cor-
ner in question.) The subgroups
are generated by ss, s4, and ss,
respectively.

3. {s0,81,82}. You may move the
triangle in the plane, but not
turn it wrong side up. Gener-
ated by either s1 or so.

4. The whole group.

5.46 Not the answer, but the calcula- -
tion would have been longer!
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5.47
(a)
=12 @) 4 =8
s1=(1 4 3 2) 3 =3
sa=(1 3)(2 4) =9
=(1 2 3 4 3'=3

gives that there are

81 +3+4+9+3

=24
4

different colourings.

(b) Now, we have another four opera-
tions
0= E) @ 3=a
s1=(1 4 3 2) 3 =3
sa=(1 3)(2 4) =9
ss=(1 2 3 4 3=
sa=(1 2)(3 4 3=
ss=(1 4)(2 3) =9
se=(1)(2 4)(38) 3*=27
st=(1 3)(2)(4) =27
which gives
81+3+9+3+9+9+27+27
8
=21

The colourings that use all three of
the colours exist in one right and
one left version, and if you are al-
lowed to turn them upside down,
these will be equivalent.

5.48

(a) Identity; rotation one, two, three,
or four fifths of a turn in the plane;
turning upside down with one of the
five positions remaining in place.
(The cycle form will be given in the
next part.)

(b) Here are the different cycle forms

and the number of configurations
that they fix:

1) (2) (3) (4) (5) 2° =32
1 2 3 4 5) 28=2
1 3 5 2 4; 2t =2
(1 4 2 5 3) 2'=2
(1 5 4 3 2% 28 =2
(2 5)(3 4) 2°=38
2) (1 3§4 53 28 =8
3)(1 5)(2 4) 2°=38
4)(1 2)(3 5) 2°=38
50 (1 4)(2 3) 2°=38
32+4-245-8 80
10 10

(c)

30 95 €8
oo 35 %8

(d) We have the transformations iden-
tity (997 cycles); 996 different ro-
tations (omne cycle each); 997 dif-
ferent turns (which each contains
one 1 cycle and 489 2-cycles). In
total 1994 different transformations
working on 2°°7 configurations.

o
%

2997 4 996 - 2% ++ 997 . 2499
1994

~ 6,7 - 10%%°

If the number of beads isn’t prime,
the rotations where the number of
steps isn’t coprime to the number
of pearls will generate more than
one cycle (just as when we rotated
the pot coaster two steps). That
means that we get a lot more cases
to study. The upside down cases get
more complicated as well.

5.50

(a) Figure 3 shows how the shuffle is
made. In card shuffling the only
thing of interest is which places it
is that exchanges cards with each
other. The row of values thus shows
the inverse of what we are looking

for. The permutation is shown in
figure 4.
(b) The number of times = the

order of the permutation =
lem{1,3,4,3,1} = 12.

5.51 We write the permutations on cy-
cle form: 7 = (1 4) (2 5) (3 6 7),
y=(1 7)(2 4 3)(5 6). The ele-
ments in the 3-cycles have to correspond
to each other, the elements in the 2-
cycles to each other. One such pairing
(there are several) is

(1 772 4 3)(5 6)
1 4B 6 7)(2 5)
so]l T 24356
Tl 436 7 25

If we now combine the permutations we
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1741028511396 12

Figure 3: Ezercise 5.50.

123—
—— 142536
456 —!
789 —
~ 710811912
10 11 12 —
1 7 4 10 2 8
123 4 56
12 345 6
159 37 11

5 11 3 9 6 12
7T 8 9 10 11 12

7T 8 9 10 11 12
2 6 10 4 8 12

=1)(2 5 7)(3 9 10 4)(6 11 8)(12)
Figure 4: Ezercise 5.50.

get

1515 4% 7
2=+3—6—4
3732
46> T3
5—=2—=5+—6
6525
T—4—1—1

which equals ~y.

5.52 According to the same line or
reasoning as used on the Fifteen puz-
zle you can only solve even permuta-
tions. Written on cycle form this be-
comes (1) (2 4) (3 7)(5)(6 8)(9),
an odd permutation. Thus, it’s
impossiblel.

5.53 We know that the whole of S7 can
be generated using the adjacent transpo-
sitions. If we can show that is’s possible
to make up all the adjacent transposi-
tions, we are done.

w makes the first two elements swap
places, 7 “cranks around” the elements
one step. Furthermore, 78 = 771, What
happens if we calculate 7~ 77?

1515275 7
2332
3 4—4—3
45514
56— 6—5
6~ T7T—T—6
T—=2—1—1
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The result is

T 7)(2)6) 4 E)6)

that is, we have made 1 and 7 swap
places. In the same way we can exchange
places of 1 and any other element. And
every permutation can be carried out us-
ing two permutations that include 1; if
we for instance want to swap 3 and 5 we
can exchange the places of 1 and 3, then
of 1 and 5, and lastly of 1 and 3 again.
So it’s possible to carry out all adjacent
transpositions, and then you can gener-
ate the whole group!

5.54

(a) We can’t be bothered to draw the
graph, but it has three levels besides
the bottom, six permutations on the
first level, six on the third and the
remaining 4! —2.6 —1 = 11 ones on
the second.

(b) The level of the permutation is
equal to the length of the short-
est possible factorisation into trans-
positions, which can be directly
determined from the cycle form,
see example 5.7 on page 84.
For instance, the permutatiton
(1 3 5)(2 4)(6) is placed on
level 6 —3 = 3 in S, since it has
6 elements and 3 cycles. Alterna-
tively, you can run the permutation
through Straight-Selection, which
finds the shortest possible factori-

sation into tranpositions, and check *

how many you get.
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(c) At the top, we find the permuta-
tions that consist of just one cycle,
and they are then on level n — 1.
There are (n — 1)! permutations of
this kind; we can start by writing 1
first in the cycle and then permute
the remaining positions. At level 1,
we get as many permutations as
there are transpositions, (7).

(d) A transposition that takes us up-
wards in the tree “ties” two cycles
into one, and one that takes us
downwards “cuts” a cycle into two.
If m has more cycles than ¢ and it’s
possible to get 7 from o by cleav-
ing a number of cycles, 7 is placed
under, otherwise not. You have to
remember that rotating the cycles
before cutting is allowed ; it doesn’t
matter which one of the elements of
the cycle that is placed first.

5.55

(a) We number the pancakes on the
edge 1-6 and the pancake in the
middle 7. There are six symme-
tries: rotation 0, 1, 2, 3, 4, or
5 times 60°. (Turning the plate
upside down doesn’t seem like a
reasonable action.) On cycle form

Chapter 6

6.1 4+1+1 oooolofo
3+2+1 ooofoolo
34142 ooolojoo
243+1 oolooolo
24+2+2 ooloooo
24+143 oolojooo
1+2+3 oloolooo
1+1+4 olojoooo
1+3+2 olooofoo
1+4+1 oloooolo

6.2 Put down n dots. Now, there are
n — 1 spaces, and in each space we can
choose to put a separator or not do it.
Gives 2"~ ! alternatives.

6.3

(a) Version I If we have a partition of
n into k non-negative parts, we can
generate a partition of n + k into
k positive parts by adding 1 to each

(b)

(b)

(c)

these become:

0°: (1) (2) (3) (4) (5 (6) (7
60°: (1 2 3 4 5 6)(7
120°: (1 3 5)(2 4 6)(7
180°: (1 4)(2 5)(3 6)(7
240°: (1 5 3)(2 6 4)(7)
3000: (1 6 5 4 3 2)(7)

Using three kinds of pancakes, this
gives

3743442354232

= 390
6

versions.

We have to subtract the arrange-
ments that only use two or one kind
of pancakes. Two kinds can be
picked in (3) = 3 ways, there are in
total three one-kind arrangements.

For each pair of kinds, there are

27 +24 4228 +2.2%
5 -

28

arrangements. But if we multiply
this by three, the one-kind kinds
will be counted double, since for in-
stance the vanilla plate is included
in both spinach-vanilla and tomato-
vanilla. This we have to compen-
sate for. In total there are

390 —3-28+ 3 =309

arrangements containing all three
kinds.

part, and vice versa. Thus there is
the same number of partitions of n
into k non-negative parts as there
is partitions of n+ k into k positive
parts, and we have already shown
that there are ("1*,") ways to do
the latter thing.

Version 2 A partition of n into
k nonnegative parts can be coded
in the same way as partitions into
positive parts, but you are here al-
lowed to place two sticks side by
side. Every code of this kind corre-
sponds to a permutation of n rings
and k — 1 sticks. Choose k£ — 1 of
the n + k — 1 available positions for
the sticks.

Every solution of this kind corre-
sponds to one of the compostitions
above.

The interesting thing here is how
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many marbles there will be in each
box. Each such distribution corre-
sponds to a solution of the equation
above.
(d) The interesting thing is how many
of each kind we pick. Each choice of
this kind corresponds to a solution
of the equation in (b).

6.4
(a)
p(13) = p(12) + p(11) — p(8)

—p(6) +p(1)
— 77456922 —11+1=101

(b)
p(14) = p(13) + p(12) — p(9)
—p(7) + p(2)
=101 +77—30—15+2
—135
(c)

p(15) = p(14) + p(13) — p(10)
—p(8) + »(3) + p(0)
=135+ 101 — 42
—224+34+1
=176

6.5 There exists a conjugate class for
each type of permutation in S,. The
type is defined by a partition of n. Be-
cause of this, the number of conjugate
classes is the number of partitions of n,
that is, p(n).

6.7
(a)

Introduce a coordinate system with
origo in the lower left corner. A box
with the coordinates (z,y) should
be situated inside the diagram if
and only if the contour path passes
the box horisontally before it passes
the box vertically, which is equiva-
lent to Ry coming before Uy in the
code.

(b)

Corresponds to one line along the
left edge and one along the upper
edge, which won’t add any boxes,
and because of this may just as well
be there.

(c)

(d) We add boxes at corners, and a
newly added box means that you
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go one step to the right before go-
ing one step upwards. (This de-
mands that you actually have those
infinitely many start-Us and end-
Rs.

6.8

T+1 = 741

5+3 = 543

5414141 — 542+1
3+3+1+1 — 642
3+1414+141+1 — 4+3+1
1+1+14+14+1+14+14+1 — 8

6.9 If we have an even number of odd
parts, and merge parts that are equal
until no equal parts are left, we will at
every step still have an even number of
odd parts, since we always remove two
parts of the same kind, and an even num-
ber minus two is an even number. When
we are finished, all parts will be of differ-
ent sizes, and the number of odd parts
is still even. And the same thing when
we go in the opposite direction.

6.10

(a) Partitions where there are at most
two parts of each size.

(b)

When no parts divisible by three re-
mains.

(c) The number of partitions where
there are at most two parts of each
size is equal to the number of par-
titions where no part is divisible by
three.

6.11 FEach partition can be coded as a
string of Rs and Us and each such string
corresponds to a partition. If there are
m Us there can be at most m parts.
(There can be fewer than this, if U is
placed first in the string). If there are
k Rs no part can be greater than k
(it may happen that all the parts are
smaller than this, if there is an R last
in the string.)

6.12 If we have a diagram represent-
ing a partition of n into parts of differ-
ent sizes, each row in the diagram will
be longer than the one below. The top-
most row will protrude beyond the oth-
ers. Read from the other direction, the
protruding boxes correspond to terms of
size 1. The second row protrudes beyond
the third one, and the protruding boxes
will combined with the boxes from the -
first row correspond to terms of size 2
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when read from the other direction. And
the protruding part of row 3 corresponds
to 3s. And so on down to the last row.
The largest term in the sum of parts of
all sizes is equal to the number of terms
in the sum of distinct parts.

6.13 So we are to find a bijection be-
tween self-conjugate partitions and par-
titions consisting of odd distinct parts.
A self-conjugate partition doesn’t have
to consist of odd parts of different sizes;
the partition 16 = 4+ 4+4+ 4 is a
good counter-example. So we have to
invent some way of transforming a self-
conjugate partition to one of odd dis-
tinct parts, a way that can be run in
reverse.

In a self-conjugate partition the number
of parts is equal to the greatest part.
If we remove the largest part and the
first box in the remaining rows, what
we have left is a self-conjugate parti-
tion of a smaller number. The num-
ber of boxes removed is an odd number;
if the number of terms is k we remove
2k — 1 boxes. We keep on like this, un-
til no boxes remain. We have from the
self-conjugate partition generated a sum
of different odd numbers. (The num-
bers are of different sizes, since the num-
ber of terms get reduced by at least one
in each step.) Conversely, we can from
each partition of different odd numbers
get a self-conjugate partition, by start-
ing by bending the largest number to
an L, after which we put the next num-
ber as an L inside the previous L, until
no more parts remain. This can be done
with all partitions consisting of distinct
odd numbers, and if we just generated
the partition from a self-conjugate par-
tition we get the self-conjugate partition
we started with back. Below we see how
the self-conjugate partition 242434545
is transformed into 1479, which con-
sists of distinct odd parts.

6.14 If we can remove a Durfee square
of size j from a partition of the num-
ber n, the part below the square (which

contains, say, m boxes) will be a parti-
tion of m where no part is greater than 7,
while the part to the right will contain
the remaining n — 52 — m boxes from -
the number n. If we conjugate this part
we see that it corresponds to a partition
of n — §% — m where no part is greater
than j. If we sum this for all possible val-
ues of m (which ought to be everything
between zero and n—j2) we get the total
number of diagrams of this kind.

6.15

(a) If we add a box at the bottom of
a Young diagram for n — 1, we get
a diagram for n, corresponding to a
partition containing a one. Besides,
all partitions of n containing a one
can be generated in this way, in one
and only one way. The remaining
partitions of n don’t contain ones.
This gives the equality

p(n) = p(n— 1)
+p(n | no part = 1)

All numbers from 2 and upwards
can be partitioned without any part
equal to one. That means that p(n |
no part = 1) > 0, which means that

(b)

p(n) =p(n—1)
+ p(n | no part = 1) > p(n — 1)

So the function is increasing.

6.17

Now we take a closer look at the bino-
mial coefficients:

_ (—n)(—n—1)---(—n—k+1)
1-2----. A
_ (~Dn(-Dn+1) - (~Dn+k-1
1-2.-.-. A
_ (n+k—-1)---(n+1)n
"(_l)k 1-9-.... k

n+k—1
:(4)"?( X )
. n+k—1
=D < n—1 )
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Inserted into the formula, this gives (b)
L A@)B(a) =
(1—a) = (a0 + a1z + aza® + azz® +...)-
k=0 n—1 = aobo + (aob1 + a1bo)z
i(n—[—kwl) 2 +(a0b2+a151+a2b0)m2+...
= z
n—1 o "
3 S asbna”
n=0 k=0
6.18
(c)
(a) Al?) =
14 504+ 5%2% 4 ... = 1 =ao + a1z + agz* + asz® + ..
1—5z = ao + 0z + a12” + 0z°
(b) + asz* 4+ 0z® + asz® + ...
—24(=2)%z + (—2)%z” + (—2)*2° (@)
+ (2% . =
1 2 2 iA(a:) —
=—2(1+(-2)'z+ (-2)°z iz
3 3 44
+(=2)°z" + (-2)"z +) :%(ao+a1m+azw2+a3m3+...)
1
=TT Ty =0+ a1+ 2007 + 3asz> + ...
_ 2
7142
(e)
(c) Af@) —ao _
z
2
s s s\ (a0 + ar1ztasz
<0>'%<1>”+'<2>£ B +ase® +...) ~ao
s\ 3 >
+ 5 2= = a1+ asx + azx” + ...
=(1+2) = T+a (£)
zA(z)+ a1 =
(d) Zm(a0+a1m+a2$2+agw3+...)
+a-1
<i”7/> * (1?) @+ (13) 2’ = a_1 + aox + a12” + asz®
-+ a3m4 +...
20\ s B
+ (17>m +--=
S 6.20
(1~—x)8
(1+w+x2+m3+...)-
6.19 '(1+$5+$10+$15+...)'
(a) 1420+ 20+ 20 ).
(420 42420 )=
A(z) + B(z) = _ 1 1 1 1
— a0+ a1z + azz® + asz® + .. l—z1—251—2101-—g20

+bo+brz+ baz? + bz + ...

= (a0 +bo) + (a1 + b1)z 6.21 Since the number of crowns is an -

+ (a2 4+ b2)z® + (as + bs)z® + .. integer we have to use an even number
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of 50-6re coins. You can make up one
crown using 50-re coins in exactly one
way.

A+z+z>+2°+...)
-(1+m+m2+a¢3—|—...)-
-(1+x5+:c10+:c15+...)-
A4+ 204 ) =

! 1 1
(I1—z)?1—251—g0

6.22 We can write the factors in

sl 1 ad 1
H 1—$2k H 1_x2k——1
k=1 k=1

as

1 1 1

l—221—241—26
1 1 1
1—z'1-2%1—25

and if we rearrange the factors we se that
we have

1 1 1
1—gll—g221—28

which can be written as

[ee]

A+z+z”+...)
A4zt )
A4z )
(At ) =

1 1 1 1
S l-zl-221—2% " 1—gm

1
:kl;[ll—a:k

(b) The same answer as in {(a), since
conjugation gives a bijection be-
tween partitions with all parts <
m and partitions with at most
m parts!

(c)
(L+z+2°+-+2™)
-(1+m2+$4+--~+:{:2m)-
A4+t )=
{See example 6.5}

2(m+1)

1—2™ 1 ¢

1— 22

l1—=z
1— ma(m+1)

1—zx8
wk(erl)

1—am™

1— gk

-

k=1

6.24 The generating function of p(n |
at most m — 1 parts of each size)  fol-
lows from the previous exercise:

The generating function of p(n |
no part divisible by m) is

1 1 1
1l—z "1—gm-11—gmtl "’
1 1
] peme1] _ geml

If we fill in the factors that are “missing”
we get

1 1 1—2z™ 1
l—z " "1—gzgm11—gm]l—gm+l
11—z 1
1 gam—171 _ g2m ] — gemil

_ ﬁ 1 —ghm

- 1—xk
k=1

6.25

A+ z)(1+2”) (1 +2)(1+a")- - =
=(1+z+2>+2°)
1+ 2M(1+2) ..
=(1+z+2”+2°+a*
+2° + 25 +27)-
(1425
=l+az+2°+a°+2*+2°
+af+a2" .
1
11—z

Partitions where the number n is
written as a sum of powers of two,
with at most one term of each kind.

(b)

(c) There is only one way of doing this,
which corresponds to the hopefully
well-known fact that there is only
one way of writing the number n us-

ing binary notation.

6.27 We can try to separate a and b
into one equation each. From the sec-
ond one we get

2
3

1
’bn = ~bn-1+ gan—-l

= Gn—1 = 3bp, — 2bp_1
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which inserted into the first equation (b)

gives -t
(1 + = -|- +...)
2(3b 2bn-1) + Ly 1 43 5
-5 n — 4Un—1 S Un—1
3 3 . ("3 + 37_'- + “7_) =
= 2by, — b1 3
N _ e’ +e e’ —e"
2 2
n—1 = 2bp—1 — bp_2 Q20 _ =20
. - 4
which reinserted into the lower equation 1,(2)" (22)° (22)°
gives :5 i s e )
oL z° 4565
2 =202 1222 49
b, 3bn 1+ - (26 —1—bn2) + + +
_ éb - lb . (c) I you have an even number of ze-
3" 3" ros and an odd number of ones, you
) ) ) have an odd number of symbols,
From this equation we can in the “nor- and no strings with even length and
mal way” get an expression for b,,, which an odd number of symbols exist.
we can then insert into the equation Because of this, deven = 0. For
for an, which in its turn is solved in the odd k, we can take zero or two or
normal way. four or...of the k positions for the

zeros (and the remaining ones for

the ones), which gives
6.28 an =2-3"+ 4" b, = 3" + 4"

2 [k
6.29 ; <2n>

(a) ways. (The binomial coefficients be-
' come zero when we’ve passed the
0 1 2 3 maximal number of zeros.)
Olw_+1lz_+21x_+3|$_+...—
0! 1 o 31 ~ (d) Both expressions say that geven = 0.
S SRS SR I S The expression in (a) says that ax, =
- : 2F=1 the expression in (b) that as
- Z " is the sum of the number of even
vt subsets of a set with k elements. In
1 Discrete Mathematics and Discrete
1z Models the fact that a set has an
equal number of odd and even sub-
sets is shown, and furthermore that
(b) the power set consists of 2° subsets.
The even ones are then of half of
0 1 2 those, that is, 2/2 = 2°~1 subsets.
T z T ’ ’
Oa + 1F + 15!——!-
5 4 . "
x x o 6.31 According to the definition of all
g T = =1 (@) we get
gkt thn
(c) The sequence is ax = 52!/(52 — k)!  g1(z) - gn(z) = Z Tl el
for & <52, ag = 0 for the rest, and kieM
the exponential generating function :
fen € My,
i 591 m_k _ After extension by %kwe see that the co-
i (52— k) k! efficient in front of %+ is
52
52 k!
=> 2 z° = (1+2)* > kil kol
k=0 kieM; ) "
knE:M’n
6.30 k1. kn=k

(a) Unsolvable if k is even, otherwise FEvery term T , k 7 is the number of °
about half of the in total 2% strings. different strlngs with k& symbols out of
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which %1 of kind No. 1, k3 of kind No. 2,
etc. Thus the sum gives the total num-
ber of different strings with & symbols
and permitted numbers of each kind.

6.32 If the zeros can’t stand side by
side we have to distribute the available
ones over the spaces. Furthermore we
may put some ones at the beginning and
the end. Each string thus corresponds to
a solution of the equation

Ty + T2 + 23+ T4 + x5 + 25 = 10,

z1,26 >0, x2,...,25 > 1

The equation can be rewritten as

Y1+ x2 + 23 + x4 + 25 + Y5 = 12,

yi,¥6 > 1, zo,...,z5 > 1

and an equation of this kind bhas
(2= = () = 462 different solutions.
6.33 Generalise the bijection in exer-
cise 6.10.

6.34 Sylvester’s bijection takes every
partition of n that doesn’t consist of odd
distinct parts and pair it with another
such partition where the number of parts
differs by one. Thus exactly half of these
partitions have an even number of parts.
To calculate the difference

p(n | even number of parts)

— p(n | odd number of parts)

we thus only need to study the partitions
in odd distinct parts. Since the sum of
an odd number of odd parts will always
be odd, the parity of the number of parts
of these partitions will be equal to the
parity of the number n. In other words,
all partitions into odd distinct parts will
add to the positive term if n is even and
to the negative term if n is odd.

6.35 If we give each part a negative
sign in the normal generating function
of the partition function, partitions with
an even number of parts will be counted
positively and partition with an odd
number of parts be counted negatively.
The generating function of the left-hand
side of the identity will thus be

o0
z

_ll—Q—mk'

In the same way, the generating function
of the right-hand side in the identity will
be

H(l Zk 1

if we use that the parity of n is equal to
the parity of the number of parts in a
partition into odd distinct parts. That
these two generating function are equal
follows in the same way as for Euler’s
identity — the expressions are simply in-
verted here!

6.37

(a) The “gable” of the whole box can in
principle look in three ways:

[EHH]

In the first case, two blocks have
been added to a box that was
one unit shorter, and the blocks
can be turned in two ways (ho-
risontally and vertically), so there
are 2an—1 boxes of this kind of
length n. In the second case, four
blocks have been added to a box
that was two units shorter, so there
are an-2 boxes of this kind. And in
the last case, three blocks have been
added to a box that ended with
n “step”. The step can be placed
in four different ways, so there are
45,1 boxes of this kind. And more
kinds that these don’t exist.
The cut-down box can be made ei-
ther by putting a block next to a
whole box of length n—1 or by turn-
ing a cut-down box of length n — 1
upside down and pushing the short
sides of two blocks under the step.

(b)
an = §(2(-1)" + 2+ V3"
+ (2 _ \/g)nﬁ-l)
sn= (=)™ + 22+ VB

+2522 - V)"

6.38 We set up the generating func-
tions for the different kinds of candles:

a:o $2 Q?4 116
S(w)=a+§+4—+ 61 +
B €m+e—m
2
0 1 2 3
T@=3+5+5+5
0 5 6 7
F@:£+£+%+%+
2 3 4
:64—+—+—+4)
a:l $3 £E5 acT
Ga)y=Tr+gr+g T+
_eT—e "
2

The number of ways of setting up
n aquired candles is the coeflicient in

front of 2o in S(z)T () F(z)G(z).
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6.39

(a) It seems reasonable that about % of
the 2" code words will contain a
multiple of three ones. (It can’t be
exactly that number, since the divi-
sion won’t break even.)

(b)

We set up the exponential generat-
ing function:

2 .CL‘S 134

a+ + STttt
6 9
u+—+—+§
6 9

=e"(1 + = + o o ol =)
The answer is the coefficient in front
of & 2" in the expression above.

Chapter 7

7.3 When laying pipes for water and
drains, for instance. You can’t let pipes
of this kind pass through each other. It’s
possible to let a water pipe make a de-
tour to avoid a crossing, but that in-
creases the resistance to the flow and
should, if possible, be avoided. And
drains have to be laid in a straight line,
and with a suitable gradient (otherwise
you’ll get blockages). (By the way, to
lessen problems, the ground has been
subdivided into different levels, so that
the different kinds of pipes are placed at
different depths, and thus don’t have any
problems crossing each other.)

7.4 If two graphs are homeomorphic
you can transform one into the other by
dissolving some nodes of degree 2 and
adding others. Neither of these oper-
ations can either add or remove edges
that cross, so if there were any cross-
ings before it will still be the case after-
wards, and if there weren’t any before
there won’t be any afterwards.

7.5 A graph is planar if and only if it
doesn’t has any subgraph that is home-
omorphic to K33 or Ks.

7.6 A subgraph can be created by
drawing the full graph and then ereasing
the parts one doesn’t want. If you have a
planar drawing, ereasing can’t generate
any intersecting edges, so all subgraphs
have to be planar as well.

On the other hand, the nonplanar
graph K3 3 for instance has the very pla-
nar subgraph K;.
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(¢) We pick the terms with the correct
degree from the expression:

z’ zta® gl gf

=l S
7! + 41 3! - 1! 6!
(N

(1+4l3v R
143547
— 43

The proportion is then 43/27 =~
0.33 ~ 1/a.

(d) None. The minimal distance be-
tween the words is 2, for if you ex-
change the places of a one and a
zero in a code word the result is
a valid code word. So we can de-
tect all errors in 1 bit, but that’s
not enough to get error correction.

7.7 If all the cycles have the length
at least k, and there are any cycles at
all, then each face has to have at least
k edges. From the point of view of the
faces there are then at least fk edges,
but each edge is seen from two faces
(or twice in the same face, if it ends
with a leaf) so we get the relationship
2e > fk between the numbers of edges
and faces. Euler’s formula then says that
f = 2—wv+e, which substituted into the
inequality gives

2¢>(2—v+ek
2e > (2—v)k + ek
(v—2)k > ek —2e
(v— 2k > e(k—2)
k
—2)l >
(v 2)k 5z
Cycles have at least three edges, so k— 2
has to be positive, which means that we

can divide by k — 1 without turning the
inequality around.

7.8 If someone says that a graph is non-
planar then said person has to be able to
indicate a subgraph homeomorphic to ei-
ther K or K3,3. You first have to check
that the indicated really is a subgraph
(that is to say, that the edges used are
found in the original graph) which can
be done in linear time.

Then you have to check that it’s home-
omorphic to a suitable graph. That can
be done for instance by removing “un-
necessay”’ nodes of degree 2. Fach such -
node is removed and replace by a direct
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edge between the nodes in case. That
should be possible to do in linear time in
the number of edges. And when no un-
necessary edges are left it’s easy to verify
whether what is left is a K5, a K33, or
something else.

7.9

(a)

(b) How do you use Kimmo’s nice nodes
to untangle this highly nonplanar
situatign?

The problem is that the inventions
are only able to handle subgraphs
isomorphic to Ks and Ka3, not
ones that are homeomorphic.

7.10 Most hobby shops have tori in sty-
rofoam that are cheap to buy, if you find
it hard to visualise the problem. Mark
the nodes using pins and the edges us-
ing thread, to make it possible to try out
different configurations. :

T

(b)

This is, by the way, the graph drawn
on the torus on page 137.

Because the removal of a edge in
a cycle doesn’t automatically en-
sure that you get one face less. We
may for instance draw a three-cycle
around the torus. Then we have one
face, and if we remove an edge we'll
still have one face!

7.11 If you enflate the polyhedron
somewhat it become sperical, without
geunerating any intersecting edges. And
things drawn on spheres can be drawn

on paper, according to the previous ex-
ercise.

7.12 No. The graph has to be con-
nected and mustn’t be a tree, and all
the nodes have to have a degree of at
least 3 for the graph to correspond to a
geometrical solid.

7.13 In a Platonan solid all the faces
have the same number of edges, so we get
an equality in the in exercise 7.7 derived
relationship. Furthermore all the nodes
have the same degree, g = 2¢/v. This
degree has additionally to be at least 3,
otherwise we get a polygon. All the nun-
bers involved have to be integers.

k
k-2

e= (v—2) =

(k—2)e—k(v—2)=0

So we have to find integer values of e, v,
k, and g that satisfies the equality.
We try a number of combinations of k
and g, starting at 3.
e k=3,9=3givee=6,v =4, which
is the tetrahedron.
e k=3, g=4givee =12, v = 6,
which is the octahedron.
o k=23, g =0>5give e =30, v=12,
which is the icosahedron.
e k=3, g >4 doesn’t give a positive
number of nodes.
e k=4, g=3givee =12, v = §,
which is the cube.
e k=4, g > 3 doesn’t give a positive
number of nodes.
e k=25, g =23 gives e = 30, v = 20,
which is the dodecahedron.
e k=25, g> 3 doesn’t give a positive
number of nodes.

e k> 5 doesn’t give a positive number
of nodes.

These are the only solutions!

Drawn in a planar way, the solids look
like this:

Note by the way that the tetrahedron is
a Ky.

7.14 Yes. Try for intance to “fold out”

the node with degree 1 from the square
in the graph in example 7.4.
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7.16

(a) The tetrahedron.
(b) The octahedron.
(c) The cube.

(d) The icosahedron.
(e) The dodecahedron.

By the way, it’s always the case that the
dual of a polyhedron is a poyhedron!

7.17 Put one dot on each country, con-
nect two dots if the countries are border-
ing to each other.

7.19 The original graph, provided that
you haven’t redrawn the dual to some-
thing isomorphic before the redualisa-
tion.

7.20 The graphs are Eulerian: you
can find a circuit consisting of all the
edges. From a practical point of view
this means that the whole thing can be
strung onto one single thread, where the
ends can be tied together when it’s fin-
ished. (To actually succeed in making
such a circuit is a fairly large challenge
in the three-loop construction...)

7.23 In a complete graph, all the nodes
need different colours, which gives the
same chromatic number as the number
of nodes: n.

7.24 2, if n is even (colour every sec-
ond node in one colour, every second one
in the other). 3 if n is odd (one node
will be squeezed between two differently
coloured ones if you try to get by with
two colours).

7.25

(a) If the algorithm takes the nodes in
order, the first one will get colour 1,
the second one colour 2, the third
colour 1, and so on all the way
around. So two colours will be
used. If the algorithm on the other
hand happens to take two opposing
nodes at start, both will be assigned
colour 1. The next node on the way
between the coloured ones will be
given colour 2, and the third, which
now is placed between two nodes
with different colours has to be as-
signed colour 3. Now three colours
are used!

(b) Start with some colouring with the

optimal number of colours and re-

colour the graph using the greedy
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algorithm in such an order that all
nodes with colour 1 are coloured
first, then all nodes with colour 2,
and so on. This will give a colouring
that to each node assigns a colour
with at most the same number as in
the original optimal colouring, and
which thus is optimal as well.

(¢) You can run the greedy colouring al-
gorithm using all possible orders of
the nodes and choose the colouring
that was the best, since according
to the previous exercise, it will be
optimal. For a graph with n nodes,
that gives n! different orders to try,
so this is not an efficient way of de-

termining the chromatic number.

7.26 The largest clique corresponds to
the largest complete graph that is part
of the graph. A complete graph can’t be
coloured with less than n colours, so the
chromatic number of the whole graph
has to be at least n.

7.27

(a) The greedy algorithm always uses
the lowest colour number possible.
The highest number possible you
get if the node is connected to a
lot of different nodes, which already
have been assigned different colours
with lower numbers. There can be
at most A(G) nodes connected to a
node, so youll never need a higher
colour number than A(G) + 1.

(b) We may for instance look upon a
star: a node with a terribly large
degree in the middle, and then pro-
truding beams. This is a bipartite
graph, which can be two-coloured,
but the estimation will give ome
colour more than beams, which is

a lot to much.

7.28 Let each form be represented by
a node. Connect the nodes if there is
a pair of siblings with one child in one
of the forms and the other child in the
other form. The problem is now to find
a proper colouring with as few colours
as possible. Each colour will represent a
time-slot. (Note that finding the chro-
matic number isn’t enough — you really
need the colouring as well!)

7.29 We use theorem 7.4, and try to
remove edges so that we get something
easy to analyse left. We let the chro-
matic polynomials be represented by
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pictures, that is simpler from a nota-
tional point of view.

1>
=LA
=2MA—-1)*A—2) = AA—1)*(A - 2)?

Substituting A = 3 we get the answer
36 colourings.

7.30 The man seems to consists of
hood, face, eyes, beard, mittens,
sweater, trousers, and shoes, in total
eight areas. One of the mittens is bor-
dering to both trousers and sweater, the
remaining things to just one area each.
This gives the chromatic polynomial

PO =22 -1)°\—-2)

If we colour all the areas, this makes it
possible to make 3-2% -1 = 192 different
pictures. If we besides realise that it’s
possible to let some areas keep the origi-
nal colour of the paper, we have actually
four colours available, and are thus able
to make 4-3%.2 = 5832 different pictures.
{(Whether a black-bearded father Christ-
mas with red eyes and a white hood cre-
ates that much of an atmoéphere is a dif-
ferent matter.)

7.31
(a) X"

(®) AA=D(A=2)...(A—n+1)
(c) A =1~

7.32

Poy, = A
Po, =MA=1)""~Po, ,
7.833 x(G) =min{A | Pg(A) > 0}

7.34 Using the recursion, we can write
Pg(X) as a sum of chromatic polyno-
mials of graphs without edges, and the
chromatic polynomials of graphs like
that are of the form A™. Sums of terms
like this are precisely polynomials.

7.35 If we from G remove one edge
at a time until no more edges remain,
the recursion gives that the chromatic
polynomial of G is equal to the chro-
matic polynomial .of n nodes without
edges (= A™) minus the sum of a lot
of chromatic polynomials of the graphs
where one edge has been contracted and
thus n — 1 nodes remain. According

to the inductive hypothesis, graphs with
n — 1 nodes have chromatic polynomials
of the form A"~ — a2 A" ?4a,_z A3
—an_a A" %4 .. *where all a;, > 0. Sub-
traction of all these polynomials from A"
gives the form of Pg()\) we were looking
for.

7.36 Assume the opposite, that is, that
there exists a planar graph G where all
the nodes have a degree of at least six.
Let v be the number of verticies in G.
Since at least six edges originate from
each vertex and each edge touches ex-
actly two verticies, the number of edges
have to satisfy the inequality e > 3v.
But in each planar graph, according to
corollary 7.2, we have e < 3u—#6. This is
a contradiction, so the assumption that
there is a planar graph G where all the
nodes have a degree of at least six has to
be discarded.

7.37 Assume that all graphs with up
to n nodes can be five-coloured. Now
study a graph with n + 1 nodes. In this
graph there is some node with a degree
of at most 5. If we remove it, the remain-
ing graph can be five-coloured. Now put
the node back. If its degree is less than
five, its neighbours can have at most four
different colours, and the node can be
coloured using the fifth colour.

If the node actually is of degree five, we
can see two cases: Either the five neigh-
bours have less than five colours in to-
tal, and then we can just as before take
the fifth colour for the node. Or all the
neighbours have different colours.

Now study two of the neighbours, say v1
och vz, two of the adjacent nodes that
aren’t side by side. Let’s say that they
have the colours ¢; and c3. Pick out a
subgraph from the graph, the subgraph
consisting of all nodes with the colours
c1 and cs, and the connecting edges. If
v1 and vz belong to different components
of this graph, we can swap the colours
in one of the components, so that all the
nodes with the colour ¢; instead get the
colour ¢3, and vice versa. This can’t
destoy the correctness of the previous
colouring. And now the new node is sur-
rounded by things with just four colours,
and can be assigned the fifth one.

If v1 and v2 on the other hand belong
to the same component, swapping the
colours won'’t help, and then we instead
have to study a different pair of neigh-
bours, say vz and vs4 and reason in the
same way. It then proves that they can’t
belong to the same component of the cz-
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cs-subgraph, since the connected ci-c3-
subgraph forms a barrier between them.
And then we can re-colour one of the
components.

7.38 We can take a K5 and add a node
to each edge, in the same way as in ex-
ercise 7.9. This gives a bipartite graph
(with the original nodes and the added
nodes as the two kinds). A bipartite
graph can be two-coloured, and thus
four-coloured as well.

7.39

(a) A graph that doesn’t include K;
can’t have any nodes! And if there
aren’t any nodes, you can use zero
colours without any problems con-
cerning adjacent nodes getting the
same colour.

(b) A graph not including K> lacks
edges, and only consists of isolated
nodes. And then you can with-
out any problems manage using one
colour.
(c) A graph not including K3 lacks cy-
cles, and is thus a tree (or many).
Trees are bipartite, and can be two-
coloured,
(d) Ky is in principle a cycle with two
crossing diagonals. If our graph
doesn’t include anything like that
it can be drawn with cycles side by
side, with one or several edges in
common. A cycle demands at most
three colours, and the colouring of
one cycle is then the start of the
colouring of the adjacent cycle, and
can’t complicate anything.

(e) No, we refrain from writing down

this proof. But if you figure it out,

your teacher definitely wants to see
it!

7.40 Every planar graph can be ex-
tended to an almost-triangulated graph
by subdividing the faces with more than
three edges, and connecting nodes on
projecting branches to other nodes in the
graph.

~

Now assume that we have a planar
graph with five-lists. We extend it to
an almost-triangular graph. If this ex-
tended graph can be five-list coloured,
the original graph has to be five-list
colourable as well (using the same
colouring), since the removal of an edge
can’t ever destroy a colouring.
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7.41

(a) When G has three nodes out of
which x and y have the colours blue
and red, respectively, and the third
node has three colours on its list,
one of these colours has to be free.

(b) The chord uv divides the graph into
two parts, G1 (containing the adja-
cent nodes z and y) and Gs.

Ty

uv

Now (1 satisfies the conditions and
has less than 7n nodes and can
thereby be list coloured according
to the assumption. Thereby the
neighbours v and v have been as-
signed two colours, so now G2 sat-
isfies the conditions as well and can
therefore be coloured according to
the assumption. Now all of G has
been list coloured.

Let u be the neighbour of z on the
cycle C which isn’t y. Since G lacks
a chord, « has only two neighbours
on C (z and w), the remainder of
the neighbours are inner nodes and
thereby have at least five colours on

their lists.
w %z

Choose two out of uw’s list colours
that aren’t the same as the colour
of  and remove them from the lists
of all inner neighbours of u. Then
remove u and its edges, and what
remains is a graph G’ which sat-
isfies the conditions and which has
less than n nodes. Thereby @' can
be list coloured. To get the whole
of G coloured, colouring v is what’s
remains to do, and one of the two
previously selected colours has to be
free since w can only have one of
them.

7.42 The previous exercise means that
every almost-triangulated graph can be
coloured using 5-lists for the inner nodes
and 3-lists for the outer omes. It
can’t get any less colourable if you ex-
tend the outer lists to the length 5, so
almost-triangulated graphs are five-list
colourable. And since they are, all pla- -
nar graphs are as well.
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7.43 Let all the lists consist of the same
five colours.

7.44 The statement is trivially true for
graphs with one node. Assume that it’s
true for graphs with less than n nodes
and let (G be a stable directed graph
with n nodes that satisfies the condition
that each node has more colours than
its number of outgoing edges. Choose
some colour and let S be the set of all
nodes that has said colour on their lists.
Since G is stable there exists an indepen-
dent subset S’ C S so that each node in
S\ &' has a directed edge to some node
in §’. Since the nodes in S’ are indepen-
dende, that is, have no edges inbetween,
we can colour all of them using the cho-
sen colour. Remove the coloured nodes
and remove the chosen colour from the
lists of all the remaining nodes. The
nodes that get one colour less are the
nodes in S\ S’, but for them at least one
edge vanishes according to the stability
property, so the remaining graph as well
satisfies the condition that each node has
more colours on its list than the number
of outgoing edges, and thereby it can be
coloured using the remaining colours ac-
cording to the inductive hypothesis.

7.45 o /

VAL GADIRN

7.46

€4 = CoC3 + C1C2 + C2C1 + €3C0
=1-54+1-242-1+5-1=14
C5 = CoC4 + C1C3 + Cac2 + ¢3¢1 + Caco
=1-14+1-5+2-2+5-1+14-1
= 42
Cs = CoCs + C1C4 -+ CaC3
+ ¢3c2 + cac1 + C5C0
=1-42+1-1442-5
+5-2414-14+42-1=132

7.47 It’s easily shown by induction
that a binary tree with n nodes has
n + 1 places where new leaves can be
added. Expand the binary trees with
new leaves that are are precisely the fac-
tors 1 to =, from right to left. Then in-
terprete the tree as a binary expression
tree where all the inner nodes represent
multiplications and we get a placement
of parentheses. Conversely, each place-
ment of parentheses gives a unique ex-
pression tree, which after removal of the
leaves z1 to z, gives a binary tree with
n nodes.

7.48

(2)

VT —dz = (1 — 4z)*/?

{according to the generalised bino-
mial theorem}

> <1£2><‘_4$)n
-3 <1£2><-—4)"m“

(b) We carry out the calculations for an
even value of n; odd values are han-
dled in an analogue way, but some
details are different.

(17/12> (4 =

_ Yo (Y)Y (=n-9s)
1-2-3---n

(="
{Factor out the halves}
D@3 1,
o 1-2-3..-n 2
(=4)"
{Cancel the odd factors
in the denominator}
_ (_1)(n+ {n+3)-(2n-3)
2 4---n
1 n
(5-9)
{Expand to “fill in the
gaps” in the numerator }
(n+D{n+2)--
-(2n—3)(2n — 2) on
2.4...n
~(n+2)---(2n — 2)
{Factor out 2:s in the denominator}
(n+D(n+2)--
-(2n—3)2n—2
y_n=den-3
1-2---(n—1)-2n 1
{Expand by (2n — 1)2n}
(n—1)---(2n-2)

~(-1)

_ “(2n—-1)2n _,
“(_1)1-2m(n—1)
<(2n—1)2n 277
-1 (n~1)-~2n.2n

“om—-1 1.2-m-2n

. —1 2n
T oan—1\n
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(c)

1—v1-dx
2x -
:i(l—\/l—éla:)
2z
1

(d) Since the generating function of the
Catalan numbers is

Oy = LoV _

2z

i 1 [2n\ .,
= — T
n:On~|—1 n

the Catalan numbers can be calcu-
lated using the formula

1 <2n>
Cp = ——
n+1l\n
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7.49

2n 2n
n) \n-1
_2n@n—1)...(n+2)(n+1)
1.2 (n—1Dn
2n2n—1)...(n—2)
C1-2-. . (n-1)
_2n(2n—1)...(n+2)(n+1)

- 1-2-...(n—1)n
_2n(2n—-1)...(n+2)n
1-2-...(n—1)n
(n+1)—n)2n2n—1)...(n+2)
1-2-...(n=1)n

_2n(2n—1)...(n+2)
- 1-2-...(n—1)n
_2n2n-1)...(n+2)(n+1)
12 (n—Dn(n+1)

1 2n(2n-1)...(n+1)
n+1

1 2n
T n+1\n

7.50 Each parentheses expression can
be divided into one part up to the first
point where one have the same number
of right and left parentheses, and the
rest of it. (So “(()())(())” is divided into
“00)” and “(())”.) The part inside the
first part corresponds to the left sub-
tree, the rest corresponds to the right
subtree. () corresponds to the tree with
just one node. The first binary trees,
which are shown in the answer to exer-
cise 7.45, correspond, taken in order, to
the parentheses expressions (), (()), (),

(0D, (O0), (MO, 0O, 000-

7.51 The left parenthesis corresponds
to a step upwards, the right parentesis
to a step downwards.

7.52
(a) (1,4,4,1)
(b) (5,2,5,2)
7.53
(a)
3
4 2
1
5 7
6
(b)
®—o—e 9o o e 6
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7.55 Nodes with just one neighbour are
leaves, and they are removed without be-
ing included in the code, so it’s true that
they are included zero times. For the
rest, we write down a node every time
we remove its neighbour, and we can’t
remove the node until it has become a
leaf, that is, only has one neighbour left.
So all nodes that are removed are in-
cluded the same number as the num-
ber of neighbours, minus one. The only
nodes that haven’t been removed are the
two connected ones we have left when we
are finished, and they as well have been
put down once per removed neighbour,
except for the other node which remains.

7.56 You draw one edge for each num-
ber in the code, and a final edge when
the code is empty. That means that you
generate n — 1 edges. In each step, a
node is picked from the list of leaves,
and every node will sooner or later end
up there, which means that there will
be n nodes. A graph with n — 1 edges
and n nodes is either a tree or an uncon-
nected graph with cycles. What does it
take to make a cycle? It takes drawing
an edge between two nodes that are al-
ready connected. But you easily realise
using induction that during the whole
process, the nodes that are mentioned
in the code or in the list of leaves will
keep on being in different components.

7.57
(a) 1.

At least one employee and at
most all of them must be work-
ing directly under a top manager
(given that there are any em-
ployees): e ways.

2. From the e, appoint s subman-
agers: (¢) ways.

3. Repeat the reasoning, but now
with the submanagers as top
managers: R(e — s,s) ways.

4. Each of the s submanagers has
t topmanagers to choose from:
t° ways.

(b) The recursion becomes Rfe,t) =
¢ (Ot R(e— s, ).

8

(¢) R(0,t) =1, since organising one top
manager without any employees can
only be done in one way.
Substitute R(e,t) = t(t+e)*"! and
R(e — 5,5) = se* 7% into the re-
cursion and establish that the left-
hand side after expansion according
to the binomial theorem is equal to
the right-hand side. The left-hand
side becomes

e—1
}: <€ *}; 1) thee=1-k

k=0

(d)

while the right-hand side becomes

e
Z <6> tssee—s—l
s=1 8

Using that (%)s = (°”1)e and sub-
stituting s — 1 = k& makes the right-
hand side the same as the left-hand

gide.

R(n —1,1) is the number of possi-
ble hierarchies with one top man-
ager and n — 1 employees. Each
such hierarchy can be modeled by a
rooted tree, where the top manager
(the root) gets the number 1, and
the remaining persons are assigned
numbers. And every numbered tree
can be interpreted as an organisa-
tion chart for such a hierarchy.

7.61
(2) pam =277 (77)
(b)
1 _1
o
., 1, 1-32%
—1+§$ +ﬁ§+

[=9)
2m
= g Dom@
m=0

(¢) The sum sz + $4 + ... + som 18
the total probability of returning to
origo at some point inside the first
2m steps. That’s of course equal to
1-— q2m.-

(d) Inclusion and exclusion gives
Sam = Pam — »_ Pib;
i+j=2m
-{—Zpipjpk —
itj+k=2m

‘We then have

Z SmeZm
= (p(z) = 1) — (p(z) — 1)°

+p(z) —1)° — ...
_ p(z)—1 =1 L
1+ (p(z) - 1) p(z)
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(e) S(z)=1—+1-22
Sosom =S5(1) = 1.

(F) S'(z) =3 2msama®™ L,
so S'(1) = 3 2mss, which is
the average number of steps before
origo is revisited.

S'(z) = ~— 50 S'(1) = oo. So

it's true that the risk of never re-
turning to origo is zero, but it takes
an unlimited amount of time before
you get back!

(8)

7.63 The probability ps., of a random
walk in three dimensions ending at origo
after 2m steps can be expressed using
multinomial numbers:

—6m S 2m _
Pam = ivisdy g ki k)

2
__ 9—2m 2m —-2m m

where we sum over all natural num-
bers ¢,7,k such that i + 7+ k = m. To
simplify this, we make the overestima-

tion
m < m
iik) " \3.%.3)
pzm S 2_2m <2m> 3_m< m) .
m ,‘é"/

which gives
—m [ m
23 (z j k) '

Here we see that the last sum is exactly
equal to one! Stirling’s formula now
gives that porm, is less than some constant
times —~—. Thereby > pam converges,
and the same line of reasoning as in the
two-dimensional case now gives that the
probability of a random walk in space
never ever will return to origo isn’t zero.

|3

?

|3
w3 3

7.64

(a) Yes, that G is r-regular means that
the complement graph G is (n —
r — 1)-regular, since with n nodes
in the graph there will always ex-
ist n — r — 1 nodes that a node
in G isn’t connected to and to which
there thus are edges in G.

No. There are counterexamples.
The cube for instance is 3-regular,
but the regions are not triangles
there!

No. There are counterexamples.
For instance, the octahedron is 4-
regular and planar.

(b)

(c)

© Studentlitteratur

(d) No. There are counterexamples.
The cube is 3-regular and bipartite
besides, that is, has x(G) = 2.

7.65
(2)

@

Chromatic polynomial:
A(A = 1)°(A —2)°. Chromatic num-
ber: 3.

It can be drawn without intersect-
ing edges, so clearly it’s planar!

(b)

(c) The two protruding wings don’t re-
ally add anything to the difficul-
ties, since these edges can be drawn
parallel to the ones in the inner
cross. The graph is thus in princi-
ple a K4, which can’t possibly have

either a K5 or a K3 3 as a subgraph!

7.67

(a) In a planar graph the inequality
e < 3v — 6 holds. If the graph had
had 3001 edges we would have had
e = 3001 and 3v — 6 = 3000.

Place the 1002 nodes in a circle. Use
upp 1002 edges by connecting the
circle into a cycle. Then use up
a further 999 edges by connecting
one of the nodes in the cycle to all
the nodes to which it isn’t already
connected. (Can be done like a fan
without any crossings.) Now look
at the next node. Connect it to all
the nodes to which it isn’t already
connected using 999 edges placed on
the outside of the cycle. These can
be drawn withot any crossings as
well. 1002 + 999 + 999 = 3000, so
we have used all the edges.

(b)

7.69 Yes. Example: let the graphs be
two chains of equal length, trees with-
out branches. They can be two-coloured.
Then connect the green nodes in one of
them with the red nodes in the other.
It’s possible, so the joined graph has the -
chromatic number 2 as well.
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7.70 ten
(a) By using the recursion for the chro- m
matic polynomial one gets that the cpmi1 = Z CkCrm—k, co=1,¢c =1
graph has the chromatic polynomial k=0

AA=1D(A-2)(3* =32+ 3). Using
three frequencies (colours), there
are thus 3-2-1-3 = 18 acceptable
frequency assignments. But we are
not allowed to use the frequency 106
on . For reasons of symmetry, ex-
acly two thirds of the assignments
must not be using 106 on z, that is,
12 of them.

(b) Six out of the acceptable assign-
ments have frequency 106 on z and
six of them have frequency 106 on y.
It’s easy to see that there are 2-2-1
assignments that give frequency 106
to both = and y. According to in-
clusion/exclusion, there are 18 —6 —
6 + 4 = 10 acceptable assignments
which don’t have 106 on either =

or y.

7.72 1In this case, the easiest way is to
show that the number of ways match the
recursion for the Catalan numbers. Call
the number of ways an,. A triangle is
already partitioned, som a3z = 1. A “di-
agon” can also just look in one way, so
az = 1. If we now study an n+ 1-gon, we
can fix one side in this. The side has to
be part of some triangle, which means
that it has to be connected to one of
the n — 1 remaining corners. On each
side of the triangle, we then get an poly-
gon with, say, k corners and one with
n —k + 2 cornes. k can be anything be-
tween 2 and n. That means that we have
the recurrence equation

n
Ont+1 = E Gk An—k+2
k=2

If we now carry out a renumbering, and
call any2 ¢m, the recursion can be writ-

Chapter 8

8.1 If Erdés is placed in the middle of
the graph, two persons placed at oppo-
site sides may have the distance 27 to
each other at the same time as they have
the distance 15 to Erdds.

8.2 One has to find cooperative connec-
tions that in combination make up a sub-
graph homeomorphic to K5 or K33. A
K looking like this has been found: The

This is the recursion of the Catalan num-
bers!

7.73 There are n! node-labelings of
each binary tree with n nodes. There are
the Catalan number ¢, such trees. Thus
there are nlec, different node-labeled bi-
nary trees.

7.74

(a) Two. A chain and a branching
graph looking like a Y.

(b) As many as the number of lists with
two elements between 1 and 4, that

is, 4° = 16.

One method: Generate all the list
in a systematic way, then make up
the trees based on them. (Ought to
guarantee that you don’t forget any
of them.) Other method: Try in
some systematic way to distribute
the labels on the two basic trees
that exist.

No, we can’t be bothered to draw
the answer!

(c)

(d)

7.7%

(a) We have two recursions: ap41 =
bn/24cn/2 = bp and bny1 = an/2+
en/2 = an/2 + b, /2. From this we
can conclude that ani1 — bpy1 =
—L(an = bn). Thus, an — by ap-
proaches zero when n increases to-
wards infinity.

(b) In each bipartite graph, an
even number of steps is needed
to get back to the starting
pOiIlt. KlOOO,lOOO has 1000° =
1000 000 edges and 2000 nodes.

nodes are Paul Erd6s, Frank Harary,
Ron Graham, Dan Kleitman, and Sa-
haron Shelah. Erdds has edges to all the
four others. From Harary to Graham
there is a path via Stefan Burr, from
Harary to Kleitman via Jin Akiyama
and Noga Alon, from Harary to Shelah
via Andreas Blass. Graham has an edge
to Kleitman, and there is a path from
Graham to Shelah via Joel Spencer. Fi-
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nally, there is a path from Graham to
Shela via Eric Milner.

A simpler, but less intriguing, solution
is to take any article whatsoever which
had five coathours, for instance Sort-
ing a Bridge Hand by Eriksson, Eriks-
son, Karlander, Svensson, and Wistlund
(see section 11.5). It generates a Ks-
subgraph in the Erdés graph directly.

8.3

(a) If the graph has the diameter 1, ev-
ery node needs to be connected to
every other node, so we must have a

k2

complete graph. K, has (}) edges.

(b) Here the smallest graph seems to
be a star-formed net, with a cen-
tral node and the remaining vertices
each on a beam. The central node
is at the distance 1 from the others,
the remaining ones are at the dis-
tance 2 from each other. A star like

this has n — 1 edges.

8.5 We substitute n = 5-10% and A =
100 into the formula, and note that it
tells how many nodes you get at most:

100(100 — 1)P — 2

9
. <
5.10° < 00— 2 =
log (99~5-109+2>
100
D> ~ 4,86
= logz 99 ’

Since the diameter is an integer, it thus
has to be at least 5.

8.8

a §73 b

2,2

d

The flows in the non-saturated edges de-
pend a bit on the order in which the
flow-augmenting paths were taken. The
maxflow and the flow in the saturated
edges will be the same in all correct an-
swers. The maxflow is 9, and the mincut
is Py = {3, a, b, ¢}, Po = {d, o}.

8.10

(a) We know that the inflow into a node
always is the same as the outflow.
That means that the sum of the
flows (signs included) is zero. A
cut on one side cuts some of the
edges; if the cut is moved to the
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opposite side, the complement set
of the edges are cut, and besides
the flows are regarded from the op-
posite point of view (so that pos-
itive becomes negative). The two
flows give the total flow through the
node, that is, zero, and must be-
cause of this be of equal size.
(b) The in the question described situa-
tion corresponds to us moving a cut
a little bit, so that it ends up on
the other side of the node a. The
edges that were unconnected to a
remains, and the flow through the
ones on the other side of a is accord-
ing to the previous exercise equal to
the one on the first side, so the to-
tal flow in the cut can’t have been
changed by the operation.
(c) Every cut that exists can be made
by taking a cut that cuts of the
source from the rest, and step by
step moving it past the nodes. Since
the flow doesn’t change when you
move the cut past a node, all the
cuts have to have the same flow.

8.11

(a) We can put in directed edges in
both directions.

(b) We can add a “super source” and

a “super sink” at the ends of

the graph, and connect the actual

sources and sinks to these using

edges with unlimited capacities.

‘We can divide the node into two: in-
flow side and outflow side, and con-
nect these with a directed edge with
a capacity equal to the transporta-
tion capacity of the node.

(c)

(d) From the nodes with leakage, we
can draw edges directly to the sink,
with capacities corresponding to the
maximum deficit. (In practice,
though, the deficit probably is pro-
portional to the flow, which makes

the calculations somewhat harder.)

8.12

(a) Using the maxflow algorithm, we
get an integer flow. Since all the
capacities are 1 this means that in
all the edges there is either a flow
of 1 or a flow of 0. When one flow
unit has left ¢ it thus never divides
but follows a unique path from <
to 0. All these paths have to be edge
disjoint since otherwise some edge
would be trasporting more than one
flow unit. From the other point °
of view, we can send unit flows
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through every set of edge disjoint
paths. Thus the maximum flow has
to be equal to the maximum num-
ber of edge disjoint paths from 7
to o.

(b) Since all the edge capacities are 1,
the least number of edges, the re-
moval of which destroys all the
paths from 7 to o, will be equal
to the capacity of the minimum
cut. This in its turn is, accord-
ing to the theorem, equal to the
maxflow, which according to the ex-
ercise above is equal to the maxi-
mum number of edge disjoint paths
from 1 to o.

(c) Change all inner nodes to edges
with capacity 1, see exercise 8.11(c).
Previously  inner-node  disjoint
paths now correspond to edge dis-
joint paths. Use the exercise above.

(d) Add a source ¢ with edges to all
nodes on the left and a sink o with
edges from all nodes on the right.
An edge covering is then the same
thing as a set of inner nodes, the
removal of which destroys all paths
from ¢ to 0. A matching is the same
thing as a set of inner-node disjoint
paths. Menger’s theoremm now gives
Konig’s theorem.

8.14

(a) You can count on the message
sooner or later arriving (at least if
the network is connected), which
isn’t certain at fixed routing, which
breaks down if the chosen path
breaks down. On the other hand,
the route can be very long, while
fixed routing usually follows the
shortest path.

(b) So t;; is the probability of node i
sending on the message to node j. If
the nodes aren’t connected, that is,
if a;; = 0, this probability is zero.
Otherwise the probability is equal
for all the deg(i) nodes that are con-
nected to 4, and then it is 1/ deg(s)
for each one of them. The probabil-
ity of the final addressee k sending
the message on is zero, though!

(c¢) If the message is to end up at node ¢
after n+ 1 steps, it must in the pre-
vious step have been at some neigh-
bour of ¢, and from this point have
chosen to go on to i. If we sum up
for all the neighbours of i, we get

1
(ﬂ+ ) ij tz]

7 neighbour of %

(d)

(e)

)

8.15

(a)
(b)

(c)

since t;; = 0 for non-neighbours

n
= 2Pt
=1

which is the dot product of the vec-
tor p™ and column 7 in T. If we do
this for all the rows we have simply
multiplied p™ with the matrix T.

0 12 12 0
s 0 1/ /s
/3 ifs 0 13
0 0 0 1

You easily realise that the following
relationship holds for all n > 0:

P+ 3 ) +3 1 o
P+ 2 o 3 1 o
Py = pgY
1 1
" = 29y + el

Elimination of all quantities except
for pa gives the sought for recursion.

The message ought to arrive sooner
or later, so ¢, — 1. Both
|(14+/13)/6| and |(1 — V/13)/6] are
smaller than 1, so the exponential
terms both approach zero. It the
sum is to approach omne, the con-
stant term has to be one.

Cheapest is going via Ostgdta-
banken, that cost is 4 + 13 = 17.
It’s possible that all the other banks
except for Nordea went via Ostgota
as welll The only route that we can
be completely sure still remains is
because of this the one via Nordea,
which costs 9+ 12 = 21. More ex-
pensive than that it can’t be. (It’s
probable that some of the other
routes remain as well, but that can’t
be determined from the given infor-
mation.)

What’s of interest is the maxi-
mum number of node disjoint paths
there are between Handelsbanken
and Skandiabanken. (If you are to
knock out all of them you have to
knock out at least ome node per
path. It’s quite possible that this
isn’t enough — there may remain an
alternative path, that zigzags be-
tween what remains of the origi-
nal paths.) One way is to replace
each node with an edge with capac-
ity 1 (the capacities of the other
edges is irrelevant, as long as it’s
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8.16

(a)

(b)

()
(d)

at least 1). Then we force a max-
imum flow throught the network.
The flow will be equal to the num-
ber of node disjoint paths.

Let c(z,y) mean the cost of the
cheapest route from z to y, with
¢(z,z) = 0. The shortest route
from A to some node v can be found
from

min{c(4, B) + ¢(B,v),

(A, C) + c(Cv)}
since the neighbours of 4 are B
and C. For each v, ¢(B,v) and

¢(C, v) are found from the given ta-
bles. The table of A is

An articulation point is a node in
the network, which if it breaks down
makes some nodes no longer able to
communicate with each other.

f

None.

If a graph is biconnected it can’t
have any articulation points, since
any node that is removed destroys
at most one of the two node dis-
joint paths between each pair of
nodes, so the number of compo-
nents doesn’t increase. Conversely,
if a connected graph isn’t bicon-
nected there is some pair of nodes
where every pair of paths has some
node in common. It’s easy to realise
that in this case, all path between
the pair of nodes must have some
node in common. This node is then
an articulation point.

8.17

(a)

(b)

All the nodes get the message at
some point, and thus send it on.
i sends the same number of copies as
its degree, the remaining ones one
copy less than the degree. In total:

> (deg(g) —1)+1

geG

If 'm unlucky I'm in direct con-
tact with all the other nodes, and
thereby get one copy from each be-
fore having the time to counter!
|G| — 1 copies, then.

© Studentlitteratur

8.19 If we make a cut downwards to the
right we cut edges with a total capacity
of 35 4+ 174 17 4 29 = 98 < 100.

8.20

(a)

(b)

We can regard the common sum as
a flow through a network. The r-
numbers are the capacities of the
edges from the inlet; the c-numbers
are the edges to the outlet. The
numbers in the matrix are flows in
the intermediate edges. If we place
a Knm between the given ‘edges,
with an unlimited flow in each edge,
we have the same number of edges
as the number of elements that the
matrix needs. The minimum cut in
the network is through the ingoing
edges or the outgoing edges (since
the sum is the same) and according
to Ford-Fulkerson’s theorem this is
equal to the maximum flow, so it is
possible to make up the sum.

This exercise isn’t as hard as it
looks at first glance, since the main
part of the flow can be run straight
through the network, which satu-
rates a large number of edges and
therby removes a number of oth-
ers from the analysis. (Since there
aren’t any backwards edges, we will
never have to decrease a given flow.
That simplifies matters!)

If we choose to lead the flow
through the edges marked in the
graph, we get the matrix

8 0 2 0 0 0] 20
0 18 6 5 0 11| 40
0 0 10 0 0 0] 10
0 0 0 13 0 0] 13
0 0 0 0 18 7| 25

18 18 18 18 18 18 l 108

8.21 If we work out a maximum flow,
we see that the saturated edges define a
minimum cut with the capacity 5+ 5+
3 = 13, which is less than the require-
ment.
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Chapter 9

9.1

(a) One matching is a—h, b3, c—f, d—i,
e—g.

One matching is a—k, b-o, ¢4, d—7,
e-p, f-n, g~m, h—r.

(b)

9.2

The four nodes b, d, e, f are only
connected to the three nodes g, 1, {.
(b) The three nodes a, c, e are only con-
nected to the two nodes h and j.

9.3
(a) One matching is A—c, B—e, C-a, D-
f, E-b, F—g, G—d.

One matching is A—b, B-d, C—g, D-
f, E-a, F—, G—e, H-h.

(b)

9.4

(a) The four elements {A, C, D, E}
are only connected to the three ele-
ments {b, d, e}.

The three elements {B, D, G} are
only connected to the two elements

{c, f}.

9.5 Draw the seven kinds to the left,
and the seven tins to the right. Draw
an edge from kind 4 to tin j if there is
at least one biscuit of kind 7 in tin j.
We want the biscuits to represent one
tin each. Now regard an arbitrary set
of k tins. In them, there are in to-
tal 20k biscuits. Since there are only
20 biscuits of each kind, this means that
the k£ tins will be connected to at least
k kinds. Thus there is no set of tins
that isn’t connected to a set of kinds of
at least the same size, and according to
Hall’s theorem this is a sufficient condi-
tion for a complete matching to exist.
And the matching means that each kind
can represent a tin.

(b)

'

9.6

(a) That there is a complete matching
if §(G) = 0 follows from Hall’s the-
orem.

(b) The meaning of 6(G) gives that

there exists a subset A among the

left nodes that is only connected
to |A| — 8(G) right nodes. Then

5(G) out of these left nodes can’t

be matched to anything, and if

§(G) nodes in the graph are guaran-

teed to be impossible to match then

it’s definitely impossible for more
than |X|—&(@) ones to be matched.

(¢) If we now expand the graph by
adding 0(G) new nodes on the
right side that are connected to
all nodes on the left, the condi-
tion in Hall’'s theorem will be met,
and then a complete matching ex-
ists. Before the addition of these
nodes there were (at least) 6(G) un-
matched nodes, so all the new nodes
must have been put to use in the
complete matching. If we remove
them, their partners will be mate-
less, while the rest of the nodes on
the left are unaffected. The re-
maining matching must then con-
tain | X| — §(G) nodes on the left.

9.8 Assume that all nodes on the left
have a degree of at least two and that
all nodes on the right have a degree of
at most four. If we study a subset A of
the left set of nodes, and the nodes on
the right that are connected to it, we see
that this relationship holds here as well.
(That you reduce the number of nodes
on the left can’t affect the degrees of the
remaining ones, but the degrees of the
nodes on the right may decrease.) How
many nodes on the right does A have to
be connected to? You ought to get the
minimal number if all the nodes on the
left have the minimum degree 2 at the
same time as all the nodes on the right
have the maximum degree 4 (the more
nodes on the left a node on the right is
connected to, the lower the total num-
ber of nodes on the right). Each edge has
two ends, so in this extreme case it holds
that 2|A| = 4|P(A)| = |P(4)] = L|4].
And this was the minimal possible P(A);
in general it holds that P(A) > £|A].

9.9 Using the same line of reasoning as
in the previous exercise we get

[P = 1Al

9.11 The really time consuming mo-
ment ought to be step 2: looking for
augmenting paths. We check an easily
analysed special case: We are looking for
matchings in Ky n, where we’'ve already
matched k nodes. Now we are to

1. Look for an unmatched node on the
left (can be done in n — k ways).

2. Find a matched node on the right,
and go to this. (There are n nodes to
check, out of which k are matched.)
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3. Go to the node on the left to which
this one was matched. (Can be done
in one way.)

4. Either find an unmatched node on the
right that is also connected to this
node on the left (there are n nodes
to check, out of which n — k — 1 are
unmatched), or find a matched node
on the right (there are & — 1 ones to
choose from) and restart at 3.

9.14

(a) To save space we give the persons
who will be turned down a dashed

arrow

EDF A D BAC
EDF B % E caB
per C e F ABC
EDF A D BacC
DF B :>/<{ E  o©aB
DEF C ¢ o F aBC
EDF A = D BAC
DF B :7/ E  caB
er C e F  ABC
DF A - D BAC
DF B ? E caB
er C e F ABC
F A D BAC
oF B % E o©aB
EF C F aABcC

(b) In this case, we can for a start re-
alise that some lady will be dis-
satified by the outcome, since they
can’t all of them marry Cyrus (not
according to the current marriage
code, at least).

GFHE A e E COBAD
FEGHE B >§ F  ©BAD
FHEG C ~ G CBAD
GEHF D e H cBAD
GFHE A E c©BAD
EGH B % F  c¢BAD
FHEG C / G CBAD
giF D ¢ e H cBAD
GFHE A E c¢BAD
EGH B % F  cBAD
FHEG C G C©BAD
HF D e—>¢ H CBAD
Observation: The most popular

person has in principle free choice;
the least popular has to take what’s
left over.

9.17

(a) If woman W turns down man M,
this means that W has some other
suitor S whom she prefers to M.
Does there exist some other stable
matching where W has been paired
with M and S with som other fe-
male F' whom he prefers to W?
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(If S doesn’t prefer F to W, that
matching would be unstable, since
then S och W would break it up
and take each other instead of M
and F.)

The answer is mno, since if S
prefers F' he would have proposed
to her in an earlier stage of the al-
gorithm, and thus has been turned
down, but then we know from the
inductive hypothesis that there isn’t
any stable matching that matches S
with F.

The man whom the woman takes
is the best possible among the ones
that came and proposed. What is
the status of those who didn’t come,
because they got hold of someone
else? The ones that didn’t come
and whom she likes less than her
fiancé, can they be included in a
stable matching? No, since she is
the best one among those who don’t
turn the fiancé down. The ones who
turn him down can according to the
previous exercise not be paired with
him in a stable matching, so he
must because of this be matched to
someone he likes less. But then we
have an unstable pair, because these
two prefer each other to their cur-
rent partners. So nobody she likes
less than this one can be considered,
so he must be the worst alternative
possible!

(b)

9.18 Run the algorithm until everyone
of the underrepresented sex have been
matched. If a woman is left over, that
must be because nobody has proposed to
her, which must be because all the men
have been accepted by someone they like
better. So no man is tempted to aban-
don his wife for the woman left over.

If a man is left over, he must have been
turned down by all the women, who then
must have a suitor they prefer to him,
and because of this don’t want to aban-
don for the man left over.

9.19 Let every woman’s list consist of
the men she can consider, in order of
preference. Men not included on the list
are turned down automatically. (If we
want to be fair we can extend the priv-
ileges to the men who give up and stop
proposing if they have been turned down
by everone they found acceptable.)

9.20 We can take a simple example.
We have a number of men and a num- *
ber of women. Man A prefers woman C
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and D in this order. Man B prefers
woman D and C in this order. C prefers
in her turn B and A, and D prefers A
and B. In the first step of the algorithm
A will propose to C and B to D, and
C and D will never get any offers from
those they want the most. C can’t get it
if D doesn’t get a better offer first, and
D won’t get a better offer until C gets it.
(Classical case of dead-lock.) But if C
and D tinker with their lists and put the
man they actually have as second choice
last, they will (probably) be able to turn
him down when he proposes for the first
time, and thereby get the one they re-
ally want, when said person in his turn
is turned down by the other woman.

9.21 We can introduce some kind of
matriarcal polygamy. Each university
ranks the students, and has a maximum
number it accepts. If 150 students have a
university with 100 places as first choice,
the university turns down the 50 low-
est ranking, who have to try somewhere
else. Alternatively, we can let the uni-
versities propose to all the 100 students
they most of all want, and then the stu-
dents can turn them down if they get
better offers from somewhere else. The
first version favours the ‘students, the
latter the universities. (As a curiosity,
we can mention that NIMP originally
favoured the hospitals, but after com-
plaints from student organisations, the
algorithm in 1997 was turned around so
that it favours the students.)

9.22

(a) We divide the problem into two
parts: firstly we show that we actu-
ally get a matching, and then that
this matching is stable.

If we don’t get a matching, this
means that some ladies end up as
co-owners of the same man, while
some other man is left over. Can
this happen? Let’s call the biga-
mous man m, the woman he was
matched to in the first matching w1
and the one he was matched to
in the second matching ws. Now,
m must have ranked w; and we
in some way. If he had placed
ws first, the second matching can’t
have been stable, because then m
and wi would mutually have pref-
ered each other to their partners.
Same reasoning with the other pos-
sible ranking. So two ladies getting
the same man can’t happen.

Now it remains to show that the
matching is stable. If it isn’t, there

exists a pair who prefer each other
to their current partners. Since
the woman now has been given her
favourite in the two matchings, any
unstabiliser has to have been out-
side the two matchings. He, on his
part, must have already been cov-
eting the lady before the regroup-
ing. Can he in the regrouping have
lost a lady whom he adores, so that
this instability is news? No, if he
has lost her he can’t have had her
in both the matchings, and in this
case the one where he didn’t have
her would have been unstable.

(b) Matchings can according to the
preferences of the women be or-
dered in a partial order, which can
be called better-than. A matching
is better-than another one if all the
women are at least as happy as be-
fore. (If some are more happy and
others less, the matchings aren’t
comparable.) The least upper
bound of two matchings has to be
a matching where every woman is
at least as happy as in the two origi-
nal matchings, and where all match-
ings that satisfies this as well are
higher up. The matching where ev-
ery woman takes her favourite in
the two matchings satisfies this: it’s
better-than both of them, since ev-
eryone is at least as happy as be-
fore, and it’s the lowest one satisfy-
ing this. (If you make someone less
happy than this, what you get won’t
be comparable to the two match-
ings.) And since this combination is
possible to calculate for every pair
of matchings, the least upper bound
is defined for all pairs of matchings.
If we then in the same way makes a
matching where every woman gets
the one she likes least in the two
matchings we also have a greatest
lower bound. And if it’s possible to
finde A and V for all pairs of ele-
ments in the partial order we have
a lattice.

9.23

(a) No. If for instance all the persons
involved have identical lists of pref-
erences, it’s unavoidable that some-
one gets their first choice and some-
one else their last choice.

Badly. From the point of stability,
totally satisfied pairs are to pref-
ere, even if they are put together
at the cost of other pairs, since to-
tally satisfied pairs aren’t interested

(b)
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in switching and thereby can’t cause
any instabilities.

9.25

(a) A necessary conditions is for in-
stance that the number of nodes is
even.

(b) Make up a star graph, with a node
in the middle and an odd number
of beams. It has an even number of
nodes, but it’s impossible to match
more than one pair (since all the
outer nodes have the same poten-

tial partuner).

9.26

(a) We look at a component in G'. If
the component simply consists of
one edge, it’s undeniably a (degen-
erated) alternating path. (The edge
has to come from one of the match-
ings.) If the component consists
of several edges, we can start in
one of them. In one of the ends
(perhaps both) an edge is attached.
This edge can’t come from the same
matching as the first edge, since
matchings consist of several sepa-
rate edges, so it has to come from
the other matching. No more than
one edge can be attached to the end,
since the other matching doesn’t
have connected edges either. If we
then go to the other end of this new
edge, we can repeat the line of rea-
soning there: either nothing is at-
tached, or exactly one edge from
the first matching. And if we follow
these edges, we have an alternating
path (perhaps an alternating cycle).

(b) If an augmenting path exists, then
the matching clearly isn’t maxi-
mum: it can be augmented using

the path.

Now assume that no augmenting
path exists, and show that the
matching has to be maximum. Al-
ternatively, show that if the match-
ing isn’t maximum, then an aug-
menting path exists.

Study a non-maximum match-
ing M. That it isp’t maximum
means that there exists another
matching M’ which is larger. Now
make up a graph G’ as above. It will
consist of alternating paths. Since
there are more edges in M’, there
has to exist a path which consists
of more M’-edges than M-edges.
(Possibly this path consists of just
one edge, from M’.) This path
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has to start and end with edges
from M’, and is from the point of
view of M an augmenting path.

9.28 If you succed in pairing two who
are each others first choices, they at least
won’t cause any instabilities. Unfortu-
nately no such preferences exist, but at
least we can pair some of them with their
second choices. If we pair A—E and C-F,
E and C are totally satisfied. F would
rather have A, but A doesn't want F
but B. But B prefers the remaining D.
D thus has no say in the matter.

9.29 Swap Adiles two first preferences
around, so that she prefers Carola to
Biljana. Then Adile and Carola form
a pair that isn’t interersted in changing
with someone else, and then Biljana and
Doris has no choice except for putting up
with each other, in spite of being mutual
last choices.

9.30

(a) The bipartite graph has to have the
set of nodes X = { Kimmo, Viggo,
Lasse, Ambjérn, Olle} and ¥V =
{serving 1, ..., 5}. Edges are drawn
from each person to the servings he
is prepared to eat. We note that
with A = {Kimmo, Viggo, Lasse,
Ambjérn} we get |A|] = 4 while
|P(A)| = 3. Thus we have the de-
fictency 6(A) = 1 so a maximum
matching has at most 4 edges. One
of these is easily found.

(b) The graph contains K33 as a sub-

graph and is thus nonplanar accord-

ing to Kuratowski’s theorem.

9.31 The theorem holds for a graph
with one node on the left, that’s easily
checked. If it’s connected to any node on
the right there is a matching, otherwise
not. (This was the base case.)

Now assume that the theorem is true for
all graphs with up to n nodes on the
left. Study a graph with n + 1 nodes
on the left that satisfies the conditions
of the theorem, that is, each subset of
the nodes on the left is connected to an
at least as large set of nodes to the right.

There are n + 1 subsets with n nodes
of this set. All of these must be possi-
ble to match, according to the inductive
hypothesis. We now want to show that
there has to exist two matchings that to-
gether are connected to (at least) n +
1 nodes on the right. Assume the oppo-
site, which is that all these n+ 1 match-
ings are to the same set of n nodes on the -
right. But the graph satisfies according
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to the premisses that the n + 1 nodes
on the left are connected to (at least)
n -+ 1 nodes on the right. That means
that one of the n + 1 nodes on the left
besides is connected to some node on
the right outside the set of n, and that
means that we can redesign one of the
matchings where this node is involved
by connecting it to the node outside in-
stead. That redesigned matching com-
bined with one of the original ones does
in total involve n 41 nodes on the right.

Now study two matchings, My and Mj,
that combined include n+1 nodes on the
right. We are going to, based on these,
make up a matching that includes all the
nodes on the left.

There must exist a node on the right
that’s only included in M7. We pick this
edge. Either it goes to a node on the
left only included in M;i, and then M
combined with this edge will be a com-
plete matching. Or it will go to a node
on the left that is included in M; as well.
In that case there is a Ms-edge leaving
it, to some other node on the right. Ei-
ther that node belongs to M as well,
and then we can repeat the argument.
Or this right node only belongs to Ma,
and then we can’t continue the path. In
that case we have a path consisting of
k nodes on the left and k + 1 nodes on
the right, and there we can match the
k nodes on the left, either according to
Mji or to Ms. Then we are left with the
remaining n+1—k nodes on the left and
the right. The graph satisfies the con-
dition in Hall’s theorem, and according
to the inductive hypothesis that means
that we can find a complete matching
of this subset of the nodes. These two
matchings combined make up a complete
matching of the graph.

9.33

(a) A complete matching in a cycle de-
mands that there is an even number
of nodes in the cycle. If there is, an
arbitrary node can either be paired
with the node in front or the one
behind. When that choice is made,
the remaining choices make them-
selves, so the total number of possi-
bilities is two.

(b) For the path as well, a first require-
ment is that n is even. It that is the
cage, the first node has to be paired
with the second one, the third with
the fourth, and so on. There is thus
only one way.

(¢) This problem seems designed to be
solved recursively. If n = 1 there

is one way: match the two nodes
to each other. If n = 2, there
are two ways: match horisontally
or vertically. For the rest, we can
partition the matchings into two
classes: those that end with a ver-
tical matching and those that don’t
(but instead end with two horison-
tal pairs). The first kind we can
make by adding a vertical matching
to a matching of n — 1; the latter
by adding two horisontal ones to a
matching of n — 2. We get the re-
currence equation

al = 1

ags = 2

Un = Gp—1 + Gn—2, n>2
This is a shifted Fibonacci equation;
an = Fry1. (One out of many situ-
ations where the Fibonacci numbers
unexpectedly appear!)

9.34 The maximum matching can at
most match five star boys, since there
are only five Lucias. Since every star boy
fancies exactly two Lucias, in the worst
case all of them fancies the same two,
and in this case the maximum matching
is of size two. But here we assume that
all the star boys are so charming that the
Lucias agree to the matching. Probably,
the Lucias are choosy as well, and then
in the worst case the maximum match-
ing may even be empty!

9.36 The matching is finished imme-
diately, which is caused by all on the
proposing side having different prefer-
ences.

9.37

(a) Just shift the order one step for each
row, for instance
ABCDE
BCDEA
CDEAB
DEABC
EABCD

(b) If an n X n-square is given, together
with a list of n approved letters for
each place in the square, then it’s al-
ways possible to choose an approved
letter for each place so that no letter
is found twice in any row or column.

(c) For n = 1, there is only one box and
one approved letter. If we put the
letter in the box, the conditions are
satisfied.

(d) For n = 2, we can start by picking
a letter for box (1,1), say A. Then
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there are at least one alternative for
both (2,1) and (1,2), say B and C,
respectively. If (2,2) has some let-
ter on its list other than B and C
we are done. Otherwise, if there
were an alternative to B for (2,1) or
to C for (1,2), we take that one in-
stead and then B or C is free to use
for (2,2). Finally, if there aren’t any
alternatives for (1,2) or (2,1), both
their lists have to include A. Then
we choose the other letter for (1,1),
say B, and let (2,1), which previ-
ously had B, get A. Then (2,2) can
have B so we are done.

(e) Let the nodes represent the boxes
and draw edges between pairs of
boxes that are in the same row or
column.

(f) Take an arbitrary latin n X n-
square made out of the numbers
0,1,...,n — 1, and then exchange
every number j with the pair j,n —
1 — j. One example of size 4 x 4:

0,3 1,2 2,1 3,0
3,0 0,3 1,2 2,1
2,1 3,0 0,3 1,2
1,2 2,1 3,0 0,3

? ? ? 7

Let the first and second number in
each box represent the number of
outgoing edges to other boxes in the
same row and column, respectively.

Chapter 11

11.3

(a) It’'s always possible in the first step
to move card n + 1 so that it bonds
to card n and then you can regard
the situation as if you have n cards.

(b) Since V(1) = 0 it follows by elemen-
tary induction that V(n) <n — 1.

(c) You can at most achieve three new
bonds per block move, since a block
move only changes three adjacent
pairs (where the block starts, where
the block ends, and where the block
is placed).

(d) In the worst case you have to make
up n — 1 bonds before being done.

(e) Why can’t you get rid of three de-
scents in one step? Assume that it’s
possible. If we had three descents
the situations looks like this:

[..ab...cd...ef...],

where a > b, ¢ > d, and e > f. We
can get rid of all these descents by

© Studentlitteratur

(8)

®)

(8)
(h)

Edges are drawn to all boxes in the
same row with a lower first num-
ber, and to all boxes in the same
row with a lower second number.
Then clearly the number of outgo-
ing edges will be n— 1 for each box.

That a set of nodes in the box
graph is independent means that it
doesn’t include several boxes from
any row or colump. We can thus
see an independent set of boxes as
a matching between corresponding
rows and columns. Let the direc-
tion of the edges represent thé order
of preference, so that row i prefers
column j to column k if there is
an edge directed from box (%, k) to
box (7,7), and correspondingly for
the columns order of preference of
the rows. The theorem about sta-
ble marriages say that we can al-
ways find a stable maching in each
bipartite matching situation. In our
situation, this means that we for ev-
ery subset S of boxes can find an
independent set S’ of boxes such
that all other boxes have an edge
to some box in §’. In other words,
the directed box-graph is stable!
We also know that every box has
more colours on its list (namely n)
than outgoing edges (namely n—1).
Thereby the graph is list-colourable
according to exercise 7.44.

placing the block [d ... €] between
a and b

[..ad...eb...cf...],

but if we aren’t to get any new
descents instead we have to have
a <d,e<b,and c < f. Combined
with the three inequalities above
this givesa < d < c< f<e<
b < a, but a < a is impossible. So
it isn’t possible to get rid of three
descents in one go!

If every move removes at most two
descents and there are n — 1 ones
at start, at least [2>1] moves are
needed.

Inspection.

If two of the moves remove just one
descent, the number of moves is at
least [2=3=2]+2 = [231] +1 for -
n > 3.




