
Lecture Notes on
Leader-based Sequence Paxos

An understandable sequence consensus algorithm

Seif Haridi, Lars Kroll, and Paris Carbone

KTH Royal Institute of Technology, Stockholm, Sweden
{haridi, lkroll, parisc}@kth.se

http://www.kth.se

Abstract. Agreement among a set of processes and in the presence of
partial failures is one of the fundamental problems of distributed sys-
tems. In the most general case, many decisions must be agreed upon
over the lifetime of a system with dynamically changing membership.
Such a sequence of decisions represents a distributed log, and can form
the underlying abstraction for driving a replicated state machine. While
this abstraction is at the core of many systems with strong consistency
requirements, algorithms that achieve such sequence consensus are of-
ten poorly understood by developers and have presented a significant
challenge to many students of distributed systems. In these lecture notes
we present a complete and practical Paxos-based algorithm for reconfig-
urable sequence consensus in the fail-recovery model, and a clear path of
simple step-by-step transformations to it from the basic Paxos algorithm.

1 Introduction

Agreement among a set of processes one of the fundamental problems of dis-
tributed systems. The challenges arise mostly from the possibility of partial
failures that differentiate distributed programming from parallel programming.
Under such conditions, not only must algorithms preserve safety guarantees de-
spite failing nodes, but over the lifetime of a real system, the involved nodes
must change to compensate for failures. Thus, in the most general case, not
one, but many decisions must be agreed upon by a dynamically changing set of
processes. A sequence of such agreed-upon decisions forms a distributed log, and
often forms the basis upon which we build abstractions such as a replicated state
machine (RSM). RSMs can be used as replicated databases [5], lock services [1],
or configuration management services [4], for example.

While this replicated log abstraction is at the core of many such systems
with strong consistency requirements, the actual algorithms that achieve what
we call sequence consensus are often poorly understood by developers, and have
presented a significant challenge to many students (and teachers) of distributed
systems over the years.

In these notes we will incrementally describe an algorithm for reconfigurable
sequence consensus in the fail-recovery model [2]. Our algorithm is based on the

http://www.kth.se

2 Seif Haridi, Lars Kroll, and Paris Carbone

well-known Paxos algorithm by Leslie Lamport [8], which we will present as a
starting point in section 2. In section 3 we will describe the sequence consensus
abstraction and a first simple algorithm to implement it. To improve our im-
plementation, we will first take a detour into leader election in section 4, before
using section 5 to reduce the communication cost and the memory footprint of
our algorithm. Once we have a working and efficient algorithm in the fail-stop
model, we will extend our implementation to function in the fail-recovery model
in section 6, and particularly describe how to deal with (TCP) link session loss. In
section 7 we extend our algorithm to allow the introduction of new processes, by
describing how to move from one system configuration to the next. As the algo-
rithm uses some state with unbounded growth at this point, we discuss garbage
collection mechanisms in section 8, before discussing literature and concluding
in sections 9 and 10 respectively.

2 Paxos

Given a set of processes in a partially-synchronous system model, i.e. an asyn-
chronous system with stable periods of “sufficient” length, we wish a single value
v to be agreed upon. That is, all processes should “decide” on the same value,
such that the following properties hold:

UC1 (Validity) Only proposed values may be decided.
UC2 (Uniform Agreement) No two processes decide different values.
UC3 (Integrity) Each process can decide a value at most once.
UC4 (Termination) Every correct process eventually decides a value.

As part of the model we are given a channel abstraction that allows message
duplication, losses, and out-of-order delivery. On top of the �P failure detection
abstraction, we use an eventual leader election abstraction Ω. The Paxos algo-
rithm provides the UC properties by using Ω’s leader to impose a value to be
decided. The algorithm guarantees safety during unstable periods and Ω pro-
vides liveness during a stable period. In Paxos each process plays one or more,
quite often all, of the following roles:

Proposer Wants a particular proposed value to be decided.
Acceptor Acknowledges acceptance of proposed values.
Learner Decides based on acceptance of values.

In the typical majority quorum setup, a proposer tries to get a majority of ac-
ceptors to accept its proposal v. If a proposal has a majority of acceptors, then
it is called chosen and the learners will decide it, once they discover that this is
the case. Other quorum variants than majority have also been proposed for use
with Paxos, and can improve performance at the cost of resilience. For brevity
we will only discuss majority quorums in this article.

The process described at a high level above, is split into two phases. Multiple
instance of each phase can run concurrently during any execution. Many of these
instances may abort, until eventually a single v is decided.

Leader-based Sequence Paxos 3

Prepare Phase A proposer starts by picking a unique sequence number n and
sending a message 〈Prepare | n〉 to all acceptors. Upon receiving such a message
an acceptor will either promise to not accept any proposal with a sequence
number n′ < n or ignore/refuse the prepare, if it has already promised the
same to someone with a higher n. If it promises, it will reply with a message
〈Promise | n′, v′〉, where v′ is the highest numbered proposal it has accepted
so far (if any) and n′ < n its proposal number. The proposer collects all the
promises it receives until it has a majority.

Accept Phase Once a proposer has collected a majority S of promises, it picks
the highest numbered value v in S – or whatever value it wishes to propose, if
there are no values in S – and sends a message 〈Accept | n, v〉 to all acceptors.
When an acceptor receives such a message, it replies with a simple 〈Ack〉 mes-
sage, unless it has issued a higher numbered promise in the meantime, in which
case it will reject with a 〈Nack〉. If the learners are separate processes from the
proposer the 〈Ack〉 messages will need to be broadcast, otherwise they can just
be sent to the relevant proposer acting in both roles. In either case, once a major-
ity of acks is collected v can be decided, usually via broadcasting 〈Decide | v〉.
If nacks make a majority impossible, the procedure must be aborted and started
over.

During unstable periods the algorithm is guaranteed to satisfy its safety
conditions (UC1-UC3), while termination is guaranteed only if the stable period
is long enough for a solo proposer to perform the prepare and accept phases with
no contention.

Fail-recovery In order to work in the fail-recovery model, acceptors have to
commit some of their state to stable storage and restore it during recovery.
Concretely acceptors need to store the highest proposal (n′, v′) they accepted
and the highest sequence number n they promised.

Optimisations All 〈Nack〉 messages above are technically optimisations, as
they can be replaced with timeouts on the proposer side.
In addition to the necessary rejection of any accepts with n < m where the
acceptor previously promised m, there are a number of optimisations that cause
earlier aborts and thus waste less time on attempts already doomed to fail.

a) Reject 〈Prepare | n〉 if answered 〈Prepare | m〉 with m > n.
b) Reject 〈Accept | n, v〉 if answered 〈Accept | m,u〉 with m > n.
c) Reject 〈Prepare | n〉 if answered 〈Accept | m,u〉 with m > n.

Additionally, the algorithm should ignore any old messages for proposals that
already got a majority.
Since a value “chosen” will always be decided in any higher round, a proposer
can also skip the accept phase if a majority of acceptors return the same v in
the prepare phase.

4 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm Algorithm 1 shows the fail-stop version of Paxos described above
with some of the optimisations. For simplicity of presentation the algorithm uses
Perfect Links and no Ω and there are thus cases where it would never terminate,
but end up in a race condition. Augmentation for Fair-loss Links andΩ is straight
forward, if somewhat tedious, though. With Fair-loss Links messages can be lost
and duplicated, thus augmentation requires resending, duplicate filtering, and
also incrementing timeouts while waiting for majorities to avoid getting stuck.
For Ω the required change is simply to only allow proposals while being leader.
As Ω guarantees to eventually have a single leader, the race condition from
before is thus avoided.

Leader-based Sequence Paxos 5

Algorithm 1: Abortable Paxos – Proposer
Implements: Uniform Consensus
Requires: Perfect Link
Algorithm:

1: A ; /* set of acceptors */

2: L ; /* set of learners */

3: s ← 0 ; /* local sequence number */

4: (np, vp)← (⊥,⊥) ; /* unique round number and value */

5: promises ← ∅;
6: acks ← 0;

7: Upon 〈Propose | v〉
8: s← s+ 1
9: np ← unique(s) ; /* use pid to make n globally unique */

10: vp ← v
11: promises ← ∅;
12: acks ← 0;

foreach a ∈ A do
13: send 〈Prepare | np〉 to a;

14: Upon 〈Promise | n, n′, v′〉 from a s.t. n = np
15: promises ← promises ∪ {(a, n′, v′)}; /* add a for acceptor

disambiguation */

16: if |promises| =
⌈
|A|+1

2

⌉
then

17: v ← maxValue(promises); /* value with the largest n */

18: vp ← if v 6= ⊥ then v else vp; /* adopt v if present */

foreach a ∈ A do
19: send 〈Accept | np, vp〉 to a;

20: Upon 〈Ack | n〉 from a s.t. n = np
21: acks ← acks + 1;

22: if acks =
⌈
|A|+1

2

⌉
then

foreach l ∈ L do
23: send 〈Decide | vp〉 to l;

24: Upon 〈Nack | n〉 from a s.t. n = np
25: abort() ; /* Goto 〈Propose | v〉 and pick a new np immediately to

avoid old messages being handled */

6 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 1: Abortable Paxos – Acceptor
Implements: Uniform Consensus
Requires: Perfect Link
Algorithm:

1: nprom ← 0 ; /* promise not to accept in lower rounds */

2: (na, va)← (⊥,⊥) ; /* sequence number and value accepted */

3: Upon 〈Prepare | n〉 from p
4: if nprom < n then
5: nprom ← n;
6: send 〈Promise | n, na, va〉 to p;

else
7: send 〈Nack | n〉 to p; /* optimisation only */

8: Upon 〈Accept | n, v〉 from p
9: if nprom ≤ n then

10: nprom ← n;
11: (na, va)← (n, v);
12: send 〈Accepted | n〉 to p;

else
13: send 〈Nack | n〉 to p; /* optimisation only */

Algorithm 1: Abortable Paxos – Learner
Implements: Uniform Consensus
Requires: Perfect Link
Algorithm:

1: vd ← ⊥ ; /* decided value */

2: Upon 〈Decide | v〉
3: if vd = ⊥ then
4: vd ← v;
5: trigger 〈Decide | vd〉;

Leader-based Sequence Paxos 7

3 Sequence Paxos

If our goal is to build a replicated state machine (RSM) based on Paxos, deciding
a single value will not suffice. Instead we want to agree on a sequence of values
that is fed into a deterministic automaton on each replica, such that replicas that
have seen the same sequence will have the same state (assuming they started
from the same initial state). Such a sequence of values can be seen as a replicated
log of state machine commands.

Näıve Approach One way to extend Paxos for this scenario is to augment the
proposals with instance numbers and run a single value Paxos for each instance in
sequential rounds. Thus, at round i each process starts a new instance of Paxos. If
it has commands it wants to propose (in a set proCmds) and it has not proposed
(variable proposed = false) in the current round already, it proposes some
command C ∈ proCmds as 〈Propose | C, p, i〉 (where p is the process id of the
client that sent C) and sets proposed ← true. Once it sees a 〈Decide | C ′, p′, i〉,
it removes (C ′, p′) from proCmds and appends (C ′, p′, i) to log . It then executes
the command on the state machine (si, resi) = C(si−1), and returns resi to p′.
At this point the round ends, it resets proposed ← false and moves to the next
round i+ 1.

The issue with this approach is, that it is completely sequential, working
on one round after the other and taking (at least) 4 communication steps (2
round-trips) for each round. Trying to improve performance by pipelining is not
straight-forward, as duplicate command entries or log holes must be avoided.
However, the obvious optimisation of preparing multiple instance ahead of time
and only running the accept phase sequentially, since v is not needed in the
prepare phase, halves the required number of communication steps on the “hot
path” (and with some batching also reduces it overall) [9].

3.1 Sequence Consensus

In order to match our abstraction better with the requirements of a replicated
log, a change in interface and desired properties is needed. We will still propose
a single command C, but we now decide on a sequence of commands CS. The
original Uniform Consensus properties UC1-4 are altered as shown below:

SC1 (Validity) If process p decides CS then CS is a sequence of proposed
commands (without duplicates1).

SC2 (Uniform Agreement) If process p decides CS and process q decides
CS′ then one is a prefix of the other.

SC3 (Integrity) If process p decides CS and later decides CS′ then CS is a
strict prefix of CS′.

1 It is also possible to allow duplicates in the log and filter them out at the state-
machine level instead. This simplifies the implementation.

8 Seif Haridi, Lars Kroll, and Paris Carbone

SC4 (Termination) If a command C is proposed infinitely often by a correct
process, then eventually every correct process decides a sequence containing
C. If duplication is allow, then the decided sequence will contain C infinitely
often.

3.2 Initial Sequence Paxos Implementation

To make it easy to see that the algorithm is correct, we will start with a very
simple and inefficient variant of single value Paxos to implement Sequence Con-
sensus, and then later add optimisation transformations to it step by step, pre-
serving correctness with each change. We start with the basic Paxos presented
in algorithm 1 and make the following changes: All values are now sequences
and the empty value ⊥ becomes the empty sequence 〈〉. After adopting the se-
quence (value) with the highest proposal number (alg. 1 l. 18), the sequence is
extended by one or more new commands instead of replacing the value. Instead
of deciding only if there has been no previous decision, learners will now decide
whenever the received sequence is longer than the previously decided one. In
order to abstract over the SC1 variants with or without duplication we use the
append operator ⊕ with the following two definition variants:

No Duplicates

〈C1, . . . , Cn〉 ⊕ C
def
=

{
〈C1, . . . , Cn〉, if C is equal to some Ci

〈C1, . . . , Cn, C〉, otherwise

Duplicates Allowed

〈C1, . . . , Cn〉 ⊕ C
def
= 〈C1, . . . , Cn, C〉

Algorithm 2 shows the described implementation.

Correctness The only changes that have been made affect how values are
treated, while the round numbers have been left untouched. The same mecha-
nism ensuring that chosen values are never replaced, now ensures that chosen
sequences are always extended and thus no sub-sequences disappear. It is easy
to see that this algorithm is as correct as algorithm 1.

Performance As far as efficiency is concerned, however, we have gained noth-
ing, so far, over the näıve multi-instance Paxos described above. In fact, algo-
rithm 2 is actually worse, as it sends whole sequences of commands in every step,
so its performance actually degrades with the growth of the log.

Before we get to a more efficient leader-based implementation where all roles
run in each process, we must first make a short excursion into leader election.

Leader-based Sequence Paxos 9

Algorithm 2: Initial Sequence Paxos – Proposer
Implements: Sequence Consensus
Requires: Perfect Link
Algorithm:

1: A ; /* set of acceptors */

2: L ; /* set of learners */

3: s ← 0 ; /* local sequence number */

4: (np, vp)← (⊥, 〈〉) ; /* unique round number and sequence */

5: Cp ← ⊥ ; /* command we are currently trying to append */

6: promises ← ∅;
7: acks ← 0;

8: Upon 〈Propose | C〉
9: s← s+ 1

10: np ← unique(s) ; /* use pid to make n globally unique */

11: Cp ← C
12: promises ← ∅;
13: acks ← 0;

foreach a ∈ A do
14: send 〈Prepare | np〉 to a;

15: Upon 〈Promise | n, n′, v′〉 from a s.t. n = np
16: promises ← promises ∪ {(a, n′, v′)}; /* add a for acceptor

disambiguation */

17: if |promises| =
⌈
|A|+1

2

⌉
then

18: v ← maxValue(promises); /* sequence with the largest n */

19: vp ← v ⊕ C; /* adopt v and append */

foreach a ∈ A do
20: send 〈Accept | np, vp〉 to a;

21: Upon 〈Ack | n〉 from a s.t. n = np
22: acks ← acks + 1;

23: if acks =
⌈
|A|+1

2

⌉
then

24: Cp ← ⊥;
foreach l ∈ L do

25: send 〈Decide | vp〉 to l;

26: Upon 〈Nack | n〉 from a s.t. n = np
27: abort() ; /* Goto 〈Propose | C〉 and pick a new np immediately to

avoid old messages being handled */

10 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 2: Initial Sequence Paxos – Acceptor
Implements: Sequence Consensus
Requires: Perfect Link
Algorithm:

1: nprom ← 0 ; /* promise not to accept in lower rounds */

2: (na, va)← (⊥, 〈〉) ; /* round number and sequence accepted */

3: Upon 〈Prepare | n〉 from p
4: if nprom < n then
5: nprom ← n;
6: send 〈Promise | n, na, va〉 to p;

else
7: send 〈Nack | n〉 to p; /* optimisation only */

8: Upon 〈Accept | n, v〉 from p
9: if nprom ≤ n then

10: nprom ← n11: (na, va)← (n, v);
12: send 〈Accepted | n〉 to p;

else
13: send 〈Nack | n〉 to p ; /* optimisation only */

Algorithm 2: Initial Sequence Paxos – Learner
Implements: Sequence Consensus
Requires: Perfect Link
Algorithm:

1: vd ← 〈〉 ; /* decided sequence */

2: Upon 〈Decide | v〉
3: if |vd| < |v| then
4: vd ← v;
5: trigger 〈Decide | vd〉;

Leader-based Sequence Paxos 11

4 Ballot Leader Election

As described at the end of section 2, the algorithms presented so far may actually
never terminate under the given assumptions without the use of an Ω leader
election abstraction. In this section we want to integrate Ω into the Sequence
Paxos algorithm 2, but at the same time we want to outsource the generation of
ballot numbers to the leader election, in order to make the replicated log part of
the algorithm easier to follow. Thus, the idea is to elect a leader together with a
ballot number that is globally unique and locally monotonically increasing. This
leader-ballot pair will then be used by the Sequence Paxos algorithm to start a
prepare phase. The new abstraction is called Ballot Leader Election (BLE) and
has a single event 〈Leader | p, n〉 where p is the process that is now leader and
n its ballot number. BLE implementations must fulfil the following properties,
which are an extension of Ω’s properties:

BLE1 (Completeness) Eventually, every correct process elects some correct
process, if a majority of processes is correct.

BLE2 (Eventual Agreement) Eventually, no two correct processes elect dif-
ferent correct processes.

BLE3 (Monotonic Unique Ballots) If a process L with ballot n is elected
as leader by a process p, then all previously elected leaders by p have ballot
numbers m with m < n, and the pair (L, n) is globally unique.

In the implementation we will allow a process p to “inaccurately” drop a correct
leader, as long as the new leader has a higher ballot number. We will also require
that a process is elected as a leader only if a majority of processes are correct
and alive. As this is anyway required for Sequence Paxos, it does not constitute
a limitation in any noticeable way.
We will start by assuming a fail-noisy model, that is processes fail by crashing,
partially-synchronous system model, and perfect links channel abstraction. How-
ever, the final algorithm will turn out to actually work fine in a slightly weaker
model that allows message loss and crash-recovery.

4.1 Gossip Leader Election

The basic idea for the algorithm is as follows: Each process p has its own unique
ballot n formed from a sequence number s and its process id, such that n =
(s, pidp). This pair is trivially unique, as pidp is unique. For an implementation
this can be folded into a single (potentially long) number, by taking the size of the
process id set Π and multiplying it with s, such that n = s·|Π|+pidp. If Π is not
known a-priori, any number guaranteed to be larger than |Π| can be substituted,
for example Int.MAX. Given this, each process gossips the its ballot number along
with the usual failure-detection heartbeats (with a repeating delay, adjustable by
a constant ∆) to all other processes. Eventually, each correct process will elect
the process with the highest rank (max ballot), given good network conditions
(BLE2). However, a process will only trust a leader, if the leader’s ballot is

12 Seif Haridi, Lars Kroll, and Paris Carbone

among the collected max ballots from a majority of processes. If a process does
not find its current leader’s ballot in that set, it will increase its own sequence
number s, recalculate its ballot n as above and wait until a new ballot gets
a majority. This satisfies BLE3 and also BLE1 assuming a sufficiently long
stable period as per the partially-synchronous model. Algorithm 3 shows the
pseudocode for the described implementation, with the ballot generation part
hidden behind the increment(ballot) function.

Leader-based Sequence Paxos 13

Algorithm 3: Gossip Leader Election
Implements: Ballot Leader Election
Requires: Perfect Link
Algorithm:

1: Π; /* Process set */

2: round ← 0 ; /* round number */

3: ballots ← ∅;
4: n← (0, pid) ; /* ballot number */

5: L← ⊥ ; /* leader */

6: nmax ← n ; /* largest ballot number seen */

7: d← ∆ ; /* heartbeat delay */

8: startTimer(d); /* schedule a timeout event in d timeunits */

9: Fun checkLeader()
10: top = (topProcess, topN)← maxByBallot(ballots ∪ {(self , n)});

if topN < nmax then
while n ≤ nmax do

11: n← increment(n);

12: L← ⊥;

else
if top 6= L then

13: nmax ← topN ;
14: L = top;
15: trigger 〈Leader | topProcess, topN 〉;

16: Upon 〈Timeout〉
if |ballots|+ 1 >

⌈
|Π|+1

2

⌉
then

17: checkLeader();

18: ballots ← ∅;
19: round ← round + 1;

foreach p ∈ Π s.t. p 6= self do
20: send 〈HeartbeatRequest | round , nmax〉 to p;
21: startTimer(d);

22: Upon 〈HeartbeatRequest | r, bmax〉 from p
if bmax > nmax then

23: nmax ← bmax;

24: send 〈HeartbeatReply | r, n〉 to p;
25: Upon 〈HeartbeatReply | r, b〉 from p

if r = round then
26: ballots ← ballots ∪ {(p, b)};

else
27: d← d+∆ ; /* Increase delay to make sure all replies from the

current round are received within the time window. */

14 Seif Haridi, Lars Kroll, and Paris Carbone

5 Leader-based Sequence Paxos

In this section we will make step-by-step transformations to improve the perfor-
mance of Sequence Paxos.

5.1 BLE and Uniform Processes

Now that we have a leader election abstraction that also provides ballot numbers,
we will adapt the Sequence Paxos algorithm from section ?? to use BLE. At the
same time we will make an additional assumption, that all roles are available
for every process, i.e. each process is a proposer, acceptor, and learner. This a
common way of running a log replication service in practice, and it will allow
each process (a replica) to share the acceptor and learner state information. At
each process p we also introduce a state variable, that tracks both p’s current
role in the algorithm, leader or follower, and the phase it is currently in,
prepare or accept (or none ⊥). Every process starts as a follower and can
move to a leader state by being elected by BLE, in which case it will stay until
overrun by another leader, at which point it will revert to acting as a follower.
As we outsourced the leader election part to BLE now, we will also introduce
some optimisations that assume leaders are long-lived. Particularly, we want to
pipeline Accept messages while in the accept phase. That is, a leader that com-
pleted the prepare phase will only send Accept for every proposed command,
extending the previous sequence and thus ensuring that chosen sequences are
incrementally extended, until the round is aborted by a new election. As Perfect
Links do not guarantee ordering, both acceptor logic must now ensure they only
store longer sequences than they already have in the same round. This guaran-
tees that the longest chosen sequence is still a prefix of the accepted sequence,
thereby satisfying the Agreement property (SC2). Additionally, the leader has
to find out what the longest prefix that it has seen Accepted (formerly Ack)
messages from a majority, i.e. the longest chosen prefix, before deciding on a new
sequence. Only if that prefix is longer than what it has already decided (variable
lc), can it issue a Decide and only for that prefix.
The complete pseudocode can be seen in algorithm 4.

Correctness By adding Leader Election, the new algorithm fixes the liveness
issues of the previous algorithms as discussed at the end of section 2. Now a
replica plays the role of a proposer, acceptor, and learner. Since there were
no assumptions on role distribution before, making a stronger assumption here
does not affect correctness at all. The introduction of the states is simply a
consequence of the previous two decisions and introduction of pipelining, and
does not cause any issues by itself. The pipelining is an optimisation that is
guaranteed to be safe, as acceptors that have moved to a new leader already, will
ignore Accept messages from their old leader that has a lower ballot. As Decide
messages are only issued for chosen sequences, SC2 and SC3 are satisfied.

Leader-based Sequence Paxos 15

Performance The prepare phase takes a single round trip, after which all
commands can be “pipelined”. Pipelining allows many commands to be “in
flight” in parallel, and for each new command it only takes a single round-trip
to get decided locally, as long as the leader remains in place. However, we still
send full sequences causing degrading performance with the growth of the log.
And, as we have merged the roles now, we are actually also keeping (mostly)
redundant sequences in memory, specifically vL, va, and vd.

16 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 4: Sequence Paxos 2 – State
Implements: Sequence Consensus
Requires: Perfect Link, BLE
Algorithm:

1: Π ; /* set of processes */

2: state ← (follower,⊥); /* role and phase state */

/* Proposer State */

3: (nL, vL)← (⊥, 〈〉) ; /* Leader’s round number and sequence */

4: promises ← ∅;
5: las ← [0]|Π|; /* Length of longest accepted sequence per acceptor */

6: propCmds ← ∅; /* A set of commands that need to be appended to the

log. */

7: lc ← 0 ; /* Length of longest chosen sequence */

/* Acceptor State */

8: nprom ← 0 ; /* promise not to accept in lower rounds */

9: (na, va)← (⊥, 〈〉) ; /* round number and sequence accepted */

/* Learner State */

10: vd ← 〈〉 ; /* decided sequence */

Leader-based Sequence Paxos 17

Algorithm 4: Sequence Paxos 2 – Acceptor&Learner
/* Acceptor Code */

1: Upon 〈Prepare | n〉 from p
2: if nprom < n then
3: nprom ← n;
4: send 〈Promise | n, na, va〉 to p;

5: Upon 〈Accept | n, v〉 from p
6: if nprom ≤ n then
7: nprom ← n;

8: (na, va)← max((n, v), (na, va));

9: send 〈Accepted | n, |va|〉 to p;

/* Learner Code */

10: Upon 〈Decide | v〉
11: if |vd| < |v| then
12: vd ← v;
13: trigger 〈Decide | vd〉;

14: Fun max((n, v), (n′, v′))
if n 6= n′ then

if n > n′ then
(n, v)

else
(n’, v’)

else
if |v| > |v′| then

(n, v)
else

(n’, v’)

18 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 4: Sequence Paxos 2 – Proposer
/* Proposer Code */

1: Upon 〈Leader | L, n〉
if self = L ∧ n > nL then

2: nL ← n;
3: promises ← ∅;
4: las ← [0]|Π|;

5: lc ← 0;

6: state ← (leader, prepare);
foreach p ∈ Π do

7: send 〈Prepare | nL〉 to p;

else

8: state ← (follower, state.2);

9: Upon 〈Propose | C〉 s.t. state = (leader, prepare)

10: propCmds ← propCmds ∪ {C};

11: Upon 〈Propose | C〉 s.t. state = (leader,accept)

12: vL ← vL ⊕ C;

foreach p ∈ Π do

13: send 〈Accept | nL, vL〉 to p;

14: Upon 〈Promise | n, n′, v′〉 from a s.t. n = nL ∧ state = (leader, prepare)
15: promises ← promises ∪ {(a, n′, v′)}; /* add a for acceptor

disambiguation */

16: if |promises| =
⌈
|Π|+1

2

⌉
then

17: v ← maxValue(promises); /* sequence with the largest n,
longest if equal */

18: vL ← v ⊕ C forall C ∈ propCmds; /* adopt v and append */

19: propCmds ← ∅;
foreach p ∈ Π do

20: send 〈Accept | nL, vL〉 to p;

21: state ← (leader,accept);

22: Upon 〈Accepted | n, la〉 from a s.t. n = nL ∧ state = (leader,accept)

23: las[a]← max(la, las[a]);

24: m← max
{
l ∈ N | ∃M⊆Π |M | ≥

⌈
|Π|+1

2

⌉
∧ ∀p∈M l ≤ las[p]

}
; /* longest

chosen */

25: if m > lc then

26: lc ← m;

foreach p ∈ Π do

27: send 〈Decide | prefix(vL,m)〉 to p; /* Send the chosen prefix

to p */

/* Drop Nack as getting stuck is avoided by BLE re-election */

Leader-based Sequence Paxos 19

5.2 Removing Redundant State

As all the roles are run by each process now, each role’s code actually has access
to the state variables of the others. Particularly, vL, va, vd have significant over-
lap, since vd ≺ va and vd ≺ vL. Thus, if we can guarantee that Accept messages
always arrive before the corresponding Decide messages, we can simply replace
vd with a pointer ld into va that marks the decided prefix, i.e. vd = prefix(va, ld).
Additionally, we can get rid of vL, if we skip sending Prepare messages to and
receiving promises from the leader itself, by simply writing the equivalent changes
directly into its local state.
In order to enable the first optimisation, we are going to strengthen our assump-
tion on the channel abstraction. We will now require FIFO Perfect Links that
provide message ordering guarantees. This requirement costs us nothing in per-
formance, as before out-of-order commands anyway had to be buffered before
being decided. Additionally, it is a simple extension to Perfect Links, achieved
by adding sequence numbers and buffering delivery. If our implementation of
Perfect Links before was, in fact, TCP2, then we get FIFO Perfect Links for
free.
The complete pseudocode can be seen in algorithm 5.

Correctness FIFO Perfect Links guarantee that Accept messages always ar-
rive before the corresponding Decide, thus it always holds that for any replica
q vd at q ≺ va at q. To remove vL notice that the leader has access to its own
va. When a process becomes leader it can update its local va directly. This is
guaranteed to be accepted, since nL is guaranteed to be higher or equal to the
current nprom.

Performance Apart from saving one message per command (the self-message),
these optimisations have mostly reduced the memory footprint of the algorithm.
Instead of storing three sequences, we now store only one sequence and one new
pointer/index.

2 Note that TCP only fulfils this abstraction during a single session.

20 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 5: Sequence Paxos 3 – State
Implements: Sequence Consensus
Requires: FIFO Perfect Link, BLE
Algorithm:

1: Π ; /* set of processes */

2: Πo ← Π − {self };
3: state ← (follower,⊥); /* role and phase state */

/* Proposer State */

4: nL ← 0 ; /* leader’s round number */

5: promises ← ∅;
6: las ← [0]|Π|; /* length of longest accepted sequence per acceptor */

7: propCmds ← ∅; /* set of commands that need to be appended to the log

*/

8: lc ← 0 ; /* length of longest chosen sequence */

/* Acceptor State */

9: nprom ← 0 ; /* promise not to accept in lower rounds */

10: (na, va)← (⊥, 〈〉) ; /* round number and sequence accepted */

/* Learner State */

11: ld ← 0 ; /* length of the decided sequence */

Leader-based Sequence Paxos 21

Algorithm 5: Sequence Paxos 3 – Acceptor&Learner
/* Acceptor Code */

1: Upon 〈Prepare | n〉 from p
2: if nprom < n then
3: nprom ← n;
4: send 〈Promise | n, na, va〉 to p;

5: Upon 〈Accept | n, v〉 from p
6: if nprom ≤ n then
7: nprom ← n;
8: (na, va)← max((n, v), (na, va));
9: send 〈Accepted | n, |va|〉 to p;

/* Learner Code */

10: Upon 〈Decide | v, n〉 s.t. n = nprom
11: if ld < |v| then
12: ld ← |v|;
13: trigger 〈Decide | prefix(va, ld)〉;

14: Fun max((n, v), (n′, v′))
if n 6= n′ then

if n > n′ then
(n, v)

else
(n’, v’)

else
if |v| > |v′| then

(n, v)
else

(n’, v’)

22 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 5: Sequence Paxos 3 – Proposer
/* Proposer Code */

1: Upon 〈Leader | L, n〉
if self = L ∧ n > nL then

2: (nL, nprom)← (n, n);

3: promises ← {(self , na, va)};
4: las ← [0]|Π|;
5: lc ← 0;
6: state ← (leader, prepare);

foreach p ∈ Πo do
7: send 〈Prepare | nL〉 to p;

else
8: state ← (follower, state.2);

9: Upon 〈Propose | C〉 s.t. state = (leader, prepare)
10: propCmds ← propCmds ∪ {C};
11: Upon 〈Propose | C〉 s.t. state = (leader,accept)

12: va ← va ⊕ C;

13: las[self]← |va|;
foreach p ∈ Πo do

14: send 〈Accept | nL, va〉 to p;

15: Upon 〈Promise | n, n′, v′〉 from a s.t. n = nL ∧ state = (leader, prepare)
16: promises ← promises ∪ {(a, n′, v′)}; /* add a for acceptor

disambiguation */

17: if |promises| =
⌈
|Π|+1

2

⌉
then

18: v ← maxValue(promises); /* sequence with the largest n,
longest if equal */

19: va ← v ⊕ C forall C ∈ propCmds; /* adopt v and append */

20: propCmds ← ∅;
21: las[self]← |va|;

foreach p ∈ Πo do

22: send 〈Accept | nL, va〉 to p;
23: state ← (leader,accept);

24: Upon 〈Accepted | n, la〉 from a s.t. n = nL ∧ state = (leader,accept)

25: las[a]← la;

26: M ← {p ∈ Π | las[p] 6= ⊥ ∧ las[p] ≥ la}; /* support set for la */

27: if la > lc ∧ |M | ≥
⌈
|Π|+1

2

⌉
then

28: lc ← la;
foreach p ∈ Π do

29: send 〈Decide | prefix(va, la)〉, nL to p; /* send chosen prefix

*/

Leader-based Sequence Paxos 23

5.3 Avoid Sending Sequences

The current algorithm still sends full sequences with every single message. As
discussed before, these sequences will overlap in most positions and at most differ
slightly at the end. Furthermore, in the 〈Decide | v, n〉 message we are not even
using v at all, but only its length, as we already have access to va and we know
v ≺ va. Thus we will simply replace v with |v| = lc in the Decide message.

In addition to this simple change, we also want to trim the data we send in
the prepare phase as much as possible. To preserve correctness a leader must
extend a sequence that contains vd at the end of the prepare phase. But both
the leader and some acceptors may be ahead or behind vd with their va during
the prepare phase. We want to synchronise everyone by sending as little data as
possible. As a majority of acceptors had at least the chosen sequence before the
leader change, any majority now must include at least a single acceptor that still
knows it (as a majority may not fail). If the leader tells everyone what its decided
sequence is (i.e. add ld to Prepare messages), the acceptors can either catch up
the leader (if it is behind) or ask to be caught up themselves, if they are behind.
That is, for a leader L at every acceptor a, if ld at a > ld at L then a will send
suffix(va, ld at L) as part of its Promise to catch up the leader. Otherwise it
will send 〈〉 and wait for the leader to catch it up with the first Accept message.
After collecting a majority, the leader will adopt the max suffix, that is the suffix
with highest round number or, if the round numbers are equal, the longest. It
will then append it to its decided sequence (vd = prefix(va, ld)) and append
all the commands it wanted to propose. That value will becomes its new va and
that is also the sequence it will impose on all followers.

At this point only the Accept messages continue to send full sequences.
In order to avoid this, we split off the first Accept at the end of the prepare
phase into a new message AcceptSync, as this message has a different purpose
than the Accept messages being generated from proposals. The purpose of the
AcceptSync message is get every replica to the same state of the leader, by
sending them only as much data as they really need. The purpose of the Accept
message is to append a single new command to va. If the replicas are in sync
with the leader (i.e. have been part of the prepare phase), then simply sending
this command alone will suffice, considering that the FIFO Perfect Links will
preserve the sequence order. In order to avoid sending the whole sequence in
AcceptSync, replicas have to inform the leader of their ld in the Prepare
message, which the leader stores in a new map lds from each acceptor to the
length of their decided sequence. Instead of sending va the leader then sends
suffix(va, lds[a]) to every acceptor a.

As only a majority of processes have responded when the leader transitions
into the accept phase, we must add extra message handlers to catch up late
replicas. Particularly, we must not send Accept messages to a replica until
we have processed its Promise, as those replicas are out of sync. The same
reasoning goes for Decide messages for late replicas. That is, if a leader has
already issued decides during its accept phase when it gets a promise from a late
replica, it must send both an up-to-date AcceptSync, immediately followed by

24 Seif Haridi, Lars Kroll, and Paris Carbone

a Decide for the currently longest chosen sequence lc.
The complete pseudocode for these optimisations can be seen in algorithm 6.

Correctness Sending |v| = lc in Decide messages instead of v, is a trivial
change, as only |v| was used before anyway. Sending only diffs instead of full
sequences also does not affect the correctness as long as the correct diffs are being
sent. The renaming of the first Accept message to AcceptSync itself has no
effect, it simply reflects the usage more accurately. It would also be possible to
infer this information (whether a message is Accept or AcceptSync) from
context, but that is less readable. The crucial part here is to use FIFO Perfect
Links and lds to make sure that an AcceptSync always arrives before the first
Accept in that round.

Performance Not sending full sequences anymore is a huge improvement in
performance, especially as it finally removes the performance degradation issue
with large sequences. At this point, we made leader changes as cheap as we can,
and during stable periods we have full pipelining for single commands. If this
leads to bad performance due to network packets being too small, it could easily
be extended again to do some kind of batching. Although whether this should
happen within Sequence Paxos or in an external management component is an
implementation decision.

Leader-based Sequence Paxos 25

Algorithm 6: Sequence Paxos 4 – State
Implements: Sequence Consensus
Requires: FIFO Perfect Link, BLE
Algorithm:

1: Π ; /* set of processes */

2: Πo ← Π − {self };
3: state ← (follower,⊥); /* role and phase state */

/* Proposer State */

4: nL ← 0 ; /* leader’s round number */

5: promises ← ∅;
6: las ← [0]|Π|; /* length of longest accepted sequence per acceptor */

7: lds ← [⊥]|Π|; /* length of longest known decided sequence per acceptor

*/

8: propCmds ← ∅; /* set of commands that need to be appended to the log

*/

9: lc ← 0 ; /* length of longest chosen sequence */

/* Acceptor State */

10: nprom ← 0 ; /* promise not to accept in lower rounds */

11: (na, va)← (0, 〈〉) ; /* round number and sequence accepted */

/* Learner State */

12: ld ← 0 ; /* length of the decided sequence */

26 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 6: Sequence Paxos 4 – Acceptor&Learner
/* Acceptor Code */

1: Upon 〈Prepare | n, ld〉 from p
2: if nprom < n then
3: nprom ← n;

4: state ← (follower, prepare);

5: suffix ← suffix(va, ld);

6: send 〈Promise | n, na, suffix , ld〉 to p;

7: Upon 〈AcceptSync | n, suffix , ld〉 from p s.t. state = (follower, prepare)

8: if nprom = n then

9: na ← n;

10: va ← prefix(va, ld) ++ suffix ;

11: state ← (follower,accept);
12: send 〈Accepted | n, |va|〉 to p;

13: Upon 〈Accept | n,C〉 from p s.t. state = (follower,accept)

14: if nprom = n then

15: va ← va ⊕ C;
16: send 〈Accepted | n, |va|〉 to p;

/* Learner Code */

17: Upon 〈Decide | l, n〉 s.t. n = nprom
18: if ld < l then

19: ld ← l;
20: trigger 〈Decide | prefix(va, ld)〉;

21: Fun max((n, v), (n′, v′))
if n 6= n′ then

if n > n′ then
(n, v)

else
(n’, v’)

else
if |v| > |v′| then

(n, v)
else

(n’, v’)

Leader-based Sequence Paxos 27

Algorithm 6: Sequence Paxos 4 – Proposer
/* Proposer Code */

1: Upon 〈Leader | L, n〉
if self = L ∧ n > nL then

2: (nL, nprom)← (n, n);

3: promises ← {(self , na, suffix(va, ld))};
4: las ← [0]|Π|;

5: lds ← [⊥]|Π|; lds[self]← ld;
6: lc ← 0;
7: state ← (leader, prepare);

foreach p ∈ Πo do

8: send 〈Prepare | nL, ld〉 to p;

else
9: state ← (follower, state.2);

10: Upon 〈Propose | C〉 s.t. state = (leader, prepare)
11: propCmds ← propCmds ∪ {C};
12: Upon 〈Propose | C〉 s.t. state = (leader,accept)
13: va ← va ⊕ C;
14: las[self]← |va|;

foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do
15: send 〈Accept | nL, C〉 to p;

16: Upon
〈Promise | n, n′, suffixa, lda〉 from a s.t. n = nL ∧ state = (leader, prepare)

17: promises ← promises ∪ {(a, n′, suffixa)};
18: lds[a]← lda;

19: if |promises| =
⌈
|Π|+1

2

⌉
then

20: suffix ← maxValue(promises); /* suffix with max n, longest if

equal */

/* adopt vd ++ suffix and append commands */

21: va ← prefix(va, ld) ++ suffix ⊕ C forall C ∈ propCmds;
22: propCmds ← ∅;
23: las[self]← |va|;
24: state ← (leader,accept);

foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do
25: send 〈AcceptSync | nL, suffix(va, lds[p]), lds[p]〉 to p;

26: Upon
〈Promise | n, n′, suffixa, lda〉 from a s.t. n = nL ∧ state = (leader,accept)

27: lds[a]← lda;

28: send 〈AcceptSync | nL, suffix(va, lds[a]), lds[a]〉 to p;
29: if lc 6= 0 then

30: send 〈Decide | lc, nL〉 to a; /* also inform what got decided

already */

31: Upon 〈Accepted | n, la〉 from a s.t. n = nL ∧ state = (leader,accept)
32: las[a]← la;
33: M ← {p ∈ Π | las[p] 6= ⊥ ∧ las[p] ≥ la}; /* support set for la */

34: if la > lc ∧ |M | ≥
⌈
|Π|+1

2

⌉
then

35: lc ← la;

foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do
36: send 〈Decide | lc, nL〉 to p; /* send length of chosen sequence

*/

28 Seif Haridi, Lars Kroll, and Paris Carbone

5.4 Final Optimisations

At this point we have a pretty efficient algorithm and all that is left is some minor
optimisations and convenience fixes. One thing to notice is that the Promise
at acceptor a currently sends a suffix to leader L even when na at L > na at a,
although maxValue(promises) at the leader would never pick that suffix to be
adopted. Näıvely, we might think this situation would never occur, as a process
that lags behind one round, probably should not have a longer va anyway. But
this is not true. Consider a leader L1 in round 1 getting disconnected from the
rest of the group, but still extending its sequence locally. In the mean time a
new leader L2 is elected in round 2 with the remaining nodes, that L1 never
knows about. Shortly after, the connection stabilises and a new leader L3 is
elected in round 3 with L1 part of the majority. If L2 didn’t have much time to
add commands, it might be that case that |va at L1

| > |va at L3
|, even though

na at L3
> na at L1

. While this is an edge case, L1 could have millions of mes-
sages in its local log, that will never make it into the new va as they conflict with
the decisions made in its absence. Thus sending them is unnecessary. To avoid
this situation the leader will add its local na to every Prepare message, which
an acceptor will check before calculating the suffix to send in the Promise.
The other optimisation in this section is meant to reduce redundancy between
the replicated log service of Sequence Consensus and the state machine on top
of it executing commands. Currently a Decide event includes the full log. How-
ever, the vast majority if not all state machine implementation will not start
with the initial state and apply the full log every time a decision is made. In-
stead they will only apply the new commands one at a time to the previously
stored state. As we are already keeping track of previously decided prefixes in
Sequence Paxos, it is redundant to keep track of this again in the state machine.
To avoid this we will make another small alteration to the Sequence Paxos inter-
face, in which we will only decide a single command at a time, with the semantic
meaning of this being appended to the previously decided commands (or simply
immediately consumed by the state machine).
The complete pseudocode for the final version can be seen in algorithm 7.

Correctness Both changes are minor and trivially correct, with the caveat that
the latter change technically implements a different interface.

Performance The performance is the same as in the previous version, with the
exception of the edge case described above where na at L > na at a for some
leader L and acceptor a.

Leader-based Sequence Paxos 29

Algorithm 7: Sequence Paxos Final – State
Implements: Sequence Consensus
Requires: FIFO Perfect Link, BLE
Algorithm:

1: Π ; /* set of processes */

2: Πo ← Π − {self };
3: state ← (follower,⊥); /* role and phase state */

/* Proposer State */

4: nL ← 0 ; /* leader’s round number */

5: promises ← ∅;
6: las ← [0]|Π|; /* length of longest accepted sequence per acceptor */

7: lds ← [⊥]|Π|; /* length of longest known decided sequence per acceptor

*/

8: propCmds ← ∅; /* set of commands that need to be appended to the log

*/

9: lc ← 0 ; /* length of longest chosen sequence */

/* Acceptor State */

10: nprom ← 0 ; /* promise not to accept in lower rounds */

11: (na, va)← (0, 〈〉) ; /* round number and sequence accepted */

/* Learner State */

12: ld ← 0 ; /* length of the decided sequence */

30 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 7: Sequence Paxos Final – Acceptor&Learner
/* Acceptor Code */

1: Upon 〈Prepare | n, ld ,naL〉 from p
2: if nprom < n then
3: nprom ← n;
4: state ← (follower, prepare);

5: suffix ← if na ≥ naL then suffix(va, ld) else 〈〉;
6: send 〈Promise | n, na, suffix , ld〉 to p;

7: Upon 〈AcceptSync | n, suffix , ld〉 from p s.t. state = (follower, prepare)
8: if nprom = n then
9: na ← n;

10: va ← prefix(va, ld) ++ suffix ;
11: state ← (follower,accept);
12: send 〈Accepted | n, |va|〉 to p;

13: Upon 〈Accept | n,C〉 from p s.t. state = (follower,accept)
14: if nprom = n then
15: va ← va ⊕ C;
16: send 〈Accepted | n, |va|〉 to p;

/* Learner Code */

17: Upon 〈Decide | l, n〉 s.t. n = nprom
18: while ld < l do

19: trigger 〈Decide | va[ld]〉; /* assuming 0-based indexing */

20: ld ← ld + 1;

Leader-based Sequence Paxos 31

Algorithm 7: Sequence Paxos Final – Proposer
/* Proposer Code */

1: Upon 〈Leader | L, n〉
if self = L ∧ n > nL then

2: (nL, nprom)← (n, n);
3: promises ← {(self , na, suffix(va, ld))};
4: las ← [0]|Π|;

5: lds ← [⊥]|Π|; lds[self]← ld;
6: lc ← 0;
7: state ← (leader, prepare);

foreach p ∈ Πo do

8: send 〈Prepare | nL, ld, na〉 to p;

else
9: state ← (follower, state.2);

10: Upon 〈Propose | C〉 s.t. state = (leader, prepare)
11: propCmds ← propCmds ∪ {C};
12: Upon 〈Propose | C〉 s.t. state = (leader,accept)
13: va ← va ⊕ C;
14: las[self]← |va|;

foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do
15: send 〈Accept | nL, C〉 to p;

16: Upon
〈Promise | n, n′, suffixa, lda〉 from a s.t. n = nL ∧ state = (leader, prepare)

17: promises ← promises ∪ {(a, n′, suffixa)};
18: lds[a]← lda;

19: if |promises| =
⌈
|Π|+1

2

⌉
then

20: suffix ← maxValue(promises); /* suffix with max n, longest if

equal */

/* adopt vd ++ suffix and append commands */

21: va ← prefix(va, ld) ++ suffix ⊕ C forall C ∈ propCmds;
22: propCmds ← ∅;
23: las[self]← |va|;
24: state ← (leader,accept);

foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do
25: send 〈AcceptSync | nL, suffix(va, lds[p]), lds[p]〉 to p;

26: Upon
〈Promise | n, n′, suffixa, lda〉 from a s.t. n = nL ∧ state = (leader,accept)

27: lds[a]← lda;
28: send 〈AcceptSync | nL, suffix(va, lds[a]), lds[a]〉 to p;
29: if lc 6= 0 then
30: send 〈Decide | lc, nL〉 to a; /* also inform what got decided

already */

31: Upon 〈Accepted | n, la〉 from a s.t. n = nL ∧ state = (leader,accept)
32: las[a]← la;
33: M ← {p ∈ Π | las[p] 6= ⊥ ∧ las[p] ≥ la}; /* support set for la */

34: if la > lc ∧ |M | ≥
⌈
|Π|+1

2

⌉
then

35: lc ← la;
foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do

36: send 〈Decide | lc, nL〉 to p; /* send length of chosen sequence

*/

32 Seif Haridi, Lars Kroll, and Paris Carbone

6 Fail-Recovery

At his point we have a fairly efficient algorithm as long as a majority never
crashes. This limitation arises from our use of the fail-stop model, so far, where
correctness means never crashing. For any long-running service an assumption
of never losing a cumulative majority becomes impractical, as even small failure
probabilities accumulate over time. We will treat this issue in two distinct steps:
This section will deal with transient failures, where the OS process crashes and
then is started again or a physical host reboots, for example. In section 7 we
will describe how to deal with permanent process failures by reconfiguring the
members of the replication group.
In the fail-recovery model, a process is considered correct if it crashes and con-
sequently recovers a finite number of times in an execution. During the crash
a process may lose all its state (called amnesia) and an arbitrary suffix of the
most recent messages (omission failures). However, a node may store some of
its state in a persistent manner, which can be loaded during recovery. In reality
this translates to storage on disk, for example. As persistent storage typically
has a performance impact, we want to store only the minimum necessary state
in this manner.

6.1 Sequence Paxos Recovery

In order to augment algorithm 7 for the fail-recovery model, we introduce a new
state called recover, which is automatically entered, when the system detects
that it has state from a previous run available. The following variables need to be
stored in persistent storage and loaded during recovery: nprom , na, va, ld. We will
also require our BLE implementation to start with ballotmax = nprom , reusing
the already stored variable from Sequence Paxos for efficiency.
During recovery a process p starts with state = (follower,recover) and
restores all the persistent variables. It then waits for a 〈Leader | L, n〉 message,
ignoring all other messages.

Case 1 (p = L). In this case p has been elected leader and should simply run
a prepare phase as normal. Whatever state and messages it has missed while
crashed will be synced up during the prepare phase.

Case 2 (p 6= L). In this case p is a follower, and there is some other leader
actively sending Accept messages already. It is unclear whether p had com-
pleted the prepare phase before crashing, but in any case it needs to sync up
again with the other nodes before it can handle any Accept messages. To fa-
cilitate this with minimal code changes, we will introduce a new message called
PrepareReq which p will send to L. Then p will wait for L to send it a Prepare
message. From this point the algorithm proceeds as if p was simply a late pro-
cess without any further changes. If L was stuck in the prepare phase due to a
missing majority without p, resending Prepare to p will help it make progress.
If L already moved to the accept phase, it will know how to catch up p with an
AcceptSync message.

Leader-based Sequence Paxos 33

The complete pseudocode for this version can be seen in algorithm 8.

Correctness All the state variables apart from nprom , na, va, ld is going to be
overwritten during the prepare phase, which we are running after recovery any-
way, so storing it would be redundant. As the purpose of the prepare phase is
to get all the replicas in sync, it can easily be seen that the proposed behaviour
will counter any amnesia or omission that occurred during the crash at p.

34 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 8: Sequence Paxos Fail-Recovery – State
Implements: Sequence Consensus
Requires: FIFO Perfect Link, BLE
Algorithm:

1: Π ; /* set of processes */

2: Πo ← Π − {self };
3: state ← (follower,⊥); /* role and phase state */

/* Proposer State */

4: nL ← 0 ; /* leader’s round number */

5: promises ← ∅;
6: las ← [0]|Π|; /* length of longest accepted sequence per acceptor */

7: lds ← [⊥]|Π|; /* length of longest known decided sequence per acceptor

*/

8: propCmds ← ∅; /* set of commands that need to be appended to the log

*/

9: lc ← 0 ; /* length of longest chosen sequence */

/* Acceptor State */

10: persistent nprom ← 0 ; /* promise not to accept in lower rounds */

11: persistent (na, va)← (0, 〈〉) ; /* round number and sequence accepted */

/* Learner State */

12: persistent ld ← 0 ; /* length of the decided sequence */

Leader-based Sequence Paxos 35

Algorithm 8: Sequence Paxos Fail-Recovery – Part 1
/* Proposer Code */

1: Upon 〈Leader | L, n〉
if self = L ∧ n > nL then

2: (nL, nprom)← (n, n);
3: promises ← {(self , na, suffix(va, ld))};
4: las ← [0]|Π|;

5: lds ← [⊥]|Π|; lds[self]← ld;
6: lc ← 0;
7: state ← (leader, prepare);

foreach p ∈ Πo do
8: send 〈Prepare | nL, ld, na〉 to p;

else

if state = (,recover) then

9: send 〈PrepareReq〉 to L;
else

10: state ← (follower, state.2);

11: Upon 〈PrepareReq〉 from a s.t. state = (leader,)

12: send 〈Prepare | nL, ld, na〉 to a;

13: Upon 〈Propose | C〉 s.t. state = (leader, prepare)
14: propCmds ← propCmds ∪ {C};
15: Upon 〈Propose | C〉 s.t. state = (leader,accept)
16: va ← va ⊕ C;
17: las[self]← |va|;

foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do
18: send 〈Accept | nL, C〉 to p;

19: Upon
〈Promise | n, n′, suffixa, lda〉 from a s.t. n = nL ∧ state = (leader, prepare)

20: promises ← promises ∪ {(a, n′, suffixa)};
21: lds[a]← lda;

22: if |promises| =
⌈
|Π|+1

2

⌉
then

23: suffix ← maxValue(promises); /* suffix with max n, longest if

equal */

/* adopt vd ++ suffix and append commands */

24: va ← prefix(va, ld) ++ suffix ⊕ C forall C ∈ propCmds;
25: propCmds ← ∅;
26: las[self]← |va|;
27: state ← (leader,accept);

foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do
28: send 〈AcceptSync | nL, suffix(va, lds[p]), lds[p]〉 to p;

29: Upon
〈Promise | n, n′, suffixa, lda〉 from a s.t. n = nL ∧ state = (leader,accept)

30: lds[a]← lda;
31: send 〈AcceptSync | nL, suffix(va, lds[a]), lds[a]〉 to p;
32: if lc 6= 0 then
33: send 〈Decide | lc, nL〉 to a; /* also inform what got decided

already */

36 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 8: Sequence Paxos Fail-Recovery – Part 2
/* Proposer Code (continued) */

1: Upon 〈Accepted | n, la〉 from a s.t. n = nL ∧ state = (leader,accept)
2: las[a]← la;
3: M ← {p ∈ Π | las[p] 6= ⊥ ∧ las[p] ≥ la}; /* support set for la */

4: if la > lc ∧ |M | ≥
⌈
|Π|+1

2

⌉
then

5: lc ← la;
foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do

6: send 〈Decide | lc, nL〉 to p; /* send length of chosen sequence

*/

/* Acceptor Code */

7: Upon 〈Prepare | n, ld ,naL〉 from p
8: if nprom < n then
9: nprom ← n;

10: state ← (follower, prepare);
11: suffix ← if na ≥ naL then suffix(va, ld) else 〈〉;
12: send 〈Promise | n, na, suffix , ld〉 to p;

13: Upon 〈AcceptSync | n, suffix , ld〉 from p s.t. state = (follower, prepare)
14: if nprom = n then
15: na ← n;
16: va ← prefix(va, ld) ++ suffix ;
17: state ← (follower,accept);
18: send 〈Accepted | n, |va|〉 to p;

19: Upon 〈Accept | n,C〉 from p s.t. state = (follower,accept)
20: if nprom = n then
21: va ← va ⊕ C;
22: send 〈Accepted | n, |va|〉 to p;

/* Learner Code */

23: Upon 〈Decide | l, n〉 s.t. n = nprom
24: while ld < l do
25: trigger 〈Decide | va[ld]〉; /* assuming 0-based indexing */

26: ld ← ld + 1;

Leader-based Sequence Paxos 37

6.2 Link Session Drop

It was alluded to before, that TCP can be used to implement the FIFO Per-
fect Link abstraction, but only during a single session. This naturally begs the
question of how to behave when a session drop event does occur. The semantics
of session drop are equivalent to the omission failures that occur during crash-
recovery, that is an arbitrary suffix of the most recent messages will be lost. As
this is clearly a sub-variant of a full crash-recovery event, i.e. a recovery without
amnesia, we will treat it very similarly. That is, at every process p we will behave
as follows in response to a 〈ConnectionLost | q〉 event, indicating that the
link session with process q was dropped:

Case 1 (state = (leader,)). If we are leader, we simply continue as normal.
The algorithm already handles the case where we are lacking a majority to
proceed, so there is nothing else we can do except hope that q comes back up
and re-establishes connection in the future.

Case 2 (state = (follower,) ∧ q = L). If we are a follower and we lose
connection to the leader, we are in the same situation as if we had recov-
ered from a failure. Thus we will behave in the same way, moving to state =
(follower,recover) and waiting for the 〈Leader | L, n〉 message. Then be-
have just as in section 6.1.

The complete pseudocode for this version can be seen in algorithm 9.

Correctness The argument for correctness is the same as in section 6.1, con-
sidering that session loss in a sub-case of fail-recovery.

38 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 9: Sequence Paxos Fail-Recovery&Session Loss –
State
Implements: Sequence Consensus
Requires: FIFO Perfect Link, BLE
Algorithm:

1: Π ; /* set of processes */

2: Πo ← Π − {self };
3: state ← (follower,⊥); /* role and phase state */

/* Proposer State */

4: nL ← 0 ; /* leader’s round number */

5: promises ← ∅;
6: las ← [0]|Π|; /* length of longest accepted sequence per acceptor */

7: lds ← [⊥]|Π|; /* length of longest known decided sequence per acceptor

*/

8: propCmds ← ∅; /* set of commands that need to be appended to the log

*/

9: lc ← 0 ; /* length of longest chosen sequence */

/* Acceptor State */

10: persistent nprom ← 0 ; /* promise not to accept in lower rounds */

11: persistent (na, va)← (0, 〈〉) ; /* round number and sequence accepted */

/* Learner State */

12: persistent ld ← 0 ; /* length of the decided sequence */

Leader-based Sequence Paxos 39

Algorithm 9: Sequence Paxos Fail-Recovery&Session Loss –
Part 1
/* General Code */

1: Upon 〈Leader | L, n〉
if self = L ∧ n > nL then

2: (nL, nprom)← (n, n);
3: promises ← {(self , na, suffix(va, ld))};
4: las ← [0]|Π|;

5: lds ← [⊥]|Π|; lds[self]← ld;
6: lc ← 0;
7: state ← (leader, prepare);

foreach p ∈ Πo do
8: send 〈Prepare | nL, ld, na〉 to p;

else
if state = (,recover) then

9: send 〈PrepareReq〉 to L;

else
10: state ← (follower, state.2);

11: Upon 〈ConnectionLost | q〉 s.t. state = (follower,) ∧ q = L

12: state ← (follower,recover);

/* Leader Code */

13: Upon 〈PrepareReq〉 from a s.t. state = (leader,)
14: send 〈Prepare | nL, ld, na〉 to a;

15: Upon 〈Propose | C〉 s.t. state = (leader, prepare)
16: propCmds ← propCmds ∪ {C};
17: Upon 〈Propose | C〉 s.t. state = (leader,accept)
18: va ← va ⊕ C;
19: las[self]← |va|;

foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do
20: send 〈Accept | nL, C〉 to p;

21: Upon
〈Promise | n, n′, suffixa, lda〉 from a s.t. n = nL ∧ state = (leader, prepare)

22: promises ← promises ∪ {(a, n′, suffixa)};
23: lds[a]← lda;

24: if |promises| =
⌈
|Π|+1

2

⌉
then

25: suffix ← maxValue(promises); /* suffix with max n, longest if

equal */

/* adopt vd ++ suffix and append commands */

26: va ← prefix(va, ld) ++ suffix ⊕ C forall C ∈ propCmds;
27: propCmds ← ∅;
28: las[self]← |va|;
29: state ← (leader,accept);

foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do
30: send 〈AcceptSync | nL, suffix(va, lds[p]), lds[p]〉 to p;

31: Upon
〈Promise | n, n′, suffixa, lda〉 from a s.t. n = nL ∧ state = (leader,accept)

32: lds[a]← lda;
33: send 〈AcceptSync | nL, suffix(va, lds[a]), lds[a]〉 to p;
34: if lc 6= 0 then
35: send 〈Decide | lc, nL〉 to a; /* also inform what got decided

already */

40 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 9: Sequence Paxos Fail-Recovery&Session Loss –
Part 2
/* Leader Code (continued) */

1: Upon 〈Accepted | n, la〉 from a s.t. n = nL ∧ state = (leader,accept)
2: las[a]← la;
3: M ← {p ∈ Π | las[p] 6= ⊥ ∧ las[p] ≥ la}; /* support set for la */

4: if la > lc ∧ |M | ≥
⌈
|Π|+1

2

⌉
then

5: lc ← la;
foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do

6: send 〈Decide | lc, nL〉 to p; /* send length of chosen sequence

*/

/* Acceptor Code */

7: Upon 〈Prepare | n, ld ,naL〉 from p
8: if nprom < n then
9: nprom ← n;

10: state ← (follower, prepare);
11: suffix ← if na ≥ naL then suffix(va, ld) else 〈〉;
12: send 〈Promise | n, na, suffix , ld〉 to p;

13: Upon 〈AcceptSync | n, suffix , ld〉 from p s.t. state = (follower, prepare)
14: if nprom = n then
15: na ← n;
16: va ← prefix(va, ld) ++ suffix ;
17: state ← (follower,accept);
18: send 〈Accepted | n, |va|〉 to p;

19: Upon 〈Accept | n,C〉 from p s.t. state = (follower,accept)
20: if nprom = n then
21: va ← va ⊕ C;
22: send 〈Accepted | n, |va|〉 to p;

/* Learner Code */

23: Upon 〈Decide | l, n〉 s.t. n = nprom
24: while ld < l do
25: trigger 〈Decide | va[ld]〉; /* assuming 0-based indexing */

26: ld ← ld + 1;

Leader-based Sequence Paxos 41

7 Reconfiguration

Having dealt with transient failures, we must now deal with permanent node
failures. This can be physical hardware failing to the point that a node has to be
permanently removed, but it could also simply be the desire to add or remove
nodes to a running system in order to deal with changed load. As reconfiguration
has many use cases in a practical system, we will separate out the policy, that is
“why” and “when” we are reconfiguring, from the mechanism, i.e. “how” we are
reconfiguring, given that the decision has been made already. Policy questions
a very application dependent and could be anything from a human operator
making decisions in a control room, to a fully automated system making decisions
based on some monitoring information. In this section, we will only cover the
mechanisms needed to reconfigure a Sequence Paxos group.

7.1 Configurations

We will call a “group membership instance” a configuration ci. For example, for
four processes p1, . . . , p4 we might start in configuration c0 = {p1, p2, p3}, but at
some point the policy decides to move to a new configuration c1 = {p1, p2, p4}.
We make no restrictions on the membership in each configuration, that is, in
general it might happen that c0 ∩ c1 = ∅. Most of the time, though, we will
simply replace a single node that is considered failed by the policy.
We model our system such that every configuration ci is a logically separate
instance of Sequence Paxos, with its own instance of Ballot Leader Election. Each
process pj ∈ ci acts as a replica rij in ci. Thus, a process pj may be a replica in
multiple configurations at the same time. Reusing the same example as before,
we would have configuration c0 = {r01, r02, r03} and later c1 = {r11, r12, r14}. In
this case, for example, p1 is part of two configurations in {r01, r11}.

The RSM executes in a configuration until a reconfiguration event occurs,
then it moves to the new configuration. At each process this transitions happens
asynchronously, but only a single configuration is (locally) active (or running)
at a time, that is it can extend its sequence. A new configuration is considered
(globally) active, once it has a majority of active members.

In order to mark the end of a configuration ci, we will issue a special command
called the stop-sign SSi. Once a leader pL proposes a sequence σi containing SSi

in configuration ci, it must be such that SSi is the last command in σi and pL
may not issue a longer sequence in ci. Once σi is decided no proposer may ever
extend it, thus we call σi the final sequence of ci and we call ci stopped.
When the σi is decided in ci by at least one process, the new configuration
ci+1 can start, as it is guaranteed that σi will not change. The stop sign SSi

for configuration ci contains the all the information necessary to start ci+1.
Concretely that is Πi+1, the set of processes in ci+1, i, the configuration number,
and for each process pj ∈ Πi+1 its replica identifier r(i+1)j . We want to use σi
as initial sequence for all replicas in ci+1. There are three cases that we have to
deal with at every process pj ∈ Πi+1:

42 Seif Haridi, Lars Kroll, and Paris Carbone

Case 1 (ci = c0). We are starting the first configuration and there is no previous
sequence. The we pick 〈〉 as the initial sequence on all replicas.

Case 2 (ci 6= c0 ∧ pj ∈ Πi). This process is a replica in both the ci and cI+1.
Once it has locally decided σi in the instance for configuration ci, it will pass
σi as an initial parameter to the instance for configuration ci+1 locally. (Since
σi is immutable, it could even pass a reference, thus sharing the memory in an
implementation that allows such things.)

Case 3 (ci 6= c0 ∧ pj /∈ Πi). This is a process that does not have the initial
sequence locally already. It must fetch it from some other node, either from
the old configuration or from a shared persistent storage, before it can start up
in the new configuration. This transfer process can be very time-consuming if
the log is large. Practically, it is advisable to begin this process in parallel to
the old configuration still running and only once the new nodes are close to
being caught up, issue the stop-sign command. Additional optimisations such
as state compression (snapshotting) and garbage collection on the log and state
machine’s state are highly recommended (s. section 8).

To make the proposed changes work with our Sequence Paxos algorithm we
will additionally extend the round numbers to contain the configuration num-
ber as well, such that rounds in higher configurations will always be ordered
higher than rounds from older configurations. Thus instead having round num-
ber n = b for a ballot number b, we will now have n = (i, b) for a configuration ci.

Algorithm 10 describes the execution of a replica after it has acquire its initial
sequences σi−1. The startup stage is assumed to be handled by an external com-
ponent, which starts the replica after obtaining the initial sequence. Given the
many and application-dependent options for handling that part of the algorithm,
we chose not provide pseudocode for it here.

Correctness Since configurations are totally ordered, our new round numbers
that include the configration identifier are also totally ordered across configura-
tions. Furthermore, the acceptor state at the start of a new configuration is the
same as the state of the acceptors at the end of the last configuration. In this
way we maintain the invariant, that if a sequence v is issued in round n = (i, b),
then v is an extension of all sequences chosen in previous rounds n′ ≤ n.

Performance The performance of the proposed approach depends mostly on
how efficient the distribution of the final sequences to the members of the next
configuration is. During an active configuration the described method has little
or no performance impact at all. However, the necessity to keep replicas in
old configurations around to catch up recovering members introduces a certain
amount of clutter over time, which we will have to deal with at some point.

Leader-based Sequence Paxos 43

Algorithm 10: Sequence Paxos Reconfiguration –
State&General
Implements: Sequence Consensus
Requires: FIFO Perfect Link, BLE
Algorithm:

1: ci ; /* configuration this replica is running in */

2: Πi ; /* set of processes in configuration ci */

3: R← {rij | pj ∈ Πi} ; /* set of replicas in configuration ci */

4: Ro ← R− {self };
5: rself ← rij s.t. self = pj ∈ Πi; /* our own replica id for this

configuration */

6: σi−1 ; /* the final sequence from the previous configuration or 〈〉 if

i = 0 */

7: state ← (follower,⊥); /* role and phase state */

/* Proposer State */

8: nL ← (i, 0) ; /* leader’s round number */

9: promises ← ∅;
10: las ← [|σi−1|]|R|; /* length of longest accepted sequence per acceptor

*/

11: lds ← [⊥]|R|; /* length of longest known decided sequence per acceptor

*/

12: propCmds ← ∅; /* set of commands that need to be appended to the log

*/

13: lc ← |σi−1| ; /* length of longest chosen sequence */

/* Acceptor State */

14: persistent nprom ← (i, 0) ; /* promise not to accept in lower rounds */

15: persistent (na, va)← ((i, 0), σi−1) ; /* round number and sequence

accepted */

/* Learner State */

16: persistent ld ← |σi−1| ; /* length of the decided sequence */

/* General Code */

17: Fun stopped()
return va[ld] = SSi;

18: Upon 〈Leader | L, b〉
19: n← (i, b);

if self = L ∧ n > nL then
20: (nL, nprom)← (n, n);

21: promises ← {(rself , na, suffix(va, ld))};
22: las ← [|σi−1|]|R|;
23: lds ← [⊥]|R|; lds[rself]← ld;

24: lc ← |σi−1|;
25: state ← (leader, prepare);

foreach r ∈ Ro do

26: send 〈Prepare | nL, ld, na〉 to r;

else
if state = (,recover) then

27: send 〈PrepareReq〉 to L;

else
28: state ← (follower, state.2);

29: Upon 〈ConnectionLost | q〉 s.t. state = (follower,) ∧ q = L
30: state ← (follower,recover);

44 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 10: Sequence Paxos Reconfiguration – Leader (1)

/* Leader Code */

1: Upon 〈PrepareReq〉 from a s.t. state = (leader,)
2: send 〈Prepare | nL, ld, na〉 to a;

3: Upon 〈Propose | C〉 s.t. state = (leader, prepare)
4: propCmds ← propCmds ∪ {C};

5: Upon 〈Propose | C〉 s.t. state = (leader,accept) ∧ ¬stopped()
6: va ← va ⊕ C;

7: las[rself]← |va|;
foreach p ∈ {r ∈ R0 | lds[r] 6= ⊥} do

8: send 〈Accept | nL, C〉 to r;

9: Upon
〈Promise | n, n′, suffixa, lda〉 from a s.t. n = nL ∧ state = (leader, prepare)

10: promises ← promises ∪ {(a, n′, suffixa)};
11: lds[a]← lda;

12: if |promises| =
⌈
|Π|+1

2

⌉
then

13: suffix ← maxValue(promises); /* suffix with max n, longest if

equal */

/* adopt vd ++ suffix and append commands */

14: va ← prefix(va, ld) ++ suffix ;

if SSi = va.last then

15: propCmds ← ∅; /* commands will never be decided */

else

if SSi ∈ propCmds then
/* Could also just drop other outstanding commands

instead of ordering them before SSi */

16: va ← va ⊕ C forall C ∈ propCmds − {SSi};
17: va ← va ⊕ SSi;

else

18: va ← va ⊕ C forall C ∈ propCmds;

19: las[self]← |va|;
20: state ← (leader,accept);

foreach r ∈ {r ∈ R0 | lds[r] 6= ⊥ ∧ lds[r] 6= |va|} do
21: send 〈AcceptSync | nL, suffix(va, lds[r]), lds[r]〉 to r;

Leader-based Sequence Paxos 45

Algorithm 10: Sequence Paxos Reconfiguration – Leader (2)

/* Leader Code (continued) */

1: Upon
〈Promise | n, n′, suffixa, lda〉 from a s.t. n = nL ∧ state = (leader,accept)

2: lds[a]← lda;
3: send 〈AcceptSync | nL, suffix(va, lds[a]), lds[a]〉 to a;
4: if lc 6= |σi−1| then
5: send 〈Decide | lc, nL〉 to a; /* also inform what got decided

already */

6: Upon 〈Accepted | n, la〉 from a s.t. n = nL ∧ state = (leader,accept)
7: las[a]← la;
8: M ← {p ∈ Π | las[p] 6= ⊥ ∧ las[p] ≥ la}; /* support set for la */

9: if la > lc ∧ |M | ≥
⌈
|Π|+1

2

⌉
then

10: lc ← la;
foreach p ∈ {p ∈ Π0 | lds[p] 6= ⊥} do

11: send 〈Decide | lc, nL〉 to p; /* send length of chosen sequence

*/

46 Seif Haridi, Lars Kroll, and Paris Carbone

Algorithm 10: Sequence Paxos Reconfiguration – Acceptor &
Learner
/* Acceptor Code */

1: Upon 〈Prepare | n, ld ,naL〉 from p
2: if nprom < n then
3: nprom ← n;
4: state ← (follower, prepare);
5: suffix ← if na ≥ naL then suffix(va, ld) else 〈〉;
6: send 〈Promise | n, na, suffix , ld〉 to p;

7: Upon 〈AcceptSync | n, suffix , ld〉 from p s.t. state = (follower, prepare)
8: if nprom = n then
9: na ← n;

10: va ← prefix(va, ld) ++ suffix ;
11: state ← (follower,accept);
12: send 〈Accepted | n, |va|〉 to p;

13: Upon 〈Accept | n,C〉 from p s.t. state = (follower,accept)
14: if nprom = n then
15: va ← va ⊕ C;
16: send 〈Accepted | n, |va|〉 to p;

/* Learner Code */

17: Upon 〈Decide | l, n〉 s.t. n = nprom
18: while ld < l do
19: C ← va[ld]; /* assuming 0-based indexing */

20: trigger 〈Decide | C〉;
21: ld ← ld + 1;

Leader-based Sequence Paxos 47

8 Garbage Collection

As was alluded to in the last paragraph, we have been silently ignoring a certain
build-up of state over the lifetime of systems running the algorithms presented
so far. In particular there are two areas, the log va and the number of stopped
configurations ci, that continue to grow without bounds throughout the system’s
lifetime. In this section we will explore some ideas on how to manage these issues
in a real deployment.

8.1 Snapshots and Truncating the Log

In the most general case, we can not truncate log, as we may have to catch
up a new replica that was added in a new configuration. That is, without any
knowledge about how the state machine S on top of the replicated log works,
the only way to catch up a new member is to replay the whole log vd onto S’
initial state s0. However, if S allows us to persist intermediate states si, which
we shall call snapshots, we may in fact truncate the log up to all the commands
included in si, an then transfer si and the remaining log to a new replicate to
catch it up.

For the vast majority of RSMs this approach will be orders of magnitude
faster than transferring and replaying the whole log. Consider for example a
key-value store on top of a replicated log, such that the commands are put and
get. The log might contain millions of messages after minutes already, but the
state of the store would not include any get commands and it would only grow
in the size of put commands on separate keys (or the size of the values, if that
is not constant). It is easy to see that for most workloads (which tend to be
get-heavy) the size of any state si is going to be orders of magnitude smaller
than the size of the decided sequence vd.

We must however ensure, that every replica has persisted its snapshot before
we truncate the log anywhere to make sure that we can still catch up replicas that
crashed and are recovering during the period between snapshot and truncation3. Explain tradeoffExplain tradeoff
To that end we leave the frequency of snapshots up to the implementation of
S, but require the interface to inform the Sequence Paxos algorithm when a
snapshot is finished locally at pj by proposing a special 〈Snapshot | j, k, lk〉
command where k is the identifier of the snapshot ṡk and lk a pointer to the
last command in vd that is included in the state slk being captured by ṡk.
In general we can truncate va up to any position m where we have decided
〈Snapshot | j, k, lk〉 with lk ≥ m for all pj ∈ Πi. However, it is most convenient
to deterministically take snapshots at the same point in the log at all replicas,
such that we only need to keep track of the largest lk seen from all replicas.
Once the log is truncated, we need to take care to translate offset-based pointers
like ld by the last lk before doing lookups into va, such that that va[ld] before

3 This isn’t technically true, we could take a majority snapshot and if a node recovers
too late we could change configuration without changing membership and re-use the
mechanism for distributing the initial sequence to catch it up.

48 Seif Haridi, Lars Kroll, and Paris Carbone

truncation becomes va[ld − lk]. Similarly all usages of |va| need to be translated
to |va|+ lk.

Additionally, to avoid integer overflows of ld, for example, we can reset all
counters to 0 after reconfiguration, iff we make sure the final sequence is always
transferred as a pure snapshot (and not a combination of snapshot and truncated
log).

One issue we have to deal with during log truncation has to do with command
duplication as we described in section 3.2. Recall that we defined the append
⊕ implementation without duplicates, such that it would check the log before
appending a command C, to see if iC already existed and in such a case skip it.
If we are truncating the log, we can not check it for commands anymore, and
depending on the RSM implementation it may in fact be impossible to see from
a snapshot whether or not a command C was already applied to it. For example,
in a key-value store, if the snapshot is the mapping from keys to current values,
then even a PUT(k, v) may have been overwritten in the snapshot already, just
making its prior application impossible to deduce. For this reason we must find
another way to deduplicate commands, if we are to truncate the log.
If we assume that all clients execute sequentially, that is sending only a single
command C at a time and waiting for it be acknowledged (possibly resending
C occasionally after timeouts) before sending a new command C ′, we can use
the following mechanism for deduplication: The RSM on each server maintains
a mapping from a client id pc to the last command Cc that was submitted by
pc and decided, together with the result of executing Cc on the RSM state S (if
it is an operation with a result, such as a GET). Whenever a new command C ′c
is from pc is decided, we check if Cc = C ′c and if so we do not execute it again,
but simply send the stored result to pc. If, on the other hand, Cc 6= C ′c then
we execute it on S and store it and the result in the map, replacing Cc. In this
way we never execute duplicate commands, as for sequential clients duplicate
commands must directly follow each other without a different command occur-
ring in between. It is assumed that clients simply ignore additional responses to
commands they consider complete.
When doing snapshots now, we must ensure that during log replay after recon-
figuration (or recovery) we also do not apply duplicate commands. To achieve
this we must store the state of this client map at the time a snapshot is taken
together with snapshot. Then we start from the snapshot we also load its client
map and apply commands replayed from the log, as if they were newly incoming
commands, that is checking for duplicates and only applying the first instance
of each command together with its result.

8.2 Configuration Cleanup

Once a new configuration ci is started, the previous configuration ci−1 is not
needed anymore. It seems trivial to just shut down all resources related to it,
but the possibility of long-running network partitions makes cleanup of these
replicas a surprisingly difficult problem without external input. To see why this
is the case, consider the following scenario: In configuration c1 we have three

Leader-based Sequence Paxos 49

replicas Π1 = {p1, p2, p3} and after running for a while p3 is disconnected from
the rest. The reconfiguration policy ρ decides that p3 is to be replaced by a new
process p4 by transitioning to configuration c2 with Π2 = {p1, p2, p4}. Eventually
SS1 is decided in c1 and the final sequence σ1 is transferred to p4 (and locally
to p1 and p2) allowing the replicas in c2 to start up. Now fast forward a few
failures and maybe we are in configuration c5 with Π5 = {p4, p5, p6} and we
have shut down (either on purpose or due to failure) the replicas at p1 and p2.
However, due to the partition we have been unable to inform p3 so far that it
is not needed anymore. Say at this point suddenly p3 reconnects. Being alone
it can’t do anything wrong, but it has no idea that its supposed to be shutting
down. There is no one left it can talk to, p1 and p2 being dead, but it can’t just
shutdown either, since it might just still be disconnected from the other two.
Without some way to get external input p3 is going to stay in this orphaned
state forever.

There are multiple way to deal with this, but in the end they all come down
to outsourcing the shutdown decision to some kind of policy ρ. If ρ happens to
be a human administrator, they can simply physically go to the disconnected
machine p3 and shut down the process for the orphaned replica. Obviously, this
isn’t very convenient. A more automated system could make use of infrastructure
existing at the data-centre for service discovery (e.g., ARP) or name resolution
(e.g., DNS) to allow p3 to discover another working process such as p4 to acquire
information about what happened to its configuration by inspecting the active
log with a client API, for example.

50 Seif Haridi, Lars Kroll, and Paris Carbone

9 Literature

While Paxos was originally presented by Leslie Lamport in [8], the way we de-
scribe it in these lecture notes comes from a later paper [9], with some additional
ideas borrowed from [3]. The description of sequence consensus, which was orig-
inally presented by Lamport in [6], is purposefully aligned with the way that
Raft [10] is presented, to make it easy to compare the two implementations.
Additionally, the ideas for the Sequence Paxos reconfiguration are based on
“Stoppable Paxos” [7].

10 Conclusion

We have described how to get from single value Paxos via fail-stop Sequence
Paxos, fail-recovery Sequence Paxos, to a reconfigurable implementation of the
Sequence Consensus abstraction that works in the fail-recovery model. We have
also discussed systems issues like garbage collection, snapshots and log trunca-
tions, and state transfers. The final algorithm we presented is ready to be be
used as is, or adapted to a particular RSM implementation for efficiency.

References

1. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
Proceedings of the 7th symposium on Operating systems design and implementa-
tion. pp. 335–350. USENIX Association (2006)

2. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to reliable and secure dis-
tributed programming. Springer Science & Business Media (2011)

3. De Prisco, R., Lampson, B., Lynch, N.: Revisiting the paxos algorithm. In: Inter-
national Workshop on Distributed Algorithms. pp. 111–125. Springer (1997)

4. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-free coordination
for internet-scale systems. In: USENIX annual technical conference. vol. 8. Boston,
MA, USA (2010)

5. Kroll, L.: Load balancing in a distributed storage system for big and small data
(2013)

6. Lamport, L.: Generalized consensus and paxos (2005)
7. Lamport, L., Malkhi, D., Zhou, L.: Reconfiguring a state machine. SIGACT News

41(1), 63–73 (2010)
8. Lamport, L., et al.: The part-time parliament. ACM Transactions on Computer

systems 16(2), 133–169 (1998)
9. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)

10. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). pp. 305–
319 (2014)

	Lecture Notes onLeader-based Sequence Paxos
	Introduction
	Paxos
	Sequence Paxos
	Sequence Consensus
	Initial Sequence Paxos Implementation

	Ballot Leader Election
	Gossip Leader Election

	Leader-based Sequence Paxos
	BLE and Uniform Processes
	Removing Redundant State
	Avoid Sending Sequences
	Final Optimisations

	Fail-Recovery
	Sequence Paxos Recovery
	Link Session Drop

	Reconfiguration
	Configurations

	Garbage Collection
	Snapshots and Truncating the Log
	Configuration Cleanup

	Literature
	Conclusion

