
Lecture 6 Part 1.
REFINEMENT IN EVENT-B

Event-B (reminder)
• Event-B models are organised in terms of two basic constructs: contexts and machines:
 contexts specify the static part of a model;
 machines specify the dynamic part.

• The role of the contexts is to isolate the parameters of a formal model and their properties,
which are assumed to hold for all instances.

• A machine encapsulates a transition system with the state specified by a set of variables and
transitions modelled by a set of guarded events.

Model development with Event-B
• Event-B allows models to be developed gradually via mechanisms such as context extension and
machine refinement.

• These techniques enable users to develop target systems from their abstract specifications, and
subsequently introduce more implementation details.

• More importantly, properties that are proved at the abstract level are maintained through
refinement, and hence are also guaranteed to be satisfied by later refinements.

• As a result, correctness proofs of systems are broken down and distributed amongst different
levels of abstraction, which is easier to manage.

A course management system:
Requirements

• A club has some fixed members; amongst them are instructors and participants.

• A member can be both an instructor and a participant.

REQ1 Instructors are members of the club.

REQ2 Participants are members of the club.

A course management system (cont.)
• There are predefined courses that can be offered by a club.

• Each course is associated with exactly one fixed instructor.

REQ3 There are predefined courses.

REQ4 Each course is assigned to one fixed instructor.

A course management system (cont.)
A course is either opened or closed and is managed by the system.

REQ5 A course is either opened or closed.

REQ6 The system allows a closed course to be opened.

REQ7 The system allows an opened course to be closed.

A course management system (cont.)
The number of opened courses is limited.

Only when a course is opened, can participants register for the course. An important constraint
for registration is that an instructor cannot attend his own courses.

REQ8 The number of opened courses cannot exceed a given limit.

REQ9 Participants can only register for an open course.

REQ10 Instructors cannot attend their own courses.

A course management system:
development with Event-B

• Next, we will develop a formal model based on the above requirements document:
 we will refer to the above requirements in order to justify how they are formalised in the Event-B

model.

• In the initial model, we focus on opening and closing of courses by the system.

• We start our modelling with defining a context Courses_c0.

A course management system: Context

CONTEXT Courses_c0
SETS COURSES // a carrier set COURCES denoting the set of courses that can be

offered by the club (REQ3)
CONSTANTS m // REQ8: the maximum number of courses that the club can open
AXIOMS

axm0_1: finite(COURSES)
axm0_2: m ∈ ℕ
axm0_3: m > 0
axm0_4: card(COURSES) ≥ m // number of all possible courses is no less than m

END

A course management system: Machine
• We develop machine Courses_m0 of the initial model, focusing on courses opening and closing.
 This machine sees context Courses_c0 developed before.

• We model the set of opened courses by a variable courses

MACHINE Courses_m0
SEES Courses_c0
VARIABLES courses // The machine state is represented by the variable, courses,

denoting the open courses
INVARIANTS

inv0_1: courses ⊆ COURCES // open courses is a subset of all available courses
inv0_2: card(courses) ≤ m

EVENTS
INITIALISATION≜

then
act1: courses:= ∅ // Initially, all courses are closed

(so, the set of opened courses is set to the empty set);
end

…

A course management system: Machine
• We model the opening and closing of courses using two events OPENCOURSE and CLOSECOURSE
as follows:

OPENCOURSE ≜ // REQ6: The system allows a closed course to be opened.
any crs
where

grd1: card(courses) < m // the current number of opened courses has not yet reached the limit
grd2: crs ∉ courses // a course crs is not opened yet

then
act1: courses := courses ∪ {crs} // add crs course to the set courses

end
CLOSECOURSE ≜ // REQ7: The system allows an opened course to be closed.

any crs
where

grd1: crs ∈ courses // the course crs has been opened before
then

act1: courses := courses ∖ {crs} // remove crs from the set courses
end

Context Extension
• Context extension is a mechanism for introducing more static details into an Event-B
development.
 A context can extend one or more contexts.

• When describing a context D as extending another context C, we call C and D the abstract and
concrete context, respectively.

• By extending C, D “inherits” all the abstract elements of C, i.e., carrier sets, constants, axioms
and theorems.

Course Management System:
We extend context Courses_c0 by the context Members_c1

CONTEXT Members_c1 EXTENDS Courses_c0
SETS MEMBERS // a carrier set MEMBERS represents the set of club members

CONSTANTS PARTICIPANTS // constant PARTICIPANTS denotes the set of participants
INSTRUCTORS // constant INSTRUCTORS denotes the set of instructors
courseInstructor // constant models a relationship between courses and instructors

AXIOMS
axm1_1: finite(MEMBERS)
axm1_2: PARTICIPANTS ⊆ MEMBERS // participants must be members of the club
axm1_3: INSTRUCTORS ⊆ MEMBERS // instructors must be members of the club
axm1_4: courseInstructor ∈ COURSES → INSTRUCTORS // a total function from COURSES to

INSTRUCTORS (thus we formalise REQ4)
END

Machine Refinement
• Machine refinement is a mechanism for introducing details about the dynamic properties of a
model
 When speaking about machine N refining another machine M, we refer to M as the abstract machine

and to N as the concrete machine.

• Two kinds of refinement: superposition refinement and data refinement
• In superposition refinement, the abstract variables of M are retained in the concrete machine N, with

possibly some additional concrete variables.
• In data refinement, the abstract variables v are replaced by concrete variables w and, subsequently, the

connections between M and N are represented by the relationship between v and w.
• More often, Event- B refinement is a mixture of both superposition and data refinement: some of the

abstract variables are retained, while others are replaced by new concrete variables.

Superposition Refinement
• In superposition refinement, variables v of the abstract machine M are kept in the refinement,
i.e. as part of the state of N.

• N can have some additional variables w.

• The concrete invariants J(v,w) specify the relationship between the old and new variables.

• Each abstract event e is refined by a concrete event f

• Assume that the abstract event e and the concrete event f are as follows:

e = any x where G(x, v) then Q(x, v) end

f = any x where H(x,v,w) then R(x,v,w) end

• f refines e if the guard of f is stronger than that of e (guard strengthening), concrete invariants J
are maintained by f, and abstract action Q simulates the concrete action R (simulation).

Superposition Refinement
• In the course of refinement, new events are often introduced into a model.

• Lets go back to our Course Management System…

Refinement of a machine Courses_m0

• New variable participants representing information about course participants (modelled as a relation between the sets
of open courses courses and the set PARTICIPANTS)

• Invariant inv1_2: ∀ c. c ∈ courses ⟹ courseInstructor(c) ∉ participants[{c}] states that “for every opened course c, the
instructor of this course is not amongst its participants ” (REQ10)

MACHINE Courses_m0
SEES Courses_c0
VARIABLES courses
INVARIANTS

inv0_1: courses ⊆ COURCES
inv0_2: card(courses) ≤ m

EVENTS
INITIALISATION≜ …
OPENCOURSE ≜ …
CLOSECOURSE ≜ …

Courses_m0 machine
is refined by a
machine
Members_m1

MACHINE Members_m1
REFINES Courses_m0
SEES Members_c1
VARIABLES courses participants
INVARIANTS
inv1_1: participants ∈ courses ↔ PARTICIPANTS
inv1_2: ∀ c. c ∈ courses ⟹ courseInstructor(c) ∉ participants[{c}]

EVENTS
INITIALISATION≜

then
…

act2: participants := ∅ // The variable is initialised to the empty set.
end

we had before ….

Modelling machine Members_m1
The original abstract event OPENCOURSE stays unchanged in this refinement, while an
additional assignment is added to CLOSECOURSE to update participants by removing the
information about a closing course crs from it.

OPENCOURSE refines OPENCOURSE ≜ // no changes in this event
any crs
where

grd1: card(courses) < m
grd2: crs ∉ courses

then
act1: courses := courses ∪ {crs}

end
CLOSECOURSE refines CLOSECOURSE ≜ // we add in to the event an additional action

any crs
where

grd1: crs ∈ courses
then

act1: courses := courses ∖ {crs}
act2: participants := {crs} participants // removing all the relationships between this

course and its participants.
end

Machine Members_m1
• A new event REGISTER is added. It models the registration of a participant p for an opened
course c.

• The guard of the event ensures that p is not the instructor of the course (grd1_3) and is not yet
registered for the course (grd1_4).

• The action of the event updates participants accordingly by adding the mapping c ↦ p to it.
REGISTER ≜ // the registration of a participant p for an opened course c

any p c
where

grd1_1: c ∈ courses
grd1_2: p ∈ PARTICIPANTS
grd1_3: p≠CourseInstructor(c) // p is not the instructor of the course
grd1_4: c ↦p ∉ participants // p is not yet registered for the course

then
act1: participants := participants ∪ {c ↦p} // adding all the relationships between this

course and its participants.
end

Proving consistency of Members_m1
• Now we discuss some of the important proof obligations for Members_m1:
 invariant preservation

• CLOSECOURSE/inv1_2/INV – this obligation is to ensure that inv1_2 is maintained by
CLOSECOURSE event.

∀ c. c ∈ courses ⟹ courseInstructor(c) ∉ participants[{c}]

⊢
∀ c. c ∈ courses\{crs} ⟹ courseInstructor(c) ∉ ({crs} participants)[{c}]

The obligation is trivial, because, given that c ≠ crs , ({crs} participants)[{c}] is the same as participants[{c}].

Proving consistency of Members_m1
(cont.)

• REGISTER/inv1_1/INV – this obligation is to ensure that inv1_2 is maintained by the new REGISTER event.
…

participants ∈ cources ↔ PARTICIPANTS

c ∈ courses

p ∈ PARTICIPANTS

⊢

participants ∪ {c ↦p} ∈ cources ↔ PARTICIPANTS

Verifying that the REGISTER, participants := participants ∪ {c ↦p} , establishes the invariant participants ∈ cources ↔
PARTICIPANTS.

We have following reasoning:

participants ∈ cources ↔ PARTICIPANTS holds trivially. {c ↦p} ∈ cources ↔ PARTICIPANTS also holds, since c ∈ courses and p ∈
PARTICIPANTS. Then we conclude that participants ∪ {c ↦p} ∈ cources ↔ PARTICIPANTS

Data Refinement
• In data refinement, abstract variables v are removed and replaced by concrete variables w.

•The states of abstract machine M are related to the states of concrete machine N by gluing
invariants J(v, w).

• In Event-B, the gluing invariants J are declared as invariants of N and also contain the local
concrete invariants, i.e., those constraining only concrete variables w.

• Coming back to the Course Management System…

Data refinement of Members_m1
machine

• We perform a data refinement by replacing abstract variables courses and participants by a new concrete
variable attendants:

inv2_1: attendants ∈ COURSES ℙ(PATICIPANTS)

- is a partial function from COURSES to some set of participants.

The following invariants at as gluing invariants, linking abstract variables courses and participants with
concrete variable attendants

inv2_2: courses = dom(attendants)

inv2_3: ∀ c. c ∈ courses ⟹ participants[{c}] = attendants(c) // for every opened course c, the set of

participants attending that course represented abstractly as

participants[{c}] is the same as attendants(c).

Members_m2 machine
MACHINE Members_m2
REFINES Members_m1
SEES Members_c1
VARIABLES attendants
INVARIANTS

inv2_1: attendants ∈ COURSES ℙ(PATICIPANTS)
inv2_2: courses = dom(attendants)
inv2_3: ∀ c. c ∈ courses ⟹ participants[{c}] = attendants(c)

EVENTS
…

Refinement of OPENCOURSE event

• The concrete guards ensure that crs is a closed course and the number of opened courses
(card(attendants)) has not reached the limit m.

• The action of OPENCOURSE_new sets the initial participants for the newly opened course crs to
be the empty set.

MACHINE Members_m1 REFINES Courses_m0
….
OPENCOURSE refines OPENCOURSE ≜

any crs
where

grd1: card(courses) < m
grd2: crs ∉ courses

then
act1: courses := courses ∪ {crs}

end

MACHINE Members_m2 REFINES Members_m1
…
OPENCOURSE_new refines OPENCOURSE ≜

any crs
where

grd2_1: crs ∉ dom(attendants)
grd2_2: card(attendants) ≠ m

then
act1: attendants(crc) := ∅

end
we had before …. now

Refinement of CLOSECOURSE event
• Abstract event CLOSECOURSE is refined by concrete event CLOSECOURSE_new, where one
course crs is closed at a time. The guard and action of concrete event CLOSECOURSE_new are as
expected:

MACHINE Members_m1 REFINES Courses_m0
….
CLOSECOURSE refines CLOSECOURSE ≜

any crs
where

grd1: crs ∈ courses
then

act1: courses := courses ∖ {crs}
act2: participants := {crs} participants

end

MACHINE Members_m2 REFINES Members_m1
….
CLOSECOURSE_new refines CLOSECOURSE ≜

any crs
where

grd1: crs ∈ dom(attendants)
then

act1: attendants := {crs} attendants
end

we had before …. now

Refinement of REGISTER event

MACHINE Members_m1 REFINES Courses_m0
…
REGISTER ≜

any p c
where

grd1_1: c ∈ courses
grd1_2: p ∈ PARTICIPANTS
grd1_3: p≠CourseInstructor(c)
grd1_4: c ↦p ∉ participants

then
act1: participants := participants ∪ {c ↦p}

end

MACHINE Members_m2 REFINES Members_m1
…
REGISTER_new refines REGISTER ≜

any p c
where

grd2_1: c ∈ dom(attendants)
grd2_2: p ∈ PARTICIPANTS
grd2_3: p≠CourseInstructor(c)
grd2_4: p ∉ attendants(𝑐𝑐)

then
act1: attendants(𝑐𝑐) := attendants(𝑐𝑐) ∪ {p}

end

Summary of the development
REQ id Models

REQ1 Members_c1

REQ2 Members_c1

REQ3 Courses_c0

REQ4 Members_c1

REQ5 Courses_m0

REQ6 Courses_m0

REQ7 Courses_m0

REQ8 Courses_m0

REQ9 Members_m1

REQ10 Members_m1

Machine
Courses_m0

Context
Members_c1

Context
Courses_c0

Machine
Members_m1

refines extends

sees

Machine
Members_m2

refines

Requirements tracing:
The hierarchy of the development:

sees

sees

One more example of refinement
Switching on and off air conditioner after checking temperature

Introducing roles and permissions of users

ExampLec60Ref2

ExampLec60Ref2

	Lecture 6 Part 1.
	Event-B (reminder)
	Model development with Event-B
	A course management system:�Requirements
	A course management system (cont.)
	A course management system (cont.)
	A course management system (cont.)
	A course management system: development with Event-B
	A course management system: Context
	A course management system: Machine
	A course management system: Machine
	Context Extension
	Course Management System:
	Machine Refinement
	Superposition Refinement
	Superposition Refinement
	Refinement of a machine Courses_m0
	Modelling machine Members_m1
	Machine Members_m1
	Proving consistency of Members_m1
	Proving consistency of Members_m1 (cont.)
	Data Refinement
	Data refinement of Members_m1 machine
	Members_m2 machine
	Refinement of OPENCOURSE event
	Refinement of CLOSECOURSE event
	Refinement of REGISTER event
	Summary of the development
	One more example of refinement
	Slide Number 30
	Slide Number 31
	Slide Number 32
	ExampLec60Ref2
	ExampLec60Ref2

