
Lecture 5
PROOF OBLIGATIONS, EVENT-B REFINEMENT

The semantic of the events
• In order to formally be able to control that the events do, what they are supposed to do, we
have to give them as exact mathematical semantics

• The events change the local state (the variables) of a specification.

• An event describes the relationship between the before-state and the after-state.

The state of a specification
• The state of a specification (an Event-B machine) can be a combination of all possible values of
its variables

• The state of the specification can be modelled as the value of the cartesian product of these
variable types
 For example if we have 2 variables of type natural numbers, then the state is N x N (all possible pairs of

natural numbers)

• The events of the specification change the state

Different kinds of state changes
• Deterministic

o 1-1 relationship between initial and final states – guaranteed to reach the final state
o Ex. … then moneybank := moneybank + amount end

• Non-deterministic
o 1-n relationship
o may reach different final states – Ex. … then n ∶∈ 1..5 end

• Non-executable
o in “waiting mode”
o Ex. when n>2 then n := n+1 end

• Non-terminating
o 1-0 relationship
o guaranteed not to reach a final state

Substitution
• Substitution is a central concept in Event-B

• Substitution refers to substituting a free variable with an expression
◦ Substitution of variable x in predicate P with expression E is denoted: P[E/x]
◦ A variable in an expression is free, if it is not bound by a quantifier
◦ The variables in E should not become bound after the substitution

• This can be generalised to multiple substitution P[E1, ..., En / x1, ..., xn]

Before-after-predicate
• Every event can be associated with a before-after predicate

• The predicate gives the relationship between the values of the variable right before (n) and
right after (n’) the event has occured

• Example, the events

correspond to the following before-after-predicates

FEEDBANK ≜
moneybank := moneybank + amount

ROBBANK ≜
moneybank := moneybank - amount

moneybank’ = moneybank + amount moneybank’ = moneybank - amount

Before-after predicates
Before-after predicates (BA) for events can be calculated based on the following:

• BA(any v where G then S end)= ∃v. G∧ BA(S)

• BA(when G then S end) = G ∧ BA(S)

• BA(begin S end) = BA(S)

BA calculations for statements give:

• BA(v:=E)=(v’=E)

• BA(v:∈Q)=(v’∈Q)

• BA(v :| P(v’,v)) = P(v’,v)

Traces
• Execution of the events in the machine gives rise to a trace of states

• The relationship between two successive states is given by the before-after relationship of the
event executed between the states

• Example of traces:
– {moneybank =0, moneybank =1, moneybank =0, moneybank =1, ...}

– {moneybank =0, moneybank =1, moneybank =2, moneybank =3, ...}

Verification
• Intuitively, we mean that a model is correct if every state in all traces satisfies the invariant
o The events in the model cannot reach a state that violates the invariant
oModel-checkers can check that this is the case for finite states spaces (that are sufficiently small)

• For proofs we use a stronger condition:
o The invariant is assumed to hold before execution of an event and we prove that it holds afterwards

(Invariant preservation)
o The initialisation is proved to establish the invariant

Proofs
• Verification of Event-B models is mainly done with proofs

o Proof Obligations (PO:s) (predicates) are generated for the models
o Show that a predicate is true for all values on the variables

o Automatic proof tools in the Rodin platform are based on the sequent calculus

On correctness of specifications
• Development in Event B relies on mathematical (logical) proofs

• In predicate logic we have:

FALSE ⇒ any statement

anything can be proved from false assumptions

• Hence, a contradictive specification can be implemented by any program
• if the invariant evaluates to FALSE (it is unsatisfiable) then anything can be proved;
• the Event-B specification is trivially ”correct”.

• In order to prohibit this, Event-B forces the developers to check that the first specification is
correct and consistent.

Conditions for correct specification
In order to check the correctness of a specification, Event-B generates the following proof
obligations

• Conditions for the context
 checks that the axioms and theorems are well defined

• Conditions for the invariant
 checks that the invariant and theorems are well defined

• Conditions for the initialisation
 proves that the assignment statements in the initialisation establish a state that satisfies the invariant(s)

• Conditions for the events
 proves that each event preserves the invariant(s)

Proof Obligations:
Sequent representation

• Sequent representation of PO:

hypotheses

⊢
goal

• The truth of the hypotheses leads to the truth of the goal.

• The symbol ⊢ is sometimes called stile or turnstile.

• If any of the hypotheses is ⊥(FALSE) then any goal is trivially established.

• If the hypotheses are identically ⊤ (TRUE) then the hypotheses will be omitted.

Consistency of Contexts
In order to be consistent the Event-B context must satisfy the following properties:

1. All its axioms must be well defined (axm/WD)

2. All its theorems must be well defined (thm/WD)

3. All its theorems must be proved (thm/THM)

The Rodin tool generates proof obligations to check that all expressions are well defined.

Consistency of a Machine
In order to be consistent a machine must satisfy the following conditions:

1. All it invariants and theorems must be well defined (inv/WD and thm/WD)

2. All its event guards and actions must be well defined (grd/WD and act/WD)

3. All its nondeterministic events must be feasible (evt/act/FIS)

4. All its theorems must be proved (thm/THM)

5. All invariants must be established by the initialisation (INIT/inv/INV)

6. All invariants must be preserved by all events (evt/inv/INV)

Feasibility of non-determinism
• Feasibility states that the action of an event is always feasible whenever the event is enabled.
• In other words, there are always possible to find “after” values for the variables to satisfy the before-
after predicate, e.g., before after predicate cannot be x’>0 ˄ x’<0

The feasibility proof obligation evt/act/FIS is as follows:

Axioms and theorems

Invariants and theorems

Guards of the event

⊢
∃v’. Before-after predicate

Invariant preservation
• An essential feature of an Event-B machine M is its invariants:

• They show properties that hold in every reachable state of the machine.

• The invariant preservation proof obligation evt/inv/INV is as follows:

Axioms and theorems
Invariants and theorems
Guards of the event
Before-after predicate of the event
⊢
Specific invariant with updated values

Invariant preservation: example
• Assume that we have an event EVENT and an invariant y ∈ N.

The event is given as
EVENT =
any x
where

x∈N
y < z

then y := z+x
end

and the invariant is given as y ∈ N

 BA(EVENT) = ∃v. Guards ∧ BA(action)

y∈N
x∈N
y<z
(∃x.x∈N∧y<z ∧y’=z+x)
⊢
y’ ∈ N

Invariant establishment
• Invariant establishment states that any possible state after initialisation given by the after
predicate must satisfy the invariant I.

• The invariant establishment proof obligation INIT/inv/INV is as follows:

Axioms and theorems
Guards of the event
Before-after predicate of the event
⊢
Specific invariant with updated values

Contradicting events
An event can be contradicting (its correctness cannot be proved), if

• its guard is too weak

• the guard or the action is incorrect

• the invariant is too strong (too precise) (states properties that are not maintained by the
events)

• the invariant is too weak (does not give enough assumptions for the proof to succeed)

• the invariant simply is wrong

Consistency of a Machine
In order to be consistent a machine must satisfy the following conditions

1. All it invariants and theorems must be well defined (inv/WD and thm/WD)

2. All its event guards and actions must be well defined (grd/WD and act/WD)

3. All its nondeterministic events must be feasible (evt/act/FIS)

4. All its theorems must be proved (thm/ THM)

5. All invariants must be established by the initialisation (INIT/inv/INV)

6. All invariants must be preserved by all events (evt/inv/INV)

7. Deadlock freeness (DLF)

Deadlock freeness
• For non-terminating systems we need to guarantee that there is always an enabled event, i.e.
that the system is deadlock free

• The deadlock freeness proof obligation DLF is as follows:

Axioms and theorems
Invariants and theorems
⊢
Disjunction of the guards of the events

Proof in Rodin
When discharging a proof in Rodin, three views are available:

• hypotheses,

• goal and

• proof control that provides

access to a range of provers and also

tactics for manual proof.

Labelling of proof obligations
• Proof obligations are labelled by Rodin as follows:

event-name/predicate id/proof type id

• For example:

Green color indicates - a proof obligation to show that the INITIALISATION event satisfies the
invariant labelled with inv1.

Red (brown) color indicates - a proof obligation to show that the RobBank event does not
satisfy the invariant labelled with inv1.

CoffeeClub model (from Lecture 3)
MACHINE CoffeeClub
VARIABLES moneybank

inv1: moneybank ∈ ℕ
EVENTS
INITIALISATION ≜
then

act1: moneybank:= 0
end

FEEDBANK ≜
any amount
where

grd1: amount ∈ ℕ1
then

act1: moneybank := moneybank + amount
end

ROBBANK ≜
any amount
where

grd1: amount ∈ 1 .. moneybank
then

act1: moneybank := moneybank - amount
end

END

Proof Obligations for CoffeeClub
• CoffeeClub is a very simple model and
the POs are correspondingly simple.

• As a consequence the POs are easily
discharged automatically by the provers
in the Rodin tool.

• The following POs are generated for
the above machine.

• Notice that all POs concerned with
maintenance of INV 1 are verifying that
REQ1 is satisfied.

Proving prove obligations
INITIALISATION/inv1/INV:

⊤

⊢

0 ∈ ℕ

Assuming nothing, (⊤ or true), show that 0 is an element of the set of natural numbers. Clearly,
it is true.

Verifying that the INITIALISATION, moneybank := 0, establishes the invariant moneybank ∈ ℕ.

Invariants
inv1: moneybank ∈ ℕ

…
INITIALISATION≜

then
act1: moneybank:= 0

end

Proving prove obligations
FEEDBANK/inv1/INV:

moneybank ∈ ℕ
amount ∈ ℕ1
⊢

moneybank + amount ∈ ℕ

Verifying that the actions of FEEDBANK, moneybank := moneybank + amount, maintains the
invariant, moneybank ∈ ℕ.
This is clearly true as both moneybank and amount are natural numbers.

Invariants
inv1: moneybank ∈ ℕ

…
FEEDBANK ≜
any amount

where
grd1: amount ∈ ℕ1

then
act1: moneybank := moneybank + amount

end

Proving prove obligations
ROBBANK/inv1/INV:

moneybank ∈ ℕ

amount ∈ 1.. moneybank

⊢

moneybank − amount ∈ ℕ

Similar to the preceding POs, but this time verifying that moneybank ∈ N
is maintained by the action moneybank := moneybank − amount.

This is not quite so simple, but the guard amount ∈ 1 .. moneybank ensures that amount ≤
moneybank and hence the invariant is maintained.

Invariants
inv1: moneybank ∈ ℕ

…
RODBANK ≜
any amount

where
grd1: amount ∈ 1.. moneybank

then
act1: moneybank := moneybank - amount

end

Refinement relation
• The refinement relation relates the state of the machine being refined to the state of the
refinement machine.

• The refinement relation is expressed explicitly or implicitly in the invariant of a refinement.

Refinement rules
Refinement requires consistency:

behaviour of a refined event must be acceptable behaviour of the unrefined event in the
unrefined model.

Informal examples of refinement
Examples of refinement of a car:

Case 1: Suppose you wanted to modify your car by installing a GPS navigation machine. This
would be a refinement of your current car and you would expect that the rest of the car is not
affected by the refinement. This refinement is an example of an extension, that is the rest of the
car is not changed and the refinement is an addition.

Case 2: Suppose, on the other hand you wanted to change your car from right-hand drive to left-
hand drive. This is clearly not an extension like the above modification. It should be a refinement
in that the functionality of the car is not changed, but there certainly are significant changes to
the algorithm. This would probably be an algorithmic refinement: the behaviour of the car does
not change, but the steering and other controls have changed positions and changed
connections to the rest of the car, so the algorithm at some level has changed.

Refinement rules
The following rules apply to refinement:

 strengthen guards and invariants: guards and invariants can be strengthened, provided overall
functionality is not reduced;

 nondeterminism can be reduced: where a model offers choice, then the choice can be reduced
— but not increased — in the refinement;

 the state can be augmented by an orthogonal state: new state variables, whose values do not
affect the existing state, may be added.

Refinement
 Consistent with the refinement rules, a single event may be refined by multiple events, or
conversely, multiple events may be refined by a single event.

 New events: As well as refinements of the events of the refined machine, the refinement may
introduce new events.
 The new events must NOT change variables inherited from the state of the refined machine.

This is a restriction that recognises that a machine state can be modified only by the events of
that machine, or their refinements.

Refinement of the CoffeeClub model
The CoffeeClub (see Lecture 3) we define a moneybank that models an amount (of money), and
events that describe adding to (FEEDBANK event) or taking from (ROBBANK event) the amount
modelled by moneybank. We want to add new functionality.

The new requirements are:

ID Requirements

REQ4 A facility for members to join the coffee club; each member has a distinct membership id.

REQ5 Members have an account that cannot go into debt;

REQ6 An operation that enables a member to add money to their account;

REQ7 Money added to a members account is also added to the club money bank;

REQ8 An operation that sets the price for a cup of coffee;

REQ9 An operation that enables a member to buy a cup of coffee; the member’s account is
reduced by the cost of a cup of coffee;

REQ10 Money reduced from a members account is also deleted from the club money bank;

Refinement of the CoffeeClub model
We will introduce variables members, accounts and coffeeprice and events that correspond to

• a new member joining the club: each member of the club is represented by a unique identifier that
is arbitrarily chosen from an abstract set MEMBERS;

• a member adding money to their account: each member has an account, to which they can add
“money”;

• a member buying a cup of coffee: there will be a variable, coffeeprice, representing the cost of a
cup of coffee, and each member can buy a cup of coffee provided they have enough money in their
account.

The value of all money added to/removed from accounts is added to/removed from moneybank.

CoffeeClub: Context

• An abstract set MEMBERS, which we will use as the source of unique identifiers for members.

• The set is not given a specific size (cardinality), but it is declared to be finite, meaning that it
does have a size (cardinality) that is a natural number. Sets are potentially infinite, unless
declared otherwise. Note that in Event-B infinity is not a natural number.

CONTEXT Members
SETS

MEMBERS // REQ4
AXIOMS

axm1: finite(MEMBERS)
axm2: MEMBERS≠ ∅

END

Refinement: Concepts
Concepts of refinement:

• Extension is one type of refinement in which the state is extended by adding new variables and
the functionality of some existing events are extended by the addition of new actions.

• In extended mode of an event, only the new parameters, guards and actions are displayed in
this presentation. That is, only the actual extensions refined events are shown. This is done to
make the extension clearer. In some of the following events no changes are shown indicating
that the event is not affected by the extension.

Refinement of CoffeeClub machine
MACHINE MemberShip REFINES CoffeeClub
SEES Members
VARIABLES

moneybank // ”old” variable from the CoffeeClub model
members // REQ4: the set of current id members
accounts // REQ5: the member accounts
coffeeprice // REQ8: the price of a cup of coffee

INVARIANTS
inv1: moneybank ∈ ℕ // ”old” invariant from the CoffeeClub model
inv2: members ⊆ MEMBERS // REQ4: each member has unique id
inv3: accounts ∈ members → ℕ // REQ5: each member has an account (total function)
inv4: coffeeprice ∈ ℕ // REQ8: any price other than free!

…

MemberShip machine (cont.)
EVENTS
INITIALISATION: extended ≜

then
act2: members := ∅ // empty set of members
act3: accounts := ∅ // empty set of accounts
act4: coffeeprice ∶∈ N1 // initial coffee price set to arbitrary non-zero value

end
SETPRICE ≜ // new event modelling REQ8: operation sets the price for a cup of coffee

any amount
where

grd1: amount ∈ ℕ𝟏𝟏 // any value from the set of natural numbers, non-zero
then

act1: coffeeprice := amount
end

INITIALISATION event is extended here meaning that we
add new actions to initialise variables of this refinement

step but we keep that we have defined early.

MemberShip machine (cont.)
NEWMEMBER ≜ // new event modelling REQ8

any m
where

grd1: m ∈ MEMBERS \ members // choose an unused element
of MEMBERS

then
act1: members := members ∪ {m} // add new member m to the

members set
act2: accounts(m) := 0 // initial value of the member’s

account is 0
end

Notation

MemberShip machine (cont.)
CONTRIBUTE ≜ // REQ6: a member can add money to own account

any amount
m

where
grd1: amount ∈ N1 // any positive amount
grd2: m∈ members // any member of a club

then
act1: accounts(m) := accounts(m) + amount // this amount is added

to the account of the member m
act2: moneybank := moneybank + amount // moneybank is

updated REQ7
end

MemberShip machine (cont.)

BUYCOFFEE ≜ // REQ9: An operation that enables a member to buy a cup of coffee;
any m
where

grd1: m∈ members
grd2: accounts(m) ≥ coffeeprice

then
act1: accounts(m) := accounts(m) − coffeeprice

// the member’s account is reduced by the cost of a cup of coffee;
act2: moneybank := moneybank - coffeeprice

// moneybank is updated as required by REQ10

end

MemberShip machine (cont.)
Neither FEEDBANK nor ROBBANK are affected by that model extension. So, these events are
stay the same:

…
FEEDBANK extended ≜

any
where
then
end

ROBBANK extended ≜
any
where
then
end

Model verification via generating proof
obligations
The proof obligations contain a surprise:

Contribute/moneybank/EQL on action

moneybank := moneybank + amount

cannot be discharged by the Rodin auto-prover.

This EQL proof obligation requires a proof that moneybank is not changed, but of course,

moneybank := moneybank + amount

must change the value of the variable moneybank, unless amount is 0.

Violation of refinement rules
CONTRIBUTE appears in the refinement as a new event, but here it is changing the value of the
variable moneybank, which is part of the state of CoffeeClub, the machine being refined.

The event FEEDBANK of CoffeeClub changes the value of the variable moneybank in a similar
way to contribute, thus CONTRIBUTE must be seen as a refinement of FEEDBANK and
CONTRIBUTE should be defined as follows.

CONTRIBUTE event refines FEEDBANK
CONTRIBUTE: refines FEEDBANK ≜

any amount
m

where
grd1: amount ∈ N1
grd2: m ∈ members

then
act1: accounts(m) := accounts(m) + amount
act2: moneybank := moneybank + amount

end

BUYCOFFEE event
Similar reasoning on the event BUYCOFFEE:

BUYCOFFEE is a new event in the refinement, but it is changing the value of the variable
moneybank, which is part of the state of CoffeeClub.

The event ROBBANK of CoffeeClub changes the value of the variable moneybank in a similar
way, thus BUYCOFFEE must be seen as a refinement of ROBBANK.

Structure of the resulting MemberShip
model
MACHINE MemberShip REFINES CoffeeClub
SEES Members
VARIABLES

moneybank members accounts coffeeprice
INVARIANTS

inv1: moneybank ∈ ℕ
inv2: members ⊆ MEMBERS
inv3: accounts ∈ members → ℕ
inv4: coffeeprice ∈ ℕ

EVENTS
INITIALISATION: extended ≜ …
SETPRICE ≜ …
NEWMEMBER ≜ …
CONTRIBUTE refines FEEDBANK ≜ …
BUYCOFFEE refines ROBBANK ≜ …
END

On requirements document
The main goal of formal specification is to identify ambiguous, missing or contradicting
requirements

There should be a correspondance between the description of the requirements and
specification.

Start from transforming a general system description into a set of labeled requirements and
assumptions.

For example: ”a libraty system keeps track of the books borrowed by each reader and ensures
that no more than 20 books can be borrowed”

asm1. There is a finitie non empty set of readers

asm2. There is a finite non empty set of books

req1. Each user has a set of borrowed books associated with her. The cardinality of the set is
from zero to 20.

On requirements document
While specifying and refining system, keep track of which assumptions and requirements have
been modelled

For example:

asm1. There is a finite non empty set of readers Context0/axm1

asm2. There is a finite non empty set of books Context0/axm2

req1. Each user has a set of borrowed books associated with her. The cardinality of the set is
from zero to 20. Variable loans Machine M1

req2. A user can borrow a book which is on shelf and not reserved if the maximum amount of
books in her loan is not exceeded. Event Borrow Machine M1

Sequent calculus
• Sequent calculus is used to perform the proofs of the PO:s for the Event-B models

• A sequent is something we want to prove
 It usually is of the form :

Hypotheses (H)

⊢
Goal (G)

 The symbol ⊢ is called turnstile
 H is a (possibly empty) set of predicates that are called hyphothesis or assumptions
 G is predicate that is called the goal or conclusion

• The intuitive semantics is that G can be proved under the assumptions H. That is, the
assumptions H yield conclusion G.

Examples of Sequents

d ∈ ℕ
n ∈ ℕ
𝑛𝑛 ≤ 𝑑𝑑
⊢

n + 1 ∈ ℕ

d ∈ ℕ
n ∈ ℕ
𝑛𝑛 < 𝑑𝑑
⊢

n + 1 ≤ 𝑑𝑑

Inference rules
• An inference rule is used to construct proofs of sequents

• It consists of two parts:
o Antecedent – a finite number of sequents
o Consequent – a sequent

A is the antecedent, C the consequent and r1 gives the name of the inference rule

Axioms
• An inference rule can have an empty antecedent

• The inference rule is then called an axiom (schema)

• A sequent that can be proved from the axioms is called a theorem

Inference rule examples

Theory
• A theory is a set of inference rules

• Enables proof of a sequent within a certain theory T

• A proof is a finite tree of applications of inference rules
◦ Every node in the tree consists of a pair (r,s) where r is the inference rule and s is the consequent for

that rule
◦ The children of a node are all the sequents that appear in the antecedent of the rule
◦ All leaf-nodes have inference rules without antecedents

Theory and proof - example
• A theory T

• A proof of S1

A practical example

	Lecture 5
	The semantic of the events
	The state of a specification
	Different kinds of state changes
	Substitution
	Before-after-predicate
	Before-after predicates
	Traces
	Verification
	Proofs
	On correctness of specifications
	Conditions for correct specification
	Proof Obligations: �Sequent representation
	Consistency of Contexts
	Consistency of a Machine
	Feasibility of non-determinism
	Invariant preservation
	Invariant preservation: example
	Invariant establishment
	Contradicting events
	Consistency of a Machine
	Deadlock freeness
	Proof in Rodin
	Labelling of proof obligations
	CoffeeClub model (from Lecture 3)
	Proof Obligations for CoffeeClub
	Proving prove obligations
	Proving prove obligations
	Proving prove obligations
	Slide Number 30
	Refinement relation
	Refinement rules
	Informal examples of refinement
	Refinement rules
	Refinement
	Refinement of the CoffeeClub model
	Refinement of the CoffeeClub model
	CoffeeClub: Context
	Refinement: Concepts
	Refinement of CoffeeClub machine
	MemberShip machine (cont.)
	MemberShip machine (cont.)
	Notation
	MemberShip machine (cont.)
	MemberShip machine (cont.)
	MemberShip machine (cont.)
	Model verification via generating proof obligations
	Violation of refinement rules
	CONTRIBUTE event refines FEEDBANK
	BUYCOFFEE event
	Structure of the resulting MemberShip model
	On requirements document
	On requirements document
	Sequent calculus
	Examples of Sequents
	Inference rules
	Axioms
	Inference rule examples
	Theory
	Theory and proof - example
	A practical example

