
DD 2460
Software safety and security

Lecture 3
Formal Modelling. Introduction to Event-B modelling

What is a formal specification?

• A formal specification is the expression, in some formal language and
at the some level of abstraction, of a collection of properties some
system should satisfy.

• The formal specification depends on
• what does “system” mean, i.e., where one draws the boundaries,
• what kind of properties are of interest,
• what level of abstraction is considered, and
• what kind of formal language is used.

The “system” being specified may be:

• a descriptive model of the domain of interest;
• a prescriptive model of the software and its environment;
• a prescriptive model of the software alone;
• a model for the user interface;
• the software architecture;
• a model of some process to be followed;
• etc.

The “properties” under consideration may
refer to:
• high-level goals;
• functional requirements;
• non-functional requirements about timing, performance, accuracy, security, etc.;
• environmental assumptions;
• services provided by architectural components;
• protocols of interaction among such components;
• and so on.

Formal specification

• “Formal” is often confused with “precise” (the former entails the latter but the
reverse is not true).

• A specification is formal if it is expressed in a language made of three
components:

• rules for determining the grammatical well-formedness of sentences (the syntax);
• rules for interpreting sentences in a precise, meaningful way within the considered domain

(the semantics);
• and rules for inferring useful information from the specification (the proof theory).

• The latter component provides the basis for automated analysis of the
specification.

Why specify formally?

• Problem specifications are essential for designing, validating,
documenting, communicating, reengineering, and reusing solutions.

• Formality helps in obtaining higher-quality specifications within such
processes;

• it also provides the basis for their automated support.
• The act of formalization in itself has been widely experienced to raise

many questions and detect serious problems in original informal
formulations.

• Besides, the semantics of the formalism being used provides precise rules
of interpretation that allow many of the problems with natural language to
be overcome. A language with rich structuring facilities may also produce
better structured specifications.

Specify... for whom?

• Formal specifications may be of interest to different stakeholders having fairly
different background, abstractions and languages:

• clients
• domain experts
• users
• architects
• programmers
• and tools.

Specify... when?

• There are multiple stages in the software life-cycle at which formal
specifications may be useful:

• when modeling the domain;
• when elaborating the goals, requirements on the software, and assumptions

about the environment;
• when designing a functional model for the software;
• when designing the software architecture;
• or when modifying or reengineering the software.

Value of formal specification

• The cost of fixing a specification or design error is higher the later in
the development that error is identified.

• Boehm’s First Law: Errors are more frequent during requirements
and design activities and are more expensive the later they are
removed.

Specification methods

• Facilitate discovering errors at early stages of system development
when they are less expensive to fix.

• Common errors introduced in the early stages of development are
errors in understanding the system requirements and errors in writing
the system specification.

• Without a rigorous approach to understanding requirements and
constructing specifications, it can be very difficult to uncover such
errors other than through testing of the software product after a lot
of development has already been undertaken.

Why is it difficult?

• Lack of precision in formulating specifications resulting in
ambiguities and inconsistencies that are difficult to detect.

• High complexity
 complexity of requirements;
 complexity of the operating environment of a system or
 complexity of the design of a system.

The use of formal modelling

• The main aim is to overcome the problem of lack of precision.
• Formal modelling languages are supported by verification methods

that support the discovery and elimination of inconsistencies in
models.

• But precision does not address the problem of complex requirements
and operating environments.

• Complexity cannot be eliminated but we can try to master it via
abstraction.

Problem abstraction

• Abstraction can be viewed as a process of simplifying the problem at
hand and facilitating our understanding of a system.

• Abstraction should
 focus on the intended purpose of the system and
 ignore details of how that purpose is achieved.

Abstraction

• If the purpose of the system is to provide some service, then
 model what a system does from the perspective of the service user.
 ‘user’ might be computing agents as well as humans

• If the purpose of the system is to control, monitor or protect some
phenomena, then
 the abstraction should focus on those phenomenon, considering in what way

they should be monitoring, controlled or protected and should ignore the way
in which this is achieved.

Refinement

• However, we do not ignore the complexity indefinitely: instead, through
incremental modelling and analysis, we can gradually improve our
understanding and analysis of a system and make it more detailed.

• This incremental treatment of complexity is called refinement.
• Refinement is a process of enriching or modifying a model in order to

• augment the functionality being modelled, or
• explain how some purpose is achieved.

• Facilitates abstraction: we can postpone treatment of some system
features to later refinement steps.

• Event-B provides a notion of consistency of a refinement:
• Use proof to verify the consistency of a refinement step
• Failing proof can help us identify inconsistencies

Event-B

• It provides us with a rich modelling language, based on set theory
• language allows precise descriptions of intended system behaviour (models) to be written in

an abstract way

• Event-B uses the abstract machine notation as the basis.
• Event-B is successor of the B Method (also known as classical B).

From the B Method to Event-B

• Inventor: Jean-Raymond Abrial (his previous work is Z framework)
• Both classical B and Event-B are based on set theory
• Analyse models using proofs and additionally -- model checking, animation
• Refinement-based development

• Verify conformance between higher-level and lower-level models
• Chain of refinements

o Commercial tools for classical B: Atelier-B (ClearSy, France), B-Toolkit (B-Core, UK)

o Why Event-B: realisation that it is important to reason about system behaviour, not just software
o Event-B is intended for modelling and refining system behaviour

Industrial uses of Event-B

• Event-B in railway interlocking

• Alstrom, Systerel
• Event-B in smart grids

• Selex, Critical Software
• Event-B in a cruise control system and a start-stop system

• Bosch
• Event-B in train control and signaling systems

• Siemens Transportation

Rodin

• Rodin – the automated tool platform for Event-B.

• www.event-b.org

• Integrated development environment for Event-B

• Models can be created using built-in editor.

• The platform generates proof obligations that can be discharged either automatically or interactively.

• Rodin is a modular software and many extensions are available.
 These include alternative editors, document generators, team support, and extensions (called plugins) some of which

include support decomposition and records.

An Event-B project

o A project contains the complete mathematical development.
o Contains two kinds of components: Contexts and Machines.
o Projects and components are listed in the tool

Structure of Event-B model (specification)

• An Event-B model is made of several components.
A specification consists of
 a static part, specified in a context, and
 a dynamic part, specified in a machine.

MACHINE

VARIABLES
INVARIANTS
THEOREMS
VARIANT
EVENTS

CONTEXT

SETS
CONSTANTS
AXIOMS

´´sees´´

Relationship between machines and contexts

 Contexts contain the static structure of a discrete system (constants
and axioms)
 Machines contain the dynamic structure of a discrete system

(variables, invariants, and events)

• - Machines see contexts
• - Contexts can be extended
• - Machines can be refined

Machine m1

Context c2

Context c1

Machine m2

refines extends

sees

sees

Visibility Rules

 A machine can see several contexts (or no context at all).

 A context may extend several contexts (or no context at all).

 A machine implicitly sees all contexts extended by a seen context.

 A machine only sees a context either explicitly or implicitly.

 A machine only refines at most one other machine.

 No cycle in the "refines" or "extends" relationships.
Machine m1

Context c2

Context c1

Machine m2

refines extends

sees

sees

Context part

• A context with name Context1 has the following form:

CONTEXT Context1

SETS ⟨list of carrier sets⟩

CONSTANTS ⟨list of constants⟩

AXIOMS ⟨list of labelled axioms⟩

THEOREMS* ⟨list of labelled

theorems⟩

END

 the context contains the static part of a model

 the context defines sets, constants that can be used
in several different machines

 different properties for the sets and constants are
given in axioms-clause

Context part

• A context with name Context1 has the following form:
 A context has a unique name

 sets-clause contains the non-empty carrier sets

 constants-clause contains constants
• they can be read but not assigned values

 axioms-clause lists the predicates that should hold for
the constants
• Defines types and logical properties
• Hypotheses in all proof obligations

• theorems-clause lists the theorems
• They have to be proved within the context

CONTEXT Context1

SETS ⟨list of carrier sets⟩

CONSTANTS ⟨list of constants⟩

AXIOMS ⟨list of labelled axioms⟩

THEOREMS* ⟨list of labelled

theorems⟩

END

Context part

• A context with name Context1 has the following form:
 A context can extend another context

 extends-clause defines it
CONTEXT Context1 EXTENDS Context0

SETS ⟨list of carrier sets⟩

CONSTANTS ⟨list of constants⟩

AXIOMS ⟨list of labelled axioms⟩

THEOREMS* ⟨list of labelled

theorems⟩

END

Example on context

CONTEXT UniversityContext

SETS STUDENTS …

CONSTANTS 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

AXIOMS

axm1: 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ ℤ

axm2: 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 30

…

END

Machine part

• A machine with name Machine1 has the following form:

MACHINE Machine1

SEES* ⟨list of context names⟩

VARIABLES ⟨list of variables⟩

INVARIANTS ⟨list of labelled invariants⟩

EVENTS ⟨list of events⟩

END

 A machine defines the dynamic behaviour of a model
through events that are guarded by and act on the
variables.

 Machine-clause gives the name of the machine

 Sees-clause lists the contexts that the machine can
see

 Variables-clause gives state of the module that can be
modified locally in the machine

Machine part

• A machine with name Machine1 has the following form:
 Invariants-clause lists the predicates that must hold for
the variables and gluing invariants
• The types of the variables
• Restriction and relations between variables

 Event-clause contains the relevant events that change
the state of the machine while preserving the invariant
• An event describes the relationships between the state

before the event takes place and just afterwards
• Event INITIALISATION gives initial values to the variables and

establishes the invariants

MACHINE Machine1

SEES* ⟨list of context names⟩

VARIABLES ⟨list of variables⟩

INVARIANTS ⟨list of labelled invariants⟩

EVENTS ⟨list of events⟩

END

Remarks
• Machines should not be thought of as programs
 although they might be implemented by software.

• The machine models a state and the events represent behaviour that
could occur
 the conditions that must apply if an event is to fire; and
 the effect the event has on the state.

• All communication occurs through the state.
 machine gives a representation of possible behaviours of some system. The

system might contain non-software components.

Example on a machine

MACHINE RegistrationSystem
SEES UniversityContext

VARIABLES registered enrolled

INVARIANTS

inv1: registered ⊆ STUDENTS

inv2: enrolled ⊆ STUDENTS

inv3: enrolled ⊆ registered

…

EVENTS ⟨list of events⟩

END

An Event-B model

 A model can contain:
• Only contexts (represents a pure mathematical structure)
• Only machines (the model is not parametrised)
• Both machines and contexts

 All machines and context identifiers must be distinct in the same
model (project)

Event-B events

 All events represents transitions
 The events modify the state of the

variables
• An event is a state transition in a

discrete dynamic system.
 They are executed in one (atomic)

step
 Only one event fires at a time.

 An event essentially consists of
guards and actions.
Hence they are said to be guarded events.

• Event = guard + action

MACHINE Machine1

SEES* ⟨list of context names⟩

VARIABLES ⟨list of variables⟩

INVARIANTS ⟨list of labelled invariants⟩

EVENTS ⟨list of events⟩

END

Guarded events

Event = guard + action
 An event essentially consists of guards and actions.

• the guards define the necessary conditions for the event to be enabled
• the actions define the way the variables of the machine are modified

 A guarded event can be executed only when its guard is true
• if more than one guard is true, one of them is non-deterministically chosen
• if no guards are true, the specification will terminate.

Event structure

Event1 = // event name
any

x1 x2 // event parameters
where

G1 // event guards
G2
…

then
v1 := exp1 // event actions
v2 := exp2
…

end

 Events are identified by unique names

 any-clause lists the parameters (or local
variables) of the event

where-clause contains the guards of the
event, i.e., the conditions for the event to be
enabled

 then-clause lists the actions of the event

Events: general form

Event1 =

any
x1, x2
where

G1
G2
…

then
v1 := exp1
v2 := exp2
…

end

 A machine can contain arbitrary many events

 An event can have one of the following forms:

Event2 =
when
G1
G2
…
then

v1 := exp1
v2 := exp2
…

end

Event3 =

begin
v1 := exp1
v2 := exp2

…
end

Event guards

 A guards is a predicate that specifies enabling conditions under which
events may occur
 Example, booking a room for the lecture

grd1: 𝒍𝒍𝒍𝒍𝒍𝒍 ∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳
grd2: 𝒍𝒍𝒍𝒍 ∈ LHALL

 Guards should be strong enough to ensure invariants are maintained
by the actions of an event but not too strong that they prevent
desirable behaviour (invariants will be discussed later)

Event actions

 An action describes the ways one or several state variables are
modified by the occurrence of an event
 An action might be either deterministic or non-deterministic
 There are three principle constructions — that Event B calls

substitutions — for changing the state of a machine:
• 𝒙𝒙 ≔ 𝒍𝒍 // 𝒙𝒙 becomes equal to the value of e

This rule may be used multipletimes to assign to any number of
variables.

• 𝒙𝒙: | 𝑷𝑷 // 𝒙𝒙 becomes such that it satisfies the before-after predicate P

• 𝒙𝒙:∈ 𝑳𝑳 // 𝒙𝒙 becomes in the set S

• 𝒙𝒙 ≔ 𝒍𝒍 and 𝒙𝒙: | 𝑷𝑷 can be extended to multiple assignment:
𝒙𝒙,𝒚𝒚 ≔ 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆 and 𝒙𝒙,𝒚𝒚 ∶ | 𝑷𝑷 ,

• and recursively to many variables.

• The variables must be distinct! 𝒙𝒙,𝒙𝒙, 𝒛𝒛 ≔ 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆

• Note: all assignments can be written in the form: 𝒙𝒙,𝒚𝒚: |𝑷𝑷

Deterministic action (example)

 Example of deterministic actions on variables 𝒙𝒙, 𝒚𝒚 and 𝒛𝒛:
Event example

...
then

act1: 𝒙𝒙 ≔ 𝒙𝒙 + 𝒚𝒚
act2: 𝐲𝐲 ≔ 𝒚𝒚 + 𝒙𝒙 − 𝒛𝒛

...
 Notice that variables 𝒙𝒙 and 𝒚𝒚 should be distinct.
 Actions are supposed to be ´´performed´´ in parallel.
 Variables 𝒙𝒙 and 𝒚𝒚 are assigned to 𝒙𝒙 + 𝒚𝒚 and 𝒚𝒚 + 𝒙𝒙 − 𝒛𝒛, respectively.
 Variable 𝒛𝒛 is used but not modified by these actions

Non-deterministic actions

• A non-deterministic actions of the form
𝒙𝒙 ∶ | 𝑷𝑷

// 𝒙𝒙 becomes such that it satisfies the before-after predicate 𝑷𝑷

 The before-after-predicate gives the condition that holds just before
the action takes place. It may contain all variables of the machine.

Non-deterministic actions (example)

𝒙𝒙,𝒚𝒚 ∶ | 𝒙𝒙′ > 𝒙𝒙 ∧ 𝒚𝒚′ < 𝒙𝒙′

 On the LHS of operator :|, we have two distinct variables
 On the RHS, we have a before-after predicate
 The RHS contains occurrences of 𝒙𝒙 and 𝒚𝒚 (before values) and primed

occurrences 𝒙𝒙′ and 𝒚𝒚′ (after values)
 As a result (in this example):

• 𝒙𝒙 is assigned a value greater than its previous value
• 𝒚𝒚 is assigned a value smaller than that, 𝒙𝒙′, assigned to 𝒙𝒙

Non-deterministic action (cont.)

𝒙𝒙 ∶∈ 𝑳𝑳
 The variable is assigned an arbitrary element of the set 𝑳𝑳.
 This form is a special form of the previous one.

 Example 1:
act1: 𝒙𝒙 ∶∈ 𝒙𝒙 + 𝒆𝒆,𝒚𝒚 − 𝒆𝒆, 𝒛𝒛 + 𝟑𝟑

Here 𝒙𝒙 is assigned any value from the set 𝒙𝒙 + 𝒆𝒆,𝒚𝒚 − 𝒆𝒆, 𝒛𝒛 + 𝟑𝟑
 Example 2:

act2: 𝒔𝒔𝒔𝒔 ∶∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑳𝑳𝑺𝑺𝑳𝑳𝑳𝑳
Here 𝒔𝒔𝒔𝒔 is assigned any value from the set 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑳𝑳𝑺𝑺𝑳𝑳𝑳𝑳

Non-deterministic action (more examples)

act1: 𝒙𝒙 ∶∈ 𝒂𝒂 | 𝟎𝟎 < 𝒂𝒂 ∧ 𝒂𝒂 < 𝟓𝟓𝟎𝟎

Here 𝒙𝒙 is assigned any arbitrary number between 1 and 49.

CoffeeClub

The elementary description of machines will be illustrated with a
simple running example of a coffee club.
• We will start with a machine that will be used to model some

requirements of the coffee club.

Moneybank requirements

• For the coffee club we require a moneybank that stores money used
by the coffee club.

• REQ1: a money bank is used for storing and reclaiming finite, non-
negative funds for a coffee club;

• REQ2: there is an operation for adding money to the money bank;
• REQ3: there is an operation for removing money from the money

bank; it cannot remove more money than the amount of money
which bank contains.

Moneybank model

MACHINE CoffeeClub
VARIABLES moneybank

// The machine state is represented by the variable, moneybank,
denoting the money bank for the coffee club.

INVARIANTS
inv1: moneybank ∈ ℕ // REQ1: moneybank must not be negative.

// here ∈ set membership
// ℕ - the set of natural numbers

…

Model events

…
EVENTS
INITIALISATION≜

then
act1: moneybank:= 0 // we initialise moneybank to 0

end

FEEDBANK ≜ // REQ2: adding to moneybank
any amount
where

grd1: amount ∈ ℕ1 // ℕ1 is used rather than ℕ to prevent the event firing uselessly if amount = 0
then

act1: moneybank := moneybank + amount
end

Model events (cont.)
…
ROBBANK ≜ // REQ3: removing money from moneybank

any amount
where

grd1: amount ∈ 1 .. moneybank
// The amount must not exceed the contents of money-

bank and we don’t need to uselessly remove an amount of 0
then

act1: moneybank := moneybank - amount
end

END

CoffeeClub model
Machine CoffeeClub
Variables moneybank

inv1: moneybank ∈ ℕ
Events

INITIALISATION ≜
then

act1: moneybank:= 0
end

FEEDBANK ≜
any amount

where
grd1: amount ∈ ℕ1

then
act1: moneybank := moneybank + amount

end

ROBBANK ≜
any amount

where
grd1: amount ∈ 1 .. moneybank

then
act1: moneybank := moneybank - amount

end

END

Rodin platform

• Rodin is an open tool platform for the cost effective rigorous
development of dependable complex software systems and services.

• This platform is based on the Event-B formal method and provides
natural support for refinement and mathematical proof.

• This platform contributes to the Eclipse framework and is extensible
using the Eclipse plug-in mechanism.

• Rodin builds and tries to solve proof obligations associated to
abstract machines and their refinements.

Coffee club model in Rodin Editor

Correctness of specifications

• Modelling in Event B is based on mathematical (logical) proofs
• In predicate logic we have:

FALSE ⇒ any statement
anything can be proved from false assumptions

• Hence, a contradictive specification can be implemented by any program
• if the invariant evaluates to FALSE (it is unsatisfiable) then anything can be proved;
• the Event-B specification is trivially ”correct”.

• In order to prohibit this, Event-B forces the developers to check that the
first specification is correct and consistent.

Conditions of specification correctness

• In order to check the correctness of a specification, Event-B generates the
following proof obligations

• Conditions for the context
 checks that the axioms and theorems are well defined

• Conditions for the invariant
 checks that the invariant and theorems are well defined

• Conditions for the initialisation
 proves that the assignment statements in the initialisation establish a state that

satisfies the invariant(s)
• Conditions for the events
 proves that every model event preserves the invariant(s)

Proof Obligations:
Sequent representation
• Sequent representation of PO:

• hypotheses
• ⊢

• goal
• The truth of the hypotheses leads to the truth of the goal.
• The symbol ⊢ is sometimes called stile or turnstile.
• If any of the hypotheses is ⊥(FALSE) then any goal is trivially established.
• If the hypotheses are identically ⊤ (TRUE) then the hypotheses will be

omitted.

Consistency of Contexts

• In order to be consistent the Event-B context must satisfy the
following properties:

1. All its axioms must be well defined (axm/WD)
2. All its theorems must be well defined (thm/WD)
3. All its theorems must be proved (thm/THM)

Well Defined Expressions

• All mathematical operators (functions) are not defined for all inputs
of the type they accept.
 Type-checking is not sufficient to check well-formedness
 Two examples are ”/” and ”mod” which are not defined if their second

argument is zero

• The Rodin tool generates proof obligations to check that all
expressions are well defined.

• We denote that an expression (or a predicate) E is well defined by
WD(E)

Well Defined Expressions

• Well definedness is defined by induction of the structure of the
expression (predicate)

• 𝑊𝑊𝑊𝑊(𝑃𝑃 ∧ 𝑄𝑄) = 𝑊𝑊𝑊𝑊(𝑃𝑃) ∧ (𝑃𝑃 ⟹ 𝑊𝑊𝑊𝑊 𝑄𝑄)
• 𝑊𝑊𝑊𝑊 𝐹𝐹 𝐸𝐸 = 𝑊𝑊𝑊𝑊 𝐹𝐹 ∧𝑊𝑊𝑊𝑊 𝐸𝐸 ∧ 𝐸𝐸 ∈ 𝑑𝑑𝑐𝑐𝑚𝑚 𝐹𝐹 ∧ 𝐹𝐹 ∈ 𝐴𝐴+−>B
• 𝑊𝑊𝑊𝑊 𝐸𝐸 ∕ 𝐹𝐹 = 𝑊𝑊𝑊𝑊 𝐹𝐹 ∧𝑊𝑊𝑊𝑊 𝐸𝐸 ∧ 𝐹𝐹 ≠ 0

• Example:
• 𝑊𝑊𝑊𝑊(𝑛𝑛 > 0 ∧ 1/𝑛𝑛) = 𝑊𝑊𝑊𝑊(𝑛𝑛 > 0) ∧ (𝑛𝑛 > 0 ⟹𝑊𝑊𝑊𝑊 1/𝑛𝑛)

Consistency of a Machine

• In order to be consistent a machine must satisfy the following
conditions:

1. All it invariants and theorems must be well defined (inv/WD and
thm/WD)

2. All its event guards and actions must be well defined (grd/WD and
act/WD)

3. All its nondeterministic events must be feasible (evt/act/FIS)
4. All its theorems must be proved (thm/THM)
5. All invariants must be established by the initialisation (INIT/inv/INV)
6. All invariants must be preserved by all events (evt/inv/INV)

Well definedness

• Well definedness for machines are defined in the same way as for
contexts

• Also for machines the theorems have to be proved

Feasibility of non-determinism

• Feasibility states that the action of an event is always feasible whenever the event is
enabled.

• In other words, there are always possible after values for the variables satisfying the
before-after predicate.

• The feasibility proof obligation evt/act/FIS is as follows:

• Axioms and theorems
• Invariants and theorems
• Guards of the event
• ⊢
• ∃v’. Before-after predicate
•

Invariant preservation

• An essential feature of an Event-B machine M is its invariants:
• They show properties that hold in every reachable state of the machine.

• The invariant preservation proof obligation evt/inv/INV is as follows:
Axioms and theorems
Invariants and theorems
Guards of the event
Before-after predicate of the event
⊢
Modified specific invariant

Invariant preservation: example

• Assume that we have an event EVENT and an invariant y ∈ N.
• The event is given as
• EVENT =
• any x
• where

x∈N
y < z

• then y := z+x
• end

• and the invariant is given as y ∈ N
• BA(EVENT) = ∃v. Guards ∧ BA(S)

y∈N
x∈N
y<z
(∃x.x∈N∧y<z ∧y’=z+x)
⊢
y’ ∈ N

Invariant preservation: example (cont.)

y∈N
x∈N
y<z
(∃x.x∈N∧y<z ∧y’=z+x)
⊢
y’ ∈ N

y∈N
x∈N
y<z
y’=z+x
⊢
y’ ∈ N

y∈N
x∈N
y<z
y’=z+x
⊢
z+x ∈ N

INST_HYP EQ_LR

Invariant establishment

• Invariant establishment states that any possible state after
initialisation given by the after predicate must satisfy the invariant I.

• The invariant establishment proof obligation INIT/inv/INV is as
follows: Axioms and theorems

Guards of the event
Before-after predicate of the event
⊢
Modified specific invariant

Contradicting events

• An event can be contradicting (its correctness cannot be proved), if
• its guard is too weak
• the guard or the action is incorrect
• the invariant is too strong (too precise) (states properties that are not

maintained by the events)
• the invariant is too weak (does not give enough assumptions for the

proof to succeed)
• the invariant simply is wrong

Consistency of a Machine

• In order to be consistent a machine must satisfy the following conditions
1. All it invariants and theorems must be well defined (inv/WD and

thm/WD)
2. All its event guards and actions must be well defined (grd/WD and

act/WD)
3. All its nondeterministic events must be feasible (evt/act/FIS)
4. All its theorems must be proved (thm/ THM)
5. All invariants must be established by the initialisation (INIT/inv/INV)
6. All invariants must be preserved by all events (evt/inv/INV)
7. Deadlock freeness (DLF)

Deadlock freeness

• For non-terminating systems we need to guarantee that there is
always an enabled event, i.e. that the system is deadlock free

• The deadlock freeness proof obligation DLF is as follows:
Axioms and theorems
Invariants and theorems
⊢
Disjunction of the guards of the events

Proof in Rodin

• When discharging a proof in Rodin, three views are available:
• hypotheses,
• goal and
• proof control that provides
access to a range of provers and also
tactics for manual proof.

Labelling of proof obligations

• Proof obligations are labelled by Rodin as follows:
• event-name/predicate id/proof type id

• For example:

• Green color indicates - a proof obligation to show that the INITIALISATION
event satisfies the invariant labelled with inv1.

• Red (brown) color indicates - a proof obligation to show that the RobBank
event does not satisfy the invariant labelled with inv1.

More examples on POs

CoffeeClub model (from Lecture 8)
MACHINE CoffeeClub
VARIABLES moneybank

inv1: moneybank ∈ ℕ
EVENTS
INITIALISATION ≜
then

act1: moneybank:= 0
end

FEEDBANK ≜
any amount

where
grd1: amount ∈ ℕ1

then
act1: moneybank := moneybank +

amount
end

ROBBANK ≜
any amount

where
grd1: amount ∈ 1 .. moneybank

then
act1: moneybank := moneybank -

amount
end

END

Proof Obligations for CoffeeClub

• CoffeeClub is a very simple
model and the POs are
correspondingly simple.

• As a consequence the POs are
easily discharged
automatically by the provers in
the Rodin tool.

• The following POs are
generated for the above
machine.

• Notice that all POs concerned
with maintenance of INV 1 are
verifying that REQ1 is satisfied.

Proving prove obligations

• INITIALISATION/inv1/INV:
• ⊤
• ⊢
• 0 ∈ ℕ

• Assuming nothing, (⊤ or true), show that 0 is an element of the set of
natural numbers. Clearly, it is true.

• Verifying that the INITIALISATION, moneybank := 0, establishes the
invariant moneybank ∈ ℕ.

Invariants
inv1: moneybank ∈ ℕ

…
INITIALISATION≜

then
act1:

moneybank:= 0
end

Proving prove obligations

• FEEDBANK/inv1/INV:
• moneybank ∈ ℕ
• amount ∈ ℕ1
• ⊢
• moneybank + amount ∈ ℕ

• Verifying that the actions of FEEDBANK, moneybank := moneybank +
amount, maintains the invariant, moneybank ∈ ℕ.
This is clearly true as both moneybank and amount are natural numbers.

Invariants
inv1: moneybank ∈ ℕ

…
FEEDBANK ≜
any amount

where
grd1: amount ∈ ℕ1

then
act1: moneybank := moneybank +

amount
end

Proving prove obligations

• ROBBANK/inv1/INV:
• moneybank ∈ ℕ
• amount ∈ 1.. moneybank
• ⊢
• moneybank − amount ∈ ℕ

• Similar to the preceding POs, but this time verifying that moneybank ∈ N
is maintained by the action moneybank := moneybank − amount.

• This is not quite so simple, but the guard amount ∈ 1 .. moneybank ensures
that amount ≤ moneybank and hence the invariant is maintained.

Invariants
inv1: moneybank ∈ ℕ

…
RODBANK ≜
any amount

where
grd1: amount ∈ 1.. moneybank

then
act1: moneybank := moneybank -

amount
end

	 �DD 2460 �Software safety and security�Lecture 3
	What is a formal specification?
	The “system” being specified may be:
	The “properties” under consideration may refer to:
	Formal specification
	Why specify formally?
	Specify... for whom?
	Specify... when?
	Value of formal specification
	Specification methods
	Why is it difficult?
	The use of formal modelling
	Problem abstraction
	Abstraction
	Refinement
	Event-B
	From the B Method to Event-B
	Industrial uses of Event-B
	Rodin
	An Event-B project
	Structure of Event-B model (specification)
	Relationship between machines and contexts
	Visibility Rules
	Context part
	Context part
	Context part
	Example on context
	Machine part
	Machine part
	Remarks
	Example on a machine
	An Event-B model
	Event-B events
	Guarded events
	Event structure
	Events: general form
	Event guards
	Event actions
	Slide Number 39
	Deterministic action (example)
	Non-deterministic actions
	Non-deterministic actions (example)
	Non-deterministic action (cont.)
	Non-deterministic action (more examples)
	CoffeeClub
	Moneybank requirements
	Moneybank model
	Model events
	Model events (cont.)
	CoffeeClub model
	Rodin platform
	Coffee club model in Rodin Editor
	Correctness of specifications
	Conditions of specification correctness
	Proof Obligations: �Sequent representation
	Consistency of Contexts
	Well Defined Expressions
	Well Defined Expressions
	Consistency of a Machine
	Well definedness
	Feasibility of non-determinism
	Invariant preservation
	Invariant preservation: example
	Invariant preservation: example (cont.)
	Invariant establishment
	Contradicting events
	Consistency of a Machine
	Deadlock freeness
	Proof in Rodin
	Labelling of proof obligations
	More examples on POs
	CoffeeClub model (from Lecture 8)
	Proof Obligations for CoffeeClub
	Proving prove obligations
	Proving prove obligations
	Proving prove obligations
	Slide Number 77

