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What is a formal specification?

• A formal specification is the expression, in some formal language and 
at the some level of abstraction, of a collection of properties some 
system should satisfy.

• The formal specification depends on 
• what does “system” mean, i.e., where one draws the boundaries, 
• what kind of properties are of interest, 
• what level of abstraction is considered, and 
• what kind of formal language is used. 



The “system” being specified may be:

• a descriptive model of the domain of interest; 
• a prescriptive model of the software and its environment; 
• a prescriptive model of the software alone; 
• a model for the user interface; 
• the software architecture; 
• a model of some process to be followed; 
• etc. 



The “properties” under consideration may 
refer to:
• high-level goals; 
• functional requirements; 
• non-functional requirements about timing, performance, accuracy, security, etc.; 
• environmental assumptions; 
• services provided by architectural components; 
• protocols of interaction among such components; 
• and so on. 



Formal specification

• “Formal” is often confused with “precise” (the former entails the latter but the 
reverse is not true). 

• A specification is formal if it is expressed in a language made of three 
components: 

• rules for determining the grammatical well-formedness of sentences (the syntax); 
• rules for interpreting sentences in a precise, meaningful way within the considered domain 

(the semantics); 
• and rules for inferring useful information from the specification (the proof theory). 

• The latter component provides the basis for automated analysis of the 
specification. 



Why specify formally? 

• Problem specifications are essential for designing, validating, 
documenting, communicating, reengineering, and reusing solutions. 

• Formality helps in obtaining higher-quality specifications within such 
processes; 

• it also provides the basis for their automated support. 
• The act of formalization in itself has been widely experienced to raise 

many questions and detect serious problems in original informal 
formulations. 

• Besides, the semantics of the formalism being used provides precise rules 
of interpretation that allow many of the problems with natural language to 
be overcome. A language with rich structuring facilities may also produce 
better structured specifications. 



Specify... for whom? 

• Formal specifications may be of interest to different stakeholders having fairly 
different background, abstractions and languages:

• clients
• domain experts
• users
• architects
• programmers
• and tools. 



Specify... when? 

• There are multiple stages in the software life-cycle at which formal 
specifications may be useful: 

• when modeling the domain; 
• when elaborating the goals, requirements on the software, and assumptions 

about the environment; 
• when designing a functional model for the software; 
• when designing the software architecture; 
• or when modifying or reengineering the software. 



Value of formal specification

• The cost of fixing a specification or design error is higher the later in 
the development that error is identified. 

• Boehm’s First Law: Errors are more frequent during requirements
and design activities and are more expensive the later they are 
removed. 



Specification methods

• Facilitate discovering errors at early stages of system development 
when they are less expensive to fix. 

• Common errors introduced in the early stages of development are 
errors in understanding the system requirements and errors in writing 
the system specification. 

• Without a rigorous approach to understanding requirements and 
constructing specifications,  it can be very difficult to uncover such 
errors other than through testing of the software product after a lot 
of development has already been undertaken. 



Why is it difficult?

• Lack  of precision in formulating specifications resulting in 
ambiguities and inconsistencies that are difficult to detect. 

• High complexity
 complexity of requirements;
 complexity of the operating environment of a system or 
 complexity of the design of a system. 



The use of formal modelling

• The main aim is to overcome the problem of lack of precision.
• Formal modelling languages are supported by verification methods 

that support the discovery and elimination of inconsistencies in 
models. 

• But precision does not address the problem of complex requirements 
and operating environments. 

• Complexity cannot be eliminated but we can try to master it via 
abstraction. 



Problem abstraction

• Abstraction can be viewed as a process of simplifying the problem at 
hand and facilitating our understanding of a system.

• Abstraction should
 focus on the intended purpose of the system and
 ignore details of how that purpose is achieved.



Abstraction

• If the purpose of the system is to provide some service, then 
 model what a system does from the perspective of the service user.
 ‘user’ might be computing agents as well as humans

• If the purpose of the system is to control, monitor or protect some 
phenomena, then 
 the abstraction should focus on those phenomenon, considering in what way 

they should be monitoring, controlled or protected and should ignore the way 
in which this is achieved. 



Refinement

• However, we do not ignore the complexity indefinitely: instead, through 
incremental modelling and analysis, we can gradually improve our 
understanding and analysis of a system and make it more detailed. 

• This incremental treatment of complexity is called refinement.
• Refinement is a process of enriching or modifying a model in order to 

• augment the functionality being modelled, or
• explain how some purpose is achieved.

• Facilitates abstraction: we can postpone treatment of some system 
features to later refinement steps.

• Event-B provides a notion of consistency of a refinement:
• Use proof to verify the consistency of a refinement step
• Failing proof can help us identify inconsistencies



Event-B 

• It provides us with a rich modelling language, based on set theory
• language allows precise descriptions of intended system behaviour (models) to be written in 

an abstract way

• Event-B uses the abstract machine notation as the basis.
• Event-B is successor of the B Method (also known as classical B).



From the B Method to Event-B

• Inventor: Jean-Raymond Abrial (his previous work is Z framework)
• Both classical B and Event-B are based on set theory
• Analyse models using proofs and additionally -- model checking, animation
• Refinement-based development

• Verify conformance between higher-level and lower-level models
• Chain of refinements

o Commercial tools for classical B: Atelier-B (ClearSy, France), B-Toolkit (B-Core, UK)

o Why Event-B: realisation that it is important to reason about system behaviour, not just software
o Event-B is intended for modelling and refining system behaviour



Industrial uses of Event-B

• Event-B in railway interlocking

• Alstrom, Systerel
• Event-B in smart grids

• Selex, Critical Software 
• Event-B in a cruise control system and a start-stop system

• Bosch
• Event-B in train control and signaling systems

• Siemens Transportation



Rodin

• Rodin – the automated  tool platform for Event-B. 

• www.event-b.org

• Integrated development environment for Event-B 

• Models can be created using built-in editor. 

• The platform generates proof obligations that can be discharged either automatically or interactively.

• Rodin is a modular software and many extensions are available.
 These include alternative editors, document generators, team support, and extensions (called plugins) some of which 

include support decomposition and records. 



An Event-B project

o A project contains the complete mathematical development.
o Contains two kinds of components: Contexts and Machines.
o Projects and components are listed in the tool



Structure of Event-B model (specification)

• An Event-B model is made of several components.
A specification consists of 
 a static part, specified in a context, and 
 a dynamic part, specified in a machine.

MACHINE

VARIABLES
INVARIANTS
THEOREMS
VARIANT
EVENTS

CONTEXT

SETS
CONSTANTS
AXIOMS

´´sees´´



Relationship between machines and contexts 

 Contexts contain the static structure of a discrete system (constants 
and axioms) 
 Machines contain the dynamic structure of a discrete system 

(variables, invariants, and events)

• - Machines see contexts 
• - Contexts can be extended 
• - Machines can be refined 

Machine m1

Context c2

Context c1

Machine m2

refines extends

sees

sees



Visibility Rules 

 A machine can see several contexts (or no context at all).

 A context may extend several contexts (or no context at all).

 A machine implicitly sees all contexts extended by a seen context. 

 A machine only sees a context either explicitly or implicitly. 

 A machine only refines at most one other machine. 

 No cycle in the "refines" or "extends" relationships. 
Machine m1

Context c2

Context c1

Machine m2

refines extends

sees

sees



Context part

• A context with name Context1 has the following form:

CONTEXT Context1

SETS ⟨list of carrier sets⟩

CONSTANTS ⟨list of constants⟩

AXIOMS ⟨list of labelled axioms⟩

THEOREMS* ⟨list of labelled 

theorems⟩

END

 the context contains the static part of a model

 the context defines sets, constants that can be used 
in several different machines

 different properties for the sets and constants are 
given in axioms-clause



Context part

• A context with name Context1 has the following form:
 A context has a unique name

 sets-clause contains the non-empty carrier sets

 constants-clause contains constants
• they can be read but not assigned values

 axioms-clause lists the predicates that should hold for 
the constants
• Defines types and logical properties
• Hypotheses in all proof obligations

• theorems-clause lists the theorems
• They have to be proved within the context

CONTEXT Context1

SETS ⟨list of carrier sets⟩

CONSTANTS ⟨list of constants⟩

AXIOMS ⟨list of labelled axioms⟩

THEOREMS* ⟨list of labelled 

theorems⟩

END



Context part

• A context with name Context1 has the following form:
 A context can extend another context

 extends-clause defines it
CONTEXT Context1 EXTENDS Context0

SETS ⟨list of carrier sets⟩

CONSTANTS ⟨list of constants⟩

AXIOMS ⟨list of labelled axioms⟩

THEOREMS* ⟨list of labelled 

theorems⟩

END



Example on context

CONTEXT UniversityContext

SETS STUDENTS …

CONSTANTS 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

AXIOMS

axm1: 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ ℤ

axm2: 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 30

…

END



Machine part 

• A machine with name Machine1 has the following form: 

MACHINE Machine1 

SEES* ⟨list of context names⟩

VARIABLES ⟨list of variables⟩

INVARIANTS ⟨list of labelled invariants⟩

EVENTS ⟨list of events⟩

END

 A machine defines the dynamic behaviour of a model 
through events that are guarded by and act on the 
variables.

 Machine-clause gives the name of the machine

 Sees-clause lists the contexts that the machine can 
see

 Variables-clause gives state of the module that can be 
modified locally in the machine 



Machine part 

• A machine with name Machine1 has the following form: 
 Invariants-clause lists the predicates that must hold for 
the variables and gluing invariants
• The types of the variables
• Restriction and relations between variables

 Event-clause contains the relevant events that change 
the state of the machine while preserving the invariant
• An event describes the relationships between the state 

before the event takes place and just afterwards
• Event INITIALISATION gives initial values to the variables and 

establishes the invariants

MACHINE Machine1 

SEES* ⟨list of context names⟩

VARIABLES ⟨list of variables⟩

INVARIANTS ⟨list of labelled invariants⟩

EVENTS ⟨list of events⟩

END



Remarks
• Machines should not be thought of as programs 
 although they might be implemented by software. 

• The machine models a state and the events represent behaviour that 
could occur
 the conditions that must apply if an event is to fire; and 
 the effect the event has on the state. 

• All communication occurs through the state. 
 machine gives a representation of possible behaviours of some system. The 

system might contain non-software components. 



Example on a machine

MACHINE RegistrationSystem
SEES UniversityContext

VARIABLES registered enrolled 

INVARIANTS

inv1: registered ⊆ STUDENTS

inv2: enrolled ⊆ STUDENTS

inv3: enrolled  ⊆ registered

…

EVENTS ⟨list of events⟩

END



An Event-B model

 A model can contain:
• Only contexts (represents a pure mathematical structure)
• Only machines (the model is not parametrised)
• Both machines and contexts 

 All machines and context identifiers must be distinct in the same 
model (project)



Event-B events

 All events represents transitions
 The events modify the state of the 

variables
• An event is a state transition in a 

discrete dynamic system. 
 They are executed in one (atomic) 

step
 Only one event fires at a time. 

 An event essentially consists of 
guards and actions. 
Hence they are said to be guarded events.

• Event = guard + action

MACHINE Machine1 

SEES* ⟨list of context names⟩

VARIABLES ⟨list of variables⟩

INVARIANTS ⟨list of labelled invariants⟩

EVENTS ⟨list of events⟩

END



Guarded events

Event = guard + action
 An event essentially consists of guards and actions.

• the guards define the necessary conditions for the event to be enabled
• the actions define the way the variables of the machine are modified

 A guarded event can be executed only when its guard is true
• if more than one guard is true, one of them is non-deterministically chosen
• if no guards are true, the specification will terminate.



Event structure

Event1 = // event name
any

x1  x2 // event parameters
where

G1 // event guards
G2
…

then
v1 := exp1 // event actions
v2 := exp2
…

end

 Events are identified by unique names

 any-clause lists the parameters (or local 
variables) of the event

where-clause contains the guards of the 
event, i.e., the conditions for the event to be 
enabled

 then-clause lists the actions of the event



Events: general form

Event1 = 

any
x1, x2
where

G1
G2
…

then
v1 := exp1
v2 := exp2
…

end

 A machine can contain arbitrary many events

 An event can have one of the following forms:

Event2 = 
when
G1
G2
…
then

v1 := exp1
v2 := exp2
…

end

Event3 = 

begin
v1 := exp1
v2 := exp2

…
end



Event guards

 A guards is a predicate that specifies enabling conditions under which 
events may occur
 Example, booking a room for the lecture

grd1:  𝒍𝒍𝒍𝒍𝒍𝒍 ∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳
grd2:  𝒍𝒍𝒍𝒍 ∈ LHALL 

 Guards should be strong enough to ensure invariants are maintained 
by the actions of an event but not too strong that they prevent 
desirable behaviour (invariants will be discussed later)



Event actions

 An action describes the ways one or several state variables are 
modified by the occurrence of an event 
 An action might be either deterministic or non-deterministic 
 There are three principle constructions — that Event B calls 

substitutions — for changing the state of a machine:
• 𝒙𝒙 ≔ 𝒍𝒍 // 𝒙𝒙 becomes equal to the value of e

This rule may be used multipletimes to assign to any number of 
variables. 

• 𝒙𝒙: | 𝑷𝑷 // 𝒙𝒙 becomes such that it satisfies the before-after predicate P

• 𝒙𝒙:∈ 𝑳𝑳 // 𝒙𝒙 becomes in the set S 



• 𝒙𝒙 ≔ 𝒍𝒍 and 𝒙𝒙: | 𝑷𝑷 can be extended to multiple assignment: 
𝒙𝒙,𝒚𝒚 ≔ 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆 and     𝒙𝒙,𝒚𝒚 ∶ | 𝑷𝑷 , 

• and recursively to many variables. 

• The variables must be distinct! 𝒙𝒙,𝒙𝒙, 𝒛𝒛 ≔ 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆

• Note: all assignments can be written in the form: 𝒙𝒙,𝒚𝒚: |𝑷𝑷



Deterministic action (example) 

 Example of deterministic actions on variables 𝒙𝒙, 𝒚𝒚 and 𝒛𝒛: 
Event example

...
then

act1: 𝒙𝒙 ≔ 𝒙𝒙 + 𝒚𝒚
act2: 𝐲𝐲 ≔ 𝒚𝒚 + 𝒙𝒙 − 𝒛𝒛

...
 Notice that variables 𝒙𝒙 and 𝒚𝒚 should be distinct. 
 Actions are supposed to be ´´performed´´ in parallel. 
 Variables 𝒙𝒙 and 𝒚𝒚 are assigned to 𝒙𝒙 + 𝒚𝒚 and 𝒚𝒚 + 𝒙𝒙 − 𝒛𝒛, respectively. 
 Variable 𝒛𝒛 is used but not modified by these actions 



Non-deterministic actions

• A non-deterministic actions  of the form
𝒙𝒙 ∶ | 𝑷𝑷

// 𝒙𝒙 becomes such that it satisfies the before-after predicate 𝑷𝑷

 The before-after-predicate gives the condition that holds just before 
the action takes place. It may contain all variables of the machine.



Non-deterministic actions (example)

𝒙𝒙,𝒚𝒚 ∶ | 𝒙𝒙′ > 𝒙𝒙 ∧ 𝒚𝒚′ < 𝒙𝒙′

 On the LHS of operator :|, we have two distinct variables 
 On the RHS, we have a before-after predicate 
 The RHS contains occurrences of 𝒙𝒙 and 𝒚𝒚 (before values) and primed 

occurrences 𝒙𝒙′ and 𝒚𝒚′ (after values) 
 As a result (in this example):

• 𝒙𝒙 is assigned a value greater than its previous value
• 𝒚𝒚 is assigned a value smaller than that, 𝒙𝒙′, assigned to 𝒙𝒙



Non-deterministic action (cont.)

𝒙𝒙 ∶∈ 𝑳𝑳
 The variable is assigned an arbitrary element of the set 𝑳𝑳.
 This form is a special form of the previous one.

 Example 1:
act1: 𝒙𝒙 ∶∈ 𝒙𝒙 + 𝒆𝒆,𝒚𝒚 − 𝒆𝒆, 𝒛𝒛 + 𝟑𝟑

Here 𝒙𝒙 is assigned any value from the set  𝒙𝒙 + 𝒆𝒆,𝒚𝒚 − 𝒆𝒆, 𝒛𝒛 + 𝟑𝟑
 Example 2:

act2: 𝒔𝒔𝒔𝒔 ∶∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑳𝑳𝑺𝑺𝑳𝑳𝑳𝑳
Here 𝒔𝒔𝒔𝒔 is assigned any value from the set 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑳𝑳𝑺𝑺𝑳𝑳𝑳𝑳



Non-deterministic action (more examples)

act1: 𝒙𝒙 ∶∈ 𝒂𝒂 | 𝟎𝟎 < 𝒂𝒂 ∧ 𝒂𝒂 < 𝟓𝟓𝟎𝟎

Here 𝒙𝒙 is assigned any arbitrary number between 1 and 49.



CoffeeClub

The elementary description of machines will be illustrated with a 
simple running example of a coffee club. 
• We will start with a machine that will be used to model some 

requirements of the coffee club. 



Moneybank requirements 

• For the coffee club we require a moneybank that stores money used 
by the coffee club. 

• REQ1: a money bank is used for storing and reclaiming finite, non-
negative funds for a coffee club; 

• REQ2: there is an operation for adding money to the money bank; 
• REQ3: there is an operation for removing money from the money 

bank; it cannot remove more money than the amount of money 
which bank contains. 



Moneybank model

MACHINE CoffeeClub
VARIABLES moneybank

// The machine state is represented by the variable, moneybank, 
denoting the money bank for the coffee club. 

INVARIANTS
inv1: moneybank ∈ ℕ // REQ1: moneybank must not be negative. 

// here ∈ set membership 
// ℕ - the set of natural numbers

…



Model events

…
EVENTS
INITIALISATION≜

then 
act1: moneybank:= 0 // we initialise moneybank to 0 

end 

FEEDBANK ≜ // REQ2: adding to moneybank
any  amount
where

grd1: amount ∈ ℕ1 // ℕ1 is used rather than ℕ to prevent the event firing uselessly if amount = 0 
then 

act1: moneybank := moneybank + amount
end 



Model events (cont.)
…
ROBBANK ≜ // REQ3: removing money from moneybank

any amount
where

grd1: amount ∈ 1 .. moneybank
// The amount must not exceed the contents of money-

bank and we don’t need to uselessly remove an amount of 0
then 

act1: moneybank := moneybank - amount
end 

END



CoffeeClub model
Machine CoffeeClub
Variables moneybank

inv1: moneybank ∈ ℕ
Events

INITIALISATION ≜
then 

act1: moneybank:= 0 
end 

FEEDBANK ≜
any amount

where
grd1: amount ∈ ℕ1

then 
act1: moneybank := moneybank + amount

end 

ROBBANK ≜
any amount

where
grd1: amount ∈ 1 .. moneybank

then 
act1: moneybank := moneybank - amount

end 

END



Rodin platform

• Rodin is an open tool platform for the cost effective rigorous 
development of dependable complex software systems and services.

• This platform is based on the Event-B formal method and provides 
natural support for refinement and mathematical proof. 

• This platform contributes to the Eclipse framework and is extensible 
using the Eclipse plug-in mechanism. 

• Rodin builds and tries to solve proof obligations associated to 
abstract machines and their refinements. 



Coffee club model in Rodin Editor



Correctness of specifications

• Modelling in Event B is based on mathematical (logical) proofs 
• In predicate logic we have:

FALSE ⇒ any statement 
anything can be proved from false assumptions

• Hence, a contradictive specification can be implemented by any program 
• if the invariant evaluates to FALSE (it is unsatisfiable) then anything can be proved; 
• the Event-B specification is trivially ”correct”. 

• In order to prohibit this, Event-B forces the developers to check that the 
first specification is correct and consistent. 



Conditions of specification correctness 

• In order to check the correctness of a specification, Event-B generates the 
following proof obligations 

• Conditions for the context
 checks that the axioms and theorems are well defined 

• Conditions for the invariant
 checks that the invariant and theorems are well defined 

• Conditions for the initialisation
 proves that the assignment statements in the initialisation establish a state that 

satisfies the invariant(s) 
• Conditions for the events
 proves that every model event preserves the invariant(s) 



Proof Obligations: 
Sequent representation 
• Sequent representation of PO: 

• hypotheses 
• ⊢

• goal 
• The truth of the hypotheses leads to the truth of the goal. 
• The symbol ⊢ is sometimes called stile or turnstile. 
• If any of the hypotheses is ⊥(FALSE) then any goal is trivially established.
• If the hypotheses are identically ⊤ (TRUE) then the hypotheses will be 

omitted.



Consistency of Contexts 

• In order to be consistent the Event-B context must satisfy the 
following properties:  

1. All its axioms must be well defined (axm/WD) 
2. All its theorems must be well defined (thm/WD) 
3. All its theorems must be proved (thm/THM) 



Well Defined Expressions 

• All mathematical operators (functions) are not defined for all inputs 
of the type they accept. 
 Type-checking is not sufficient to check well-formedness 
 Two examples are ”/” and ”mod” which are not defined if their second 

argument is zero 

• The Rodin tool generates proof obligations to check that all 
expressions are well defined. 

• We denote that an expression (or a predicate) E is well defined by 
WD(E) 



Well Defined Expressions

• Well definedness is defined by induction of the structure of the 
expression (predicate) 

• 𝑊𝑊𝑊𝑊(𝑃𝑃 ∧ 𝑄𝑄) = 𝑊𝑊𝑊𝑊(𝑃𝑃) ∧ (𝑃𝑃 ⟹ 𝑊𝑊𝑊𝑊 𝑄𝑄 )
• 𝑊𝑊𝑊𝑊 𝐹𝐹 𝐸𝐸 = 𝑊𝑊𝑊𝑊 𝐹𝐹 ∧𝑊𝑊𝑊𝑊 𝐸𝐸 ∧ 𝐸𝐸 ∈ 𝑑𝑑𝑐𝑐𝑚𝑚 𝐹𝐹 ∧ 𝐹𝐹 ∈ 𝐴𝐴+−>B
• 𝑊𝑊𝑊𝑊 𝐸𝐸 ∕ 𝐹𝐹 = 𝑊𝑊𝑊𝑊 𝐹𝐹 ∧𝑊𝑊𝑊𝑊 𝐸𝐸 ∧ 𝐹𝐹 ≠ 0

• Example: 
• 𝑊𝑊𝑊𝑊(𝑛𝑛 > 0 ∧ 1/𝑛𝑛) = 𝑊𝑊𝑊𝑊(𝑛𝑛 > 0) ∧ (𝑛𝑛 > 0 ⟹𝑊𝑊𝑊𝑊 1/𝑛𝑛 )



Consistency of a Machine

• In order to be consistent a machine must satisfy the following 
conditions:

1. All it invariants and theorems must be well defined (inv/WD and 
thm/WD) 

2. All its event guards and actions must be well defined (grd/WD and 
act/WD) 

3. All its nondeterministic events must be feasible (evt/act/FIS) 
4. All its theorems must be proved (thm/THM) 
5. All invariants must be established by the initialisation (INIT/inv/INV) 
6. All invariants must be preserved by all events (evt/inv/INV) 



Well definedness

• Well definedness for machines are defined in the same way as for 
contexts 

• Also for machines the theorems have to be proved 



Feasibility of non-determinism 

• Feasibility states that the action of an event is always feasible whenever the event is 
enabled. 

• In other words, there are always possible after values for the variables satisfying the 
before-after predicate. 

• The feasibility proof obligation evt/act/FIS is as follows:

• Axioms and theorems 
• Invariants and theorems 
• Guards of the event 
• ⊢
• ∃v’. Before-after predicate 
•



Invariant preservation 

• An essential feature of an Event-B machine M is its invariants:
• They show properties that hold in every reachable state of the machine. 

• The invariant preservation proof obligation evt/inv/INV is as follows: 
Axioms and theorems 
Invariants and theorems 
Guards of the event
Before-after predicate of the event  
⊢
Modified specific invariant 



Invariant preservation: example

• Assume that we have an event EVENT and an invariant y ∈ N. 
• The event is given as 
• EVENT =
• any x 
• where

x∈N
y < z 

• then y := z+x
• end 

• and the invariant is given as y ∈ N
•  BA(EVENT) = ∃v. Guards ∧ BA(S) 

y∈N
x∈N
y<z
(∃x.x∈N∧y<z ∧y’=z+x)
⊢
y’ ∈ N



Invariant preservation: example (cont.)

y∈N
x∈N
y<z
(∃x.x∈N∧y<z ∧y’=z+x)
⊢
y’ ∈ N

y∈N
x∈N
y<z
y’=z+x
⊢
y’ ∈ N

y∈N
x∈N
y<z
y’=z+x
⊢
z+x ∈ N

INST_HYP EQ_LR 



Invariant establishment 

• Invariant establishment states that any possible state after 
initialisation given by the after predicate must satisfy the invariant I. 

• The invariant establishment proof obligation INIT/inv/INV is as 
follows: Axioms and theorems 

Guards of the event
Before-after predicate of the event  
⊢
Modified specific invariant 



Contradicting events 

• An event can be contradicting (its correctness cannot be proved), if 
• its guard is too weak 
• the guard or the action is incorrect 
• the invariant is too strong (too precise) (states properties that are not 

maintained by the events) 
• the invariant is too weak (does not give enough assumptions for the 

proof to succeed) 
• the invariant simply is wrong 



Consistency of a Machine

• In order to be consistent a machine must satisfy the following conditions
1. All it invariants and theorems must be well defined (inv/WD and 

thm/WD) 
2. All its event guards and actions must be well defined (grd/WD and 

act/WD) 
3. All its nondeterministic events must be feasible (evt/act/FIS) 
4. All its theorems must be proved (thm/ THM) 
5. All invariants must be established by the initialisation (INIT/inv/INV) 
6. All invariants must be preserved by all events (evt/inv/INV) 
7. Deadlock freeness (DLF) 



Deadlock freeness 

• For non-terminating systems we need to guarantee that there is 
always an enabled event, i.e. that the system is deadlock free 

• The deadlock freeness proof obligation DLF is as follows: 
Axioms and theorems 
Invariants and theorems
⊢
Disjunction of the guards of the events 



Proof in Rodin 

• When discharging a proof in Rodin, three views are available: 
• hypotheses, 
• goal and 
• proof control that provides 
access to a range of provers and also 
tactics for manual proof. 



Labelling of proof obligations 

• Proof obligations are labelled by Rodin as follows: 
• event-name/predicate id/proof type id 

• For example: 

• Green color indicates - a proof obligation to show that the INITIALISATION
event satisfies the invariant labelled with inv1. 

• Red (brown) color indicates - a proof obligation to show that the RobBank
event does not satisfy the invariant labelled with inv1. 



More examples on POs



CoffeeClub model (from Lecture 8)
MACHINE CoffeeClub
VARIABLES moneybank

inv1: moneybank ∈ ℕ
EVENTS
INITIALISATION ≜
then 

act1: moneybank:= 0 
end 

FEEDBANK ≜
any amount

where
grd1: amount ∈ ℕ1

then 
act1: moneybank := moneybank + 

amount
end 

ROBBANK ≜
any amount

where
grd1: amount ∈ 1 .. moneybank

then 
act1: moneybank := moneybank -

amount
end 

END



Proof Obligations for CoffeeClub

• CoffeeClub is a very simple 
model and the POs are 
correspondingly simple. 

• As a consequence the POs are 
easily discharged 
automatically by the provers in 
the Rodin tool. 

• The following POs are 
generated for the above 
machine. 

• Notice that all POs concerned 
with maintenance of INV 1 are 
verifying that REQ1 is satisfied. 



Proving prove obligations

• INITIALISATION/inv1/INV: 
• ⊤
• ⊢
• 0 ∈ ℕ

• Assuming nothing, (⊤ or true), show that 0 is an element of the set of 
natural numbers. Clearly, it is true.

• Verifying that the INITIALISATION, moneybank := 0, establishes the 
invariant moneybank ∈ ℕ. 

Invariants
inv1: moneybank ∈ ℕ

…
INITIALISATION≜

then 
act1: 

moneybank:= 0
end 



Proving prove obligations

• FEEDBANK/inv1/INV: 
• moneybank ∈ ℕ
• amount ∈ ℕ1
• ⊢
• moneybank + amount ∈ ℕ

• Verifying that the actions of FEEDBANK, moneybank := moneybank + 
amount, maintains the invariant, moneybank ∈ ℕ.
This is clearly true as both moneybank and amount are natural numbers. 

Invariants
inv1: moneybank ∈ ℕ

…
FEEDBANK ≜
any amount

where
grd1: amount ∈ ℕ1

then 
act1: moneybank := moneybank + 

amount
end 



Proving prove obligations

• ROBBANK/inv1/INV:
• moneybank ∈ ℕ
• amount ∈ 1.. moneybank
• ⊢
• moneybank − amount ∈ ℕ

• Similar to the preceding POs, but this time verifying that moneybank ∈ N
is maintained by the action moneybank := moneybank − amount. 

• This is not quite so simple, but the guard amount ∈ 1 .. moneybank ensures 
that amount ≤ moneybank and hence the invariant is maintained. 

Invariants
inv1: moneybank ∈ ℕ

…
RODBANK ≜
any amount

where
grd1: amount ∈ 1.. moneybank

then 
act1: moneybank := moneybank -

amount
end 
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