DD2460 Software safety and security. Lecture 4

ON THE USE OF SET THEORY, FUNCTIONS AND RELATIONS IN EVENT-B MODELLING

Basic set theory

• A set is a collection of elements.

• Elements of a set may be numbers, names, identifiers, etc.

• E.g. the set $\mathbb N$ is the collections of all natural numbers.

• Examples:

- {3,5,7,...}
- {red, green, black}
- {yes, no}
- {wait, start, process, stop}
- But not: {1, 2, green}
- Elements of a set are not ordered.
- Set may be finite or infinite.

Membership

- Relationship between an element and a set: is the element a *member* of the set or not?
- For element *x* and set *S*, we express the membership relation as follows

```
x \in S ('x is a member of S')
```

where \in is a predicate over sets and elements

- Set membership is a boolean property relating an element and a set, i.e., either x is in S or x is not in S.
- This means that there is no concept of an element occurring more that once in a set, e.g.,
 - $\{a, a, b, c\} = \{a, b, c\};$
 - {3,7} = {3,7,7}
- Conversely, the element is not a member of the set: $x \notin S$

Set definition

• If a set has only finite number of elements, then it can be written explicitly, by listing all of its elements within set brackets '{' and '}':

- LectureHall = $\{1A, 1B, 1C, 1D\}$
- SEMESTRS = {spring, fall}
- Some sets have predefined names:
 - \mathbb{N} the set of natural numbers {0, 1, 2, 3, ... }
 - \mathbb{Z} the set of integers {... 2, –1, 0, 1, 2, ... }
- The empty set contains no elements at all. It is the **smallest** possible set.

Ø or {}

Set comprehension

- Enumerating all of the elements of a set is not always possible.
- Would like to describe a set by in terms of a distinguishing property of its elements.
- Set can be defined by means of a set comprehension:

$$\{ x \mid x \in T \land P(x) \}$$

A variable ranging over ... condition

"Set of all x in T that satisfy P(x)"

• Each element of a set satisfies some criterion. Criterions are defined by predicates.

Examples on set comprehension

- Examples:
 - Natural numbers less than 10: $\{x \mid x \in \mathbb{N} \land x < 10\}$
 - Even integers: $\{x \mid x \in \mathbb{Z} \land (\exists y, y \in \mathbb{Z} \land 2y = x)\}$
 - Sometimes it is helpful to specify a *"pattern"* for the elements
 - $\succ \text{ E.g. } \{2x \mid x \in \mathbb{N} \land x^2 \ge 3\}$

More examples on set comprehension

• Examples:

• What is the set defined by the set comprehension:

 $\{ z \mid z \in \mathbb{N} \land z < 100 \land (\exists m.m \in \mathbb{Z} \land m^3 = z) \}?$

<u>Answer</u>: {1, 16, 27, 64}

Subset and equality relations for sets

• A set *S* is said to be *subset* of set *T* when every element of *S* is also an element of *T*. This is written as follows:

$S \subseteq T$

- For example:
 - $\{3,7\} \subseteq \{1,2,3,5,7,9\};$
 - $\{apple, pear\} \subseteq \{apple, banana, pear, grape\}$
 - $\{Jones, White, Jones\} \subseteq \{White, Smith, Jones, Jakson\}$

• A set S is said to be equal to set T when $S \subseteq T$ and $T \subseteq S$ S = T

More examples

Set membership says nothing about the relationship between the elements of a set other than that they are members of the same set.

• the order in which we enumerate a set is not significant, e.g.,

• $\{a, b, c\} = \{b, a, c\};$

• there is no concept of an element occurring more that once in a set, e.g.,

• $\{a, a, b, c\} = \{a, b, c\};$

These two characteristics distinguish sets from data structures such as **lists** or **arrays** where elements appear in order and the same element my occur multiple times.

Operations on sets (set operators)

• Union of S and T: set of elements in either S or T: $S \cup T$

• Intersection of S and T: set of elements in both S and T: $S \cap T$

• Difference of S and T: set of elements in S but not in T: $S \setminus T$

Examples on Set Operators

○ Union

- $\{1,2\} \cup \{2,3,5\} = \{1,2,3,5\}$
- $\{1\} \cup \{2\} = \{1,2\}$
- $\emptyset \cup \{red, pink\} = \{red, pink\}$

Intersection

- $\{apple, pear, grape\} \cap \{pear, banana\} = \{pear\}$
- $\{radish, onion, celery\} \cap \{pumpkin, tomato, carrot\} = \emptyset$
- $\{2,3,5\} \cap \emptyset = \emptyset$

• Difference

- {chess, tennis, football} \ {tennis, golf} = {chess, football}
- {pot, bucket, basket} \ {needle, scissors} = {pot, bucket, basket}
- {*red*, *pink*} \ ∅ = {*red*, *pink*}

Set axioms and laws

- Basic axioms
 - Set membership: $\forall x \cdot x \in S$
 - Empty set: $\forall x \cdot x \in \emptyset$
- Fundamental laws (can be proven)
 - Commutative laws:

 $S \cup T = T \cup S$ $S \cap T = T \cap S$

• Associative laws:

 $(S \cup T) \cup R = S \cup (T \cup R)$

- $(S \cap T) \cap R = S \cap (T \cap R)$
- Distributive laws: $S \cap (T \cup R) = (S \cap T) \cup (S \cap R)$ $S \cup (T \cap R) = (S \cup T) \cap (S \cup R)$

Power sets

• The **power set** of a set *S* is the set whose elements are all subsets of *S*,

written $\mathbb{P}(S)$

• Example,

 $\mathbb{P}(\{1,3,5\}) = \{\emptyset, \{1\}, \{3\}, \{5\}, \{1,3\}, \{1,5\}, \{3,5\}, \{1,3,5\}\}$

- $S \in \mathbb{P}(T)$ is the same as $S \subseteq T$
- Sets are themselves elements so we can have sets of sets
- Example, $\mathbb{P}(\{1,3,5\})$ is an example of a set of sets

Types of sets

• All the elements of a set must have the same type.

- For example, {2, 3, 4} is a set of integers.
- $\{2,3,4\} \in \mathbb{P}(\mathbb{Z}).$
- So the type of $\{2, 3, 4\}$ is $\mathbb{P}(\mathbb{Z})$.

To declare **x** to be a set of elements of type **T** we write either

 $x \in \mathbb{P}(T)$ or $x \subseteq T$

More e.g., math \subseteq *COURCES* - so type of math is $\mathbb{P}(COURCES)$

Cardinality

• The number of elements in a set is called its *cardinality*

- In Event-B this is written as card(S)
- Examples:
 - card({1, 2, 3})=3
 - card({a, b, c, d})=4
 - card({Bill, Anna, Anna, Bill})=2
 - $card(\mathbb{P}(\{1,3,5\}))=8$
- Cardinality is only defined for finite sets.
 - If S is an infinite set, then *card*(S) is undefined. Whenever you use the card operator, you must ensure that it is only applied to a finite set.

Expressions

- Expressions are syntactic structures for specifying values (elements or sets)
- Basic expressions are
 - Iiterals (e.g., 3, Ø);
 - variables (e.g., x, a, room, registered);
 - carrier sets (e.g., S, STUDENTS, FRUITS).

• Compound expressions are formed by applying expressions to operators such as

x + y and $S \cup T$

to any level of nesting.

Predicates

• **Predicates** are syntactic structures for specifying logical statements, i.e., statements that are either **TRUE** or **FALSE** (but not both!!!).

- Equality of expressions is an example predicate
 - e.g., registered = registered _springUregistered _fall.
- Set membership, e.g., $5 \in \mathbb{N}$
- Subset relations, e.g., $S \subseteq T$
- For integer elements we can write ordering predicates such as x < y.

- Basic predicates: $x \in S, S \subseteq T, x \leq y$
- Predicate operators:

Name	Predicate	Definitions
Negation	$\neg P$	P does not hold
Conjunction	$P \wedge Q$	both P and Q hold
Disjunction	$P \lor Q$	either P or Q holds
Implication	$P \Rightarrow Q$	if P holds, <mark>then</mark> Q holds

Examples

P - Bob attends **MATH** course,

Q - Mary is happy

Predicate	
$\neg P$	Bob does not attend MATH course
$P \wedge Q$	Bob attends MATH course and Mary is happy
$P \lor Q$	Bob attends MATH course or Mary is happy
$P \Rightarrow Q$	If Bob attends MATH course, then Mary is happy

Quantified Predicates

We can quantify over a variable of a predicate universally or existentially:

Name	Predicate	Definition
Universal Quantification	$\forall x \cdot P$	P holds for all x
Existential Quantification	$\exists x \cdot P$	P holds for some x

Quantified Predicates

In the predicate $\forall x \cdot P$ the quantification is over all possible values in the type of the variable x.

Typically we constrain the range of values using **implication**.

Examples:

- $\forall x \cdot x > 5 \implies x > 3$
- $\forall st \cdot st \in registered \implies st \in STUDENTS$

Quantified Predicates

In the case of **existential quantification** we typically constrain the range of values using **conjunction**.

Example:

• we could specify that integer **z** has a positive square root as follows:

 $\exists y. y \ge 0 \land y^2 = z$

■ $\exists st \cdot st \in STUDENTS \land st \notin registered$

Examples

DATABASE = {Bill, Ben, Anna, Alice}, MATH= {Alice, Ben}

Alice \in DATABASE **TRUE**

Anna \in MATH FALSE

 $\forall x \cdot x \in DATABASE \implies x \in MATH$ FALSE

 $\exists x. x \in MATH \land x \in DATABASE \quad \mathsf{TRUE}$

 $\forall x \cdot x \in MATH \implies x \in DATABASE$ **TRUE**

Free and bound variables

Variables play two different roles in predicate logic:

- A variable that is universally or existentially quantified in a predicate is said to be a **bound** variable.
- A variable referenced in a predicate that is not bound variable is called a **free** variable.
- Example

 $\exists y. y \ge 0 \land y^2 = z$

y is bound while z is free.

This is a property of y and may be true or false depending on what z is.

The role of y is to bind the quantifier \exists and the formula together.

Predicates on Sets

Predicates on sets can be defined in terms of the logical operators as follows:

Name	Predicate	Definition
Subset	$S \subseteq T$	$\forall x \cdot x \in S \Rightarrow x \in T$
Set equality	S = T	$S \subseteq T \land T \subseteq S$

Duality of universal and existential quantification

 $\neg \forall x \cdot (x \in S \Rightarrow T) = \exists x \cdot (x \in S \land \neg T)$

$$\neg \exists x \cdot (x \in S \land T) = \forall x \cdot (x \in S \Rightarrow \neg T)$$

Defining set operators with logic

Name	Predicate	Definition
Negation	$x \notin S$	$\neg(x \in S)$
Union	$x \in S \cup T$	$x \in S \lor x \in T$
Intersection	$x \in S \cap T$	$x \in S \land x \in T$
Difference	$x \in S \setminus T$	$x \in S \land x \notin T$
Subset	$S \subseteq T$	$\forall x \cdot x \in S \Rightarrow x \in T$
Power set	$x \in \mathbb{P}(T)$	$x \subseteq T$
Empty set	$x \in \emptyset$	FALSE
Membership	$x \in \{a,, b\}$	<i>x</i> =a ∨ ∨ <i>x</i> =b

Event-B

- The invariants of an Event-B model and the guards of an event are formulated as predicates.
- The proof obligations generated by Rodin are also predicates.
- A predicate is simply an expression, the value of which is either true or false.

Example: access control to a building

A system for controlling access to a university building

- An university has some fixed number of students.
- Students can be inside or outside the university building.
- The system should allow a new student to be registered in order to get the access to the university building.
- To deny the access to the building for a student the system should support deregistration.
- The system should allow only registered students to enter the university building.

Example: access control to a building

A system for controlling access to a university building

Model context

CONTEXT BuildingAccess_c0

SETS STUDENTS //

CONSTANTS max_capacity // max capacity of the building is defined as a model constant (we will need it later in the course lectures)

AXIOMS

axm1: finite(STUDENTS)
axm2: max_capacity ∈ ℕ
axm3: max_capacity > 0

END

Model machine

MACHINE BuildingAccess_m0

```
SEES BuildingAccess_c0
```

VARIABLES registered in out

//The machine state is represented by three variables, *registered, in, out.*

INVARIANTS

inv1: registered ⊆ STUDENTS

// registered students are of type STUDENTS

inv2: registered = in \cup out

// registered students are either inside or outside
 the university building

inv3: in \cap out = \emptyset EVENTS ...

// no student is both inside and outside the university building

INITIALISATION ≜ then act1: registered, in, out end	:= Ø,Ø,Ø	// initial	ly all the variables are empty
ENTER ≜ // a student enterin any st where	g the buildin	g	Redundant guard since every student from out is registered
grd1: <i>st</i> ∈ <i>registered</i> grd2: <i>st</i> ∈ <i>out</i> then		t must be rea t must be ou	·
act1: in := in ∪ {st} act2: out := out \ {st} end	// add to // remove		

```
// a student leaves the building
any st
    where
                                                         Redundant guard since every
                                                        student from out is registered
        grd1: st \in registered H a student must be reg
        grd2: st \in in // a student must be inside
    then
        act1: in := in \setminus {st} // remove st from in
        act2: out := out U {st} // remove st from in
    end
REGISTER \triangleq // registration a new student
    any st
    where
        grd1: st ∈ STUDENTS // a new student
        grd2: st \notin registered // ... that is not in the set registered yet
    then
        act1: registered := registered U {st} // add st to registered
        act2: out := out ∪ {st}
                                // add st to out
    end
```

```
DEREGISTER1 \triangleq // de-register a student
    any st
    where
        grd1: st \in registered // a student must be registered
    then
        act1: registered := registered \ {st} // remove st from registered
        act2: in := in \setminus {st} // remove st from in
        act3: out := out \setminus \{st\} // remove st from out
    end
DEREGISTER2 \triangleq // de-register a student while he/she is outside the building
    any st
    where
        grd1: st \in out // a new student
    then
        act1: registered := registered \setminus \{st\} // remove st from registered
        act2: out := out \setminus \{st\} // remove st from out
    end
END
```

Machine behaviour and nondeterminism

• The behaviour of an Event-B machine is defined as a **transition system** that moves from one state to another through execution of events.

• The states of a machine are represented by the different configurations of values for the variables:

• In our example, the state defined by the variables *registered, in, out*

Machine behaviour and nondeterminism

- In any state that a machine can reach, an enabled event is chosen to be executed to define the next transition.
- If several events are enabled in a state, then the choice of which event occurs is nondeterministic.
- Also, if an event is enabled for several different parameter values, the choice of value for the parameters is nondeterministic the choice just needs to satisfy the event guards.
 - For example, in the **REGISTER** event, the choice of value for parameter *st* is nondeterministic, with the choice of value being constrained by the guards of the event to ensure that it is a fresh value.
- Treating the choice of event and parameter values as nondeterministic is an abstraction of different ways in which the choice might be made in an implementation of the model.

Relations between sets

- Relation between sets is an important mathematical structure which is commonly used in expressing specifications.
- Relations allow us to express complicated interconnections and relationships between entitites <u>formally.</u>

Ordered pairs

• An ordered pair is an element consisting of two parts:

a *first* part and *second* part

• An ordered pair with first part *x* and second part *y* is written as:

 $x\mapsto y$

- Examples:
 - $(apple \mapsto red)$
 - (Databases \mapsto fall)
 - (115*A* → 30)
 - (Smith \mapsto 0123)

Cartesian product

• The **Cartesian product** of two sets is

the set of pairs whose first part is in S and second part is in T

• The Cartesian product of **S** with **T** is written: $S \times T$

Cartesian product: example

Lets consider two sets: COURSES and SEMESTERS

Cartesian product: example

Cartesian product: definition and more examples

• Defining Cartesian product:

Predicate	Definition
$x\mapsto y\in S\times T$	$x \in S \land y \in T$

• Examples:

- $\mathbb{N} \times \mathbb{N}$ pairs of natural numbers
- $\{1,2,3\} \times \{a,b\} = \{1 \mapsto a, 1 \mapsto b, 2 \mapsto a, 2 \mapsto b, 3 \mapsto a, 3 \mapsto b\}$
- {*Anna*, *Bill*, *Jack*} $\times \phi = \phi$
- $\{\{1\},\{1,2\}\} \times \{a,b\} = \{\{1\} \mapsto a,\{1\} \mapsto b,\{1,2\} \mapsto a,\{1,2\} \mapsto b\}$
- card({yes, no} × {a, b}) = card({ $yes \mapsto a, yes \mapsto b, no \mapsto a, no \mapsto b$ }) = 4

Cartesian product is a type constructor

• $S \times T$ is a new type constructed from types S and T.

• Cartesian product is the type constructor for ordered pairs.

- Given $x \in S$ and $y \in T$ we have $x \mapsto y \in S \times T$
- Examples:
 - $4 \mapsto 7 \in \mathbb{Z} \times \mathbb{Z}$
 - $\{2,3\} \mapsto 4 \in \mathbb{P}(\mathbb{Z}) \times \mathbb{Z}$
 - $\{2 \mapsto 1, 3 \mapsto 3, 4 \mapsto 5\} \in \mathbb{P}(\mathbb{Z} \times \mathbb{Z})$

Sets of order pairs

A simple database can be modelled as a set of ordered pairs:

 $studentCourses = \{Anna \mapsto Logic, Ben \mapsto SWQuality, Jack \mapsto SWQuality, Irum \mapsto SWQuality, S$

Relations

- A relation R between sets S and T expresses a relationship between elements in S and elements in T:
 - A relation is captured simply as a set of ordered pairs $(s \mapsto t)$ with $s \in S$ and $t \in T$.
- A relation is a common modelling structure so Event-B has a special notation for it:

$$S \leftrightarrow T = \mathbb{P}(S \times T)$$

• We can write then

 $studentCourses = \{Anna \mapsto Logic, Ben \mapsto SWQuality, Jack \mapsto SWQuality, Irum \mapsto SWQualit$

Domain and range

 $studentCourses = \{Anna \mapsto Logic, Ben \mapsto SWQuality, Jack \mapsto SWQuality, Irum \mapsto SWQualit$

Domain

• The **domain** of a relation R is the **set** of <u>first</u> parts of all the pairs in R, written dom(R)

Predicate	Definition
$x \in dom(R)$	$\exists y. x \mapsto y \in \mathbf{R}$

 $studentCourses = \{Anna \mapsto Logic, Ben \mapsto SWQuality, Jack \mapsto SWQuality, Irum \mapsto SWQuality, SWQuality, Irum \mapsto SWQuality, SWQua$

Range

• The range of a relation R is the set of second parts of all the pairs in R, written ran(R)

Predicate	Definition
$y \in ran(R)$	$\exists x . x \mapsto y \in \mathbf{R}$

$studentCourses = \{Anna \mapsto Logic, Ben \mapsto SWQuality, Jack \mapsto SWQuality, Irum \mapsto SWQuality, SWQuality, Irum \mapsto SWQuality, SWQua$

Relational image definition

- Assume $R \in S \leftrightarrow T$ and $A \subseteq S$
- The **relational image** of set *A* under relation *R* is written *R*[*A*]

Predicate	Definition	
$y \in R[A]$	$\exists x. x \in A \land x \mapsto y \in R$	

Relational image examples

• *studentCourses* = {*Anna* → *Logic*, *Ben* → *SWQuality*, *Jack* → *SWQuality*, *Irum* →

Partial functions

- Special kind of relation: each domain element has at most one range element associated with it.
- To declare **f** as a partial function:

$f \in X \longrightarrow Y$

- This says that **f** is a **many-to-one** relation.
- It is said to be partial because there may be values in the set X that are not in the domain of f
- Each domain element is mapped to <u>one</u> range element:

 $x \in dom(f) \implies card(f[\{x\}]) = 1$

• More usually formalised as a uniqueness constraint

 $x \mapsto y_1 \in f \land x \mapsto y_2 \in f \implies y_1 = y_2$

Function Application

We can use functional application for partial functions

- If $x \in dom(f)$, then we write f(x) for the unique range element associated with x in f.
- if $x \notin dom(f)$, then f(x) is undefined.
- if $card(f[{x}]) > 1$, then f(x) is undefined.

Name	Expression	Meaning	Well-definedness
Function application	f(x)	$f(x) = y \Leftrightarrow x \mapsto y \in f$	$f \in X \leftrightarrow Y$ $\land x \in dom(f)$

Examples

 $NAMES = \{Anna, Ben, Jack, Alex, Irum\}, MNUMBERS = \{0123, 1230, 2301, 3012\}$ $studentNumber1 = \{Anna \mapsto 0123, Ben \mapsto 1230, Irum \mapsto 3012\}$ $studentNumber2 = \{Anna \mapsto 0123, Ben \mapsto 1230, Jack \mapsto 2301, Jack \mapsto 3012\}$

```
    studentNumber1 ∈ NAMES → MNUMBERS
    studentNumber1(Ben)=1230
    studentNumber1(Jack) is undefined
    studentNumber2 ∉ NAMES → MNUMBERS
    studentNumber2(Jack) is undefined
```

Domain Restriction

• Given relation $R \in S \leftrightarrow T$ and $A \subseteq S$, the **domain restriction** of R by A is written $A \triangleleft R$

 Restrict relation *R* so it only contains pairs whose <u>first</u> part is in the set *A* (keep only those pairs whose first element is in A)

• Example:

 $fruitColor = \{green \mapsto grape, yellow \mapsto banana, red \mapsto apple\}$ $\{red, pink\} \triangleleft fruitColor = \{red \mapsto apple\}$

Domain Subtraction

• Given $R \in S \leftrightarrow T$ and $A \subseteq S$ the domain subtraction of R by A is written

$A \triangleleft R$

Remove those pairs from relation *R* whose first part is in the set *A* (keep only those pairs whose first element NOT in A)

• Example:

 $fruitColor = \{green \mapsto grape, yellow \mapsto banana, red \mapsto apple\}$ $\{red, pink\} \triangleleft fruitColor = \{green \mapsto grape, yellow \mapsto banana\}$

Range Restriction

• Given $R \in S \leftrightarrow T$ and $A \subseteq S$ the range restriction of R by A is written $R \triangleright A$

 Restrict relation R so the it only contains pairs whose <u>second</u> part is in the set A (keep only those pairs whose second element is in A)

• Example:

 $fruitColor = \{green \mapsto grape, yellow \mapsto banana, red \mapsto apple\}$ $fruitColor \triangleright \{grape, pear\} = \{green \mapsto grape\}$

Range Subtraction

• Given $R \in S \leftrightarrow T$ and $A \subseteq S$ the range subtraction of R by A is written

$R \triangleright A$

 Remove those pairs from relation *R* whose <u>second</u> part is in the set *A* (keep only those pairs whose second element NOT in *A*)

• Example:

 $fruitColor = \{green \mapsto grape, yellow \mapsto banana, red \mapsto apple\}$ $fruitColor \triangleright \{grape, banana\} = \{red \mapsto apple \}$

Domain and range, restriction and subtraction: summary

Assume $R \in S \leftrightarrow T$ and $A \subseteq S, B \subseteq T$

Predicate	Definition	Name
$\boldsymbol{x} \mapsto \boldsymbol{y} \in A \triangleleft R$	$x \mapsto y \in R \land x \in A$	Domain restriction
$\boldsymbol{x} \mapsto \boldsymbol{y} \in A \triangleleft R$	$x \mapsto y \in R \land x \notin A$	Domain subtraction
$x \mapsto y \in R \triangleright B$	$x \mapsto y \in R \land y \in B$	Range restriction
$x \mapsto y \in R \Rightarrow B$	$\boldsymbol{x} \mapsto \boldsymbol{y} \in R \land \boldsymbol{y} \notin B$	Range subtraction

Function Overriding

• Override the function f by the function g:

f⊲g

- Function f is updated according to g (Override: replace existing mapping with new ones)
- **f** and **g** must be partial functions of the same type

Function overriding definition

• Definition in terms of function override and set union $f \triangleleft \{a \mapsto b\} = (\{a\} \triangleleft f) \cup \{a \mapsto b\}$ $f \triangleleft g = (dom(g) \triangleleft f) \cup g$

• Examples:

 $studentNumber = \{Anna \mapsto 0123, Ben \mapsto 1230, Jack \mapsto 2301, Irum \mapsto 3012\},$ $g = \{Ben \mapsto 5555\}$

studentNumber $\triangleleft g$ = {*Anna* \mapsto 0123, *Ben* \mapsto 5555, *Jack* \mapsto 2301, *Irum* \mapsto 3012}

 $g1 = \{Ben \mapsto 5555, Anna \mapsto 1111\}$

studentNumber \triangleleft *g***1**= {*Anna* \mapsto 1111, *Ben* \mapsto 5555, *Jack* \mapsto 2301, *Irum* \mapsto 3012}

Relation and function

Any operation applicable to a relation or a set is also applicable to a function

- domain and range of a function, range restriction, etc.

If **f** is a function , then f(x) is the result of function **f** for the argument x.

Total Functions

• A total function is a special kind of partial function. Declaration f as a total function $f \in X \longrightarrow Y$

• This means that f is well-defined for every element in X, i.e., $f \in X \to Y$ is shorthand for $f \in X \to Y \land dom(f) = X$

Function called total **injective** (or 1-1), if for every element y from its range there exists only one element x in the domain and dom(f) = X. Declaration f

 $f \in X \mapsto Y$

• Example:

```
username \in USERS \mapsto UNAMES
```

Every user in a system has one unique user name.

Total surjective function

Function called **surjective**, denoted as

 $f \in X \twoheadrightarrow Y$

if its range is the whole target and ran(f) = Y.

• Example

f —"attends school"
f ∈ STUDENTS → SCHOOLS

- No school without students (full set *SCHOOLS* is covered).

Bijective function

Function is **bijective**, if it is total, injective and surjective:

 $f \in X \rightarrowtail Y$

• Example

- "Married to" is **bijective** function,
- **X** set of "married man"
- **Y** set of "married woman"

Example: printer access for students

The system tracks the permissions that students have with regard to the printers available at the university network.

- A system should support adding a permission for a student in order to get an access to a particular printer and removing a permission.
- A system should support removing a student's access to all printers at once.
- A system should support giving the combined permissions of any two students to both of them.

Printer access

• Permissions are naturally expressed as a *relation* between students and printers, so the machine makes use of a variable whose type is relation.

- Since the machine will have to keep track of changing permissions, it will make use of a variable **access** whose type is a *relation* between *STUDENTS* and *PRINTERS*.
- As permissions are added or removed, the variable will be updated to reflect the information.

Printer access: context

CONTEXT PrinterAccess_c0 SETS STUDENTS PRINTERS AXIOMS axm1: finite(STUDENTS) axm2: finite(PRINTERS) axm3: STUDENTS≠ Ø axm4: PRINTERS≠ Ø END

Printer access: machine

```
MACHINE PrinterAccess_m0

SEES PrinterAccess_c0

VARIABLES access

INVARIANTS

inv1: access ∈ STUDENTS ↔ PRINTERS

EVENTS

INITIALISATION ≜

begin

act1: access := Ø

end
```

Model events

```
ADD ≜
     any st pr
     where
           grd1: st ∈ STUDENTS
           grd2: pr ∈ PRINTERS
     then
          act1: access:=access \cup {st \mapsto pr}
     end
BLOCK ≜
     any st pr
     where
           grd1: st ∈ STUDENTS
           grd2: pr ∈ PRINTERS
          grd3: st \mapsto pr \in access
     then
           act1: access:=access \setminus {st \mapsto pr}
```

end

Model events

```
BAN ≜
     any st
    where
          grd1: st ∈ STUDENTS
    then
          act1: access:={st} \triangleleft access
    end
UNIFY ≜
    any st1 st2
    where
          grd1: st1 ∈ STUDENTS
          grd2: st2 ∈ STUDENTS
    then
          act1: access:= access \cup ({st1} × access[{st2}]) \cup ({st2} ×
access[{st1}])
    end
END
```

Printer access rules

• Assume that we want to restrict the number of printers that a student can have access to.

For example, a student can use no more than 3 printers.

We have to reflect this new functionality into our model.

Model events: modification of ADD event

```
ADD \triangleq

any st pr

where

grd1: st \in STUDENTS

grd2: pr \in PRINTERS

grd3: ??? // we have to specify new condition here

then

act1: access:=access \cup \{st \mapsto pr\}

end
```

Model events: modification of ADD event

// We restrict a domain of **access** relation by a set containing one element student **st**, i.e., $\{st\} \lhd access$. As a result of this operation we get a set of pairs, whose the first element is **st**. Then by **card** operator we count a number of such pairs. Thus, we get a number of printers that this particula student **st** has access to.

Model events: modification of UNIFY event

Similarly, we have to modify the event UNIFY.

However, the new guard here will be rather complex

• Informally: we have to check, if, after the Unify operation, two students still will have access to no more than 3 printers.

This means that the following property should be defined as a model invariant (and, consequently preserved during events execution):

```
\forall st. st \in dom(access) \implies card(\{st\} \triangleleft access) \le 3
```

More examples

• Every person is either a student or a lecturer. But no person can be a student and a lecturer at the same time.

 $STUDENTS \subseteq PERSONS, LECTURERS \subseteq PERSONS$

 $LECTURERS \cup STUDENTS = PERSONS$

 $LECTURERS \cap STUDENTS = \emptyset$

• Only lecturer can teach course

 $e.g., \ CourseLecturer \ \in COURSES \leftrightarrow LECTURERS$

More examples

• Every course is given by at most one lecturer

CourseLecturer \in *COURSES* \rightarrow *LECTURERS* // total function

• A lecturer has to teach at least one course and at most three courses

 $CourseLecturer \in COURSES \rightarrow LECTURERS \land ran(CourseLecturer) = LECTURERS \land (\forall l. card(CourseLecturer \triangleright \{l\}) \leq 3))$

Comment on Initialisation event

```
      MACHINE CoursesRegistration_m0

      SEES CoursesRegistration_m0

      VARIABLES access

      INVARIANTS

      inv1: CourseLecturer \in COURSES \rightarrow LECTURERS

      ....

      EVENTS

      INITIALISATION \triangleq

      begin

      act1: CourseLecturer := Ø // wrong! Since CourseLecturer defined as a total function

      end
```

inv1 invariant should be preserved upon INITIALISATION event.

BUT Rodin prover will fail to prove that since upon substitution *CourseLecturer* by \emptyset , it will have to prove that $\emptyset \in COURSES \rightarrow LECTURERS$. But it is wrong!

Simple example: seat booking system

The system allows a person to make a seat booking. Specifically:

- A system should support booking a seat by only one person;
- A system should support cancelling of a booking.

Modelling seat booking system in Event-B

- In the static part of our Event-B model context we will introduce required sets: SEATS and PERSONS as well as required axioms.
- In the dynamic part of the model machine we will define (specify) operations by events BOOK and CANCEL, correspondingly.
- We introduce a variable *booked_seats* whose type is a *partial function* on the sets *SEATS* and *PERSONS*.
- **booked_seats** keeps a track on booked seats and persons make their booking.
- Since booking of a seat can be done or cancelled, the variable booked_seats will be updated by the events BOOK or CANCEL to reflect this.

Seat booking system

We define a context **BookingSeats_c0** as follows

```
CONTEXT<br/>BookingSeats_c0SETSPERSONS<br/>SEATSSEATSAXIOMS<br/>axm1: finite(SEATS)<br/>axm2: finite(PERSONS)<br/>axm3: SEATS \neq \emptyset<br/>axm4: PERSONS \neq \emptysetEND
```

Machine BookingSeats_m0

```
MACHINE BookingSeats_m0
                                                                                                         // we take any seat ...
                                                                              ard2: seat \in SEATS
                                                                              grd3: seat ∉ dom(booked seat) // ... that is free
SEES BookingSeats c0
VARIABLES
                                                                         then
     booked seat
                                                                              act1: booked seat := booked seat \cup {seat \mapsto person}
INVARIANTS
                                                                         end
     inv1: booked seat \in SEATS \rightarrow PERSONS
// this variable is defined as a partial function (every seat can be
                                                                                   // cancelation of booking
                                                                   CANCEL ≜
occupied by only one person, but not every seat from the set SEATS
                                                                         any person seat
is booked yet)
                                                                         where
EVENTS
                                                                              grd1: seat \mapsto person \in booked seat // any pair
INITIALISATION ≜
                                                                                                      from booked seat
     then
                                                                         then
          act1: booked seat := Ø // empty set
                                                                              act1: booked seat := booked seat \ {seat \mapsto person}
                                                                              // delete this pair from booked seat
     end
                //booking a seat
BOOK ≜
                                                                         end
                                                                   END
     any person seat
     where
          grd1: person ∈ PERSONS // take any person
```