
DD2460 Software safety
and security. Lecture 4
ON THE USE OF SET THEORY, FUNCTIONS AND RELATIONS IN EVENT-
B MODELLING

Basic set theory
• A set is a collection of elements.

• Elements of a set may be numbers, names, identifiers, etc.
 E.g. the set ℕ is the collections of all natural numbers.

• Examples:
 {3,5,7,…}
 {red, green, black}
 {yes, no}
 {wait, start, process, stop}
 But not: {1, 2, green}

• Elements of a set are not ordered.

• Set may be finite or infinite.

Membership
• Relationship between an element and a set: is the element a member of the set or not?

• For element 𝒙𝒙 and set 𝑺𝑺, we express the membership relation as follows

𝒙𝒙 ∈ 𝑺𝑺 (‘𝒙𝒙 is a member of 𝑺𝑺’)

where ∈ is a predicate over sets and elements

• Set membership is a boolean property relating an element and a set, i.e., either x is in S or x is
not in S.

• This means that there is no concept of an element occurring more that once in a set, e.g.,
• 𝑎𝑎, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ;
• 3, 7 = 3, 7, 7

• Conversely, the element is not a member of the set: 𝒙𝒙 ∉ 𝑺𝑺

Set definition
• If a set has only finite number of elements, then it can be written explicitly, by listing all of its
elements within set brackets ′{′ and }′ ′:
 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 = 1𝐴𝐴, 1𝐵𝐵, 1𝐶𝐶, 1𝐷𝐷
 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓

• Some sets have predefined names:
 ℕ – 𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑡𝑡𝑡𝑡 𝑜𝑜𝑓𝑓 𝑠𝑠𝑎𝑎𝑡𝑡𝑎𝑎𝑠𝑠𝑎𝑎𝑓𝑓 𝑠𝑠𝑎𝑎𝑛𝑛𝑏𝑏𝑡𝑡𝑠𝑠𝑠𝑠 0, 1, 2, 3, …
 ℤ − 𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑡𝑡𝑡𝑡 𝑜𝑜𝑓𝑓 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 …− 2,−1, 0, 1, 2, …

• The empty set contains no elements at all. It is the smallest possible set.

∅ 𝑜𝑜𝑠𝑠 {}

Set comprehension
• Enumerating all of the elements of a set is not always possible.

• Would like to describe a set by in terms of a distinguishing property of its elements.

• Set can be defined by means of a set comprehension:

𝒙𝒙 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝑷𝑷(𝒙𝒙)

“Set of all 𝑥𝑥 in 𝑇𝑇 that satisfy 𝑃𝑃(𝑥𝑥)”
• Each element of a set satisfies some criterion. Criterions are defined by predicates.

A variable ranging over … condition

Examples on set comprehension

• Examples:

 Natural numbers less than 10: 𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ 𝑥𝑥 < 10

 Even integers: 𝑥𝑥 𝑥𝑥 ∈ ℤ ∧ (∃ 𝑦𝑦.𝑦𝑦 ∈ ℤ ∧ 2𝑦𝑦 = 𝑥𝑥)

 Sometimes it is helpful to specify a “pattern” for the elements

 E.g. 2𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ 𝑥𝑥2 ≥ 3

More examples on set comprehension

• Examples:

 What is the set defined by the set comprehension:

𝑧𝑧 𝑧𝑧 ∈ ℕ ∧ 𝑧𝑧 < 100 ∧ (∃ 𝑛𝑛.𝑛𝑛 ∈ ℤ ∧𝑛𝑛3 = 𝑧𝑧) ?

Answer: 1, 16, 27, 64

Subset and equality relations for sets
• A set 𝑺𝑺 is said to be subset of set 𝑺𝑺 when every element of 𝑺𝑺 is also an element of 𝑺𝑺. This is
written as follows:

𝑺𝑺 ⊆ 𝑺𝑺

• For example:
 3, 7 ⊆ 1, 2, 3, 5, 7, 9 ;
 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡,𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠 ⊆ 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡, 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎,𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠,𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡
 𝐽𝐽𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠,𝑊𝑊𝑡𝑠𝑠𝑡𝑡𝑡𝑡, 𝐽𝐽𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠 ⊆ 𝑊𝑊𝑡𝑠𝑠𝑡𝑡𝑡𝑡, 𝑆𝑆𝑛𝑛𝑠𝑠𝑡𝑡𝑡, 𝐽𝐽𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠, 𝐽𝐽𝑎𝑎𝐽𝐽𝑠𝑠𝑜𝑜𝑠𝑠

• A set 𝑺𝑺 is said to be equal to set 𝑺𝑺 when 𝑺𝑺 ⊆ 𝑺𝑺 and 𝑺𝑺 ⊆ 𝑺𝑺
𝑺𝑺 = 𝑺𝑺

More examples
Set membership says nothing about the relationship between the elements of a set
other than that they are members of the same set.
o the order in which we enumerate a set is not significant, e.g.,

• 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑏𝑏, 𝑎𝑎, 𝑐𝑐 ;
o there is no concept of an element occurring more that once in a set, e.g.,

• 𝑎𝑎,𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ;

These two characteristics distinguish sets from data structures such as lists or arrays
where elements appear in order and the same element my occur multiple times.

Operations on sets (set operators)
• Union of S and T: set of elements in either S or T:

𝑺𝑺 ∪ 𝑺𝑺

• Intersection of S and T: set of elements in both S and T:
𝑺𝑺 ∩ 𝑺𝑺

• Difference of S and T: set of elements in S but not in T:
𝑺𝑺 ∖ 𝑺𝑺

Examples on Set Operators
o Union

• 1,2 ∪ 2,3,5 = 1,2,3,5
• {1} ∪ 2 = {1,2}
• ∅ ∪ 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽 = 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽

o Intersection
• 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡,𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠,𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡 ∩ 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠, 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎 = 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠
• 𝑠𝑠𝑎𝑎𝑟𝑟𝑠𝑠𝑠𝑠𝑡, 𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠, 𝑐𝑐𝑡𝑡𝑓𝑓𝑡𝑡𝑠𝑠𝑦𝑦 ∩ 𝑠𝑠𝑎𝑎𝑛𝑛𝑠𝑠𝐽𝐽𝑠𝑠𝑠𝑠, 𝑡𝑡𝑜𝑜𝑛𝑛𝑎𝑎𝑡𝑡𝑜𝑜, 𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑜𝑜𝑡𝑡 =∅
• 2,3,5 ∩ ∅ = ∅

o Difference
• 𝑐𝑐𝑡𝑡𝑡𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡𝑏𝑏𝑎𝑎𝑓𝑓𝑓𝑓 ∖ 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑜𝑜𝑓𝑓𝑓𝑓 = 𝑐𝑐𝑡𝑡𝑡𝑠𝑠𝑠𝑠, 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡𝑏𝑏𝑎𝑎𝑓𝑓𝑓𝑓
• 𝑠𝑠𝑜𝑜𝑡𝑡, 𝑏𝑏𝑎𝑎𝑐𝑐𝐽𝐽𝑡𝑡𝑡𝑡,𝑏𝑏𝑎𝑎𝑠𝑠𝐽𝐽𝑡𝑡𝑡𝑡 ∖ 𝑠𝑠𝑡𝑡𝑡𝑡𝑟𝑟𝑓𝑓𝑡𝑡, 𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑜𝑜𝑡𝑡, 𝑏𝑏𝑎𝑎𝑐𝑐𝐽𝐽𝑡𝑡𝑡𝑡, 𝑏𝑏𝑎𝑎𝑠𝑠𝐽𝐽𝑡𝑡𝑡𝑡
• 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽 ∖ ∅ = 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽

Set axioms and laws
• Basic axioms
 Set membership: ∀𝑥𝑥 � 𝑥𝑥 ∈ 𝑆𝑆
 Empty set: ∀𝑥𝑥 � 𝑥𝑥 ∈ ∅

• Fundamental laws (can be proven)
 Commutative laws:

𝑺𝑺 ∪ 𝑺𝑺 = 𝑺𝑺 ∪ 𝑺𝑺
𝑺𝑺 ∩ 𝑺𝑺 = 𝑺𝑺 ∩ 𝑺𝑺

 Associative laws:
𝑺𝑺 ∪ 𝑺𝑺 ∪ 𝑺𝑺 = 𝑺𝑺 ∪ (𝑺𝑺 ∪ 𝑺𝑺)
𝑺𝑺 ∩ 𝑺𝑺 ∩ 𝑺𝑺 = 𝑺𝑺 ∩ (𝑺𝑺 ∩ 𝑺𝑺)

 Distributive laws:
𝑺𝑺 ∩ (𝑺𝑺 ∪ 𝑺𝑺) = (𝑺𝑺 ∩ 𝑺𝑺) ∪ (𝑺𝑺 ∩ 𝑺𝑺)
𝑺𝑺 ∪ 𝑺𝑺 ∩ 𝑺𝑺 = 𝑺𝑺 ∪ 𝑺𝑺 ∩ (𝑺𝑺 ∪ 𝑺𝑺)

Power sets
• The power set of a set 𝑺𝑺 is the set whose elements are all subsets of 𝑺𝑺,

written ℙ(𝑺𝑺)

• Example,
ℙ 1,3,5 = ∅, 1 , 3 , 5 , 1,3 , 1,5 , 3,5 , 1,3,5

• 𝑺𝑺 ∈ ℙ 𝑺𝑺 is the same as 𝑺𝑺 ⊆ 𝑺𝑺

• Sets are themselves elements – so we can have sets of sets

• Example, ℙ 1,3,5 is an example of a set of sets

1,3

1,3,5

1,5 3,5

1 3 5

Types of sets
• All the elements of a set must have the same type.

• For example, 2, 3, 4 is a set of integers.

2, 3, 4 ∈ ℙ ℤ .

So the type of 2, 3, 4 is ℙ ℤ .

To declare 𝒙𝒙 to be a set of elements of type T we write either

𝒙𝒙 ∈ ℙ 𝑺𝑺 or 𝒙𝒙 ⊆ 𝑺𝑺

More e.g., math ⊆ 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺𝑪𝑪𝑺𝑺𝑺𝑺 - so type of math is ℙ 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺𝑪𝑪𝑺𝑺𝑺𝑺

Cardinality
• The number of elements in a set is called its cardinality

• In Event-B this is written as card(S)
• Examples:
 card({1, 2, 3})=3
 card({a, b, c, d})=4
 card({Bill, Anna, Anna, Bill})=2
 card(ℙ 1,3,5)=8

• Cardinality is only defined for finite sets.
• If S is an infinite set, then card(S) is undefined. Whenever you use the card operator, you must ensure

that it is only applied to a finite set.

Expressions
• Expressions are syntactic structures for specifying values (elements or sets)

• Basic expressions are
 literals (e.g., 3, ∅);
 variables (e.g., x, a, room, registered);
 carrier sets (e.g., S, STUDENTS, FRUITS).

• Compound expressions are formed by applying expressions to operators such as

𝒙𝒙 + 𝒚𝒚 and 𝑺𝑺 ∪ 𝑺𝑺
to any level of nesting.

Predicates
• Predicates are syntactic structures for specifying logical statements, i.e., statements that are
either TRUE or FALSE (but not both!!!).

• Equality of expressions is an example predicate
 e.g., registered = registered _spring∪ registered _fall.

• Set membership, e.g., 𝟓𝟓 ∈ ℕ

• Subset relations, e.g., 𝑺𝑺 ⊆ 𝑺𝑺

• For integer elements we can write ordering predicates such as 𝒙𝒙 < 𝒚𝒚 .

Predicate logic
• Basic predicates: 𝒙𝒙 ∈ 𝑺𝑺,𝑺𝑺 ⊆ 𝑺𝑺,𝒙𝒙 ≤ 𝒚𝒚

• Predicate operators:

Name Predicate Definitions
Negation ¬ 𝑃𝑃 P does not hold
Conjunction 𝑃𝑃 ∧ 𝑄𝑄 both P and Q hold
Disjunction 𝑃𝑃 ∨ 𝑄𝑄 either P or Q holds
Implication 𝑃𝑃 ⇒ 𝑄𝑄 if P holds, then Q holds

Examples
𝑃𝑃 - Bob attends MATH course,

𝑄𝑄 - Mary is happy

Predicate
¬𝑃𝑃 Bob does not attend MATH course

𝑃𝑃 ∧ 𝑄𝑄 Bob attends MATH course and Mary is happy

𝑃𝑃 ∨ 𝑄𝑄 Bob attends MATH course or Mary is happy

𝑃𝑃 ⇒ 𝑄𝑄 If Bob attends MATH course, then Mary is happy

Quantified Predicates
We can quantify over a variable of a predicate universally or existentially:

Name Predicate Definition

Universal Quantification ∀𝑥𝑥 � 𝑃𝑃 P holds for all x

Existential Quantification ∃𝑥𝑥 � 𝑃𝑃 P holds for some x

Quantified Predicates
In the predicate ∀𝑥𝑥 � 𝑃𝑃 the quantification is over all possible values in the type
of the variable x.

Typically we constrain the range of values using implication.

Examples:

 ∀𝑥𝑥 � 𝑥𝑥 > 5 ⟹ 𝑥𝑥 > 3
 ∀𝑠𝑠𝑡𝑡 � 𝑠𝑠𝑡𝑡 ∈ 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑟𝑟 ⟹ 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆

Quantified Predicates
In the case of existential quantification we typically constrain the range of
values using conjunction.

Example:

 we could specify that integer z has a positive square root as follows:

∃ 𝑦𝑦.𝑦𝑦 ≥ 0 ∧ 𝑦𝑦2 = 𝑧𝑧
 ∃ 𝑠𝑠𝑡𝑡 � 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 ∧ 𝑠𝑠𝑡𝑡 ∉ 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑟𝑟

Examples
𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵𝐴𝐴𝑆𝑆𝑆𝑆 = 𝐵𝐵𝑠𝑠𝑓𝑓𝑓𝑓,𝐵𝐵𝑡𝑡𝑠𝑠,𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎,𝐴𝐴𝑓𝑓𝑠𝑠𝑐𝑐𝑡𝑡 , 𝑀𝑀𝐴𝐴𝑇𝑇𝑀𝑀= 𝐴𝐴𝑓𝑓𝑠𝑠𝑐𝑐𝑡𝑡,𝐵𝐵𝑡𝑡𝑠𝑠

𝐴𝐴𝑓𝑓𝑠𝑠𝑐𝑐𝑡𝑡 ∈ 𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵𝐴𝐴𝑆𝑆𝑆𝑆

𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ∈ 𝑀𝑀𝐴𝐴𝑇𝑇𝑀𝑀

∀𝑥𝑥 � 𝑥𝑥 ∈ 𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵𝐴𝐴𝑆𝑆𝑆𝑆 ⟹ 𝑥𝑥 ∈ 𝑀𝑀𝐴𝐴𝑇𝑇𝑀𝑀

∃ 𝑥𝑥. 𝑥𝑥 ∈ 𝑀𝑀𝐴𝐴𝑇𝑇𝑀𝑀 ∧ 𝑥𝑥 ∈ 𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵𝐴𝐴𝑆𝑆𝑆𝑆

∀𝑥𝑥 � 𝑥𝑥 ∈ 𝑀𝑀𝐴𝐴𝑇𝑇𝑀𝑀 ⟹ 𝑥𝑥 ∈ 𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵𝐴𝐴𝑆𝑆𝑆𝑆

TRUE
FALSE

FALSE
TRUE

TRUE

Free and bound variables
Variables play two different roles in predicate logic:

• A variable that is universally or existentially quantified in a predicate is said to be a bound
variable.

• A variable referenced in a predicate that is not bound variable is called a free variable.

• Example

∃ 𝒚𝒚.𝒚𝒚 ≥ 𝟎𝟎 ∧ 𝒚𝒚𝟐𝟐 = 𝒛𝒛

𝑦𝑦 is bound while 𝑧𝑧 is free.

This is a property of y and may be true or false depending on what z is.

The role of y is to bind the quantifier ∃ and the formula together.

Predicates on Sets
Predicates on sets can be defined in terms of the logical operators as follows:

Name Predicate Definition

Subset 𝑺𝑺 ⊆ 𝑺𝑺 ∀𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ⇒ 𝒙𝒙 ∈ 𝑺𝑺

Set equality 𝑺𝑺 = 𝑺𝑺 𝑺𝑺 ⊆ 𝑺𝑺 ∧ 𝑺𝑺 ⊆ 𝑺𝑺

Duality of universal and existential
quantification
¬∀𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ⇒ 𝑺𝑺 = ∃𝒙𝒙 � (𝒙𝒙 ∈ 𝑺𝑺 ∧ ¬𝑺𝑺)

¬∃𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝑺𝑺 = ∀𝒙𝒙 � (𝒙𝒙 ∈ 𝑺𝑺 ⇒ ¬𝑺𝑺)

Defining set operators with logic
Name Predicate Definition

Negation 𝒙𝒙 ∉ 𝑺𝑺 ¬(𝒙𝒙 ∈ 𝑺𝑺)

Union 𝒙𝒙 ∈ 𝑺𝑺 ∪ 𝑺𝑺 𝒙𝒙 ∈ 𝑺𝑺 ∨ 𝒙𝒙 ∈ 𝑺𝑺

Intersection 𝒙𝒙 ∈ 𝑺𝑺 ∩ 𝑺𝑺 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝒙𝒙 ∈ 𝑺𝑺

Difference 𝒙𝒙 ∈ 𝑺𝑺 ∖ 𝑺𝑺 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝒙𝒙 ∉ 𝑺𝑺

Subset 𝑺𝑺 ⊆ 𝑺𝑺 ∀𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ⇒ 𝒙𝒙 ∈ 𝑺𝑺

Power set 𝒙𝒙 ∈ ℙ(𝑺𝑺) 𝒙𝒙 ⊆ 𝑺𝑺

Empty set 𝒙𝒙 ∈ ∅ FALSE

Membership 𝒙𝒙 ∈ {a,…, b} 𝒙𝒙=a ∨ … ∨ 𝒙𝒙=b

Event-B
• The invariants of an Event-B model and the guards of an event are formulated as predicates.

• The proof obligations generated by Rodin are also predicates.

• A predicate is simply an expression, the value of which is either true or false.

Example: access control to a building
A system for controlling access to a university building

• An university has some fixed number of students.

• Students can be inside or outside the university building.

• The system should allow a new student to be registered in order to get the access to the
university building.

• To deny the access to the building for a student the system should support deregistration.

• The system should allow only registered students to enter the university building.

Example: access control to a building
A system for controlling access to a university building

out
in

registered

Model context
CONTEXT BuildingAccess_c0

SETS STUDENTS //

CONSTANTS max_capacity // max capacity of the building is defined as a model constant
(we will need it later in the course lectures)

AXIOMS
axm1: finite(STUDENTS)
axm2: max_capacity ∈ ℕ
axm3: max_capacity > 0

END

Model machine
MACHINE BuildingAccess_m0

SEES BuildingAccess_c0

VARIABLES registered in out
//The machine state is represented by three variables, registered, in, out.

INVARIANTS
inv1: registered ⊆ STUDENTS // registered students are of type STUDENTS

inv2: registered = in ∪ out // registered students are either inside or outside
the university building

inv3: in ∩ out = ∅ // no student is both inside and outside the university building

EVENTS …

EVENTS
INITIALISATION≜

then
act1: registered, in, out := ∅,∅,∅ // initially all the variables are empty

end

ENTER ≜ // a student entering the building
any st
where

grd1: st ∈ registered // student must be registered
grd2: st ∈ out // student must be outside

then
act1: in := in ∪ {st} // add to in
act2: out := out \ {st} // remove from out

end

Redundant guard since every
student from out is registered

EXIT ≜ // a student leaves the building
any st
where

grd1: st ∈ registered // a student must be registered
grd2: st ∈ in // a student must be inside

then
act1: in := in \ {st} // remove st from in
act2: out := out ∪ {st} // remove st from in

end
REGISTER ≜ // registration a new student

any st
where

grd1: st ∈ STUDENTS // a new student
grd2: st ∉ registered // … that is not in the set registered yet

then
act1: registered := registered ∪ {st} // add st to registered
act2: out := out ∪ {st} // add st to out

end

Redundant guard since every
student from out is registered

DEREGISTER1 ≜ // de-register a student
any st
where

grd1: st ∈ registered // a student must be registered
then

act1: registered := registered \ {st} // remove st from registered
act2: in := in \ {st} // remove st from in
act3: out := out \ {st} // remove st from out

end
DEREGISTER2 ≜ // de-register a student while he/she is outside the building

any st
where

grd1: st ∈ out // a new student
then

act1: registered := registered \ {st} // remove st from registered
act2: out := out ∖ {st} // remove st from out

end
END

Machine behaviour and nondeterminism
• The behaviour of an Event-B machine is defined as a transition system that moves from one
state to another through execution of events.

• The states of a machine are represented by the different configurations of values for the
variables:
 In our example, the state defined by the variables registered, in, out

Machine behaviour and nondeterminism
• In any state that a machine can reach, an enabled event is chosen to be executed to define the
next transition.

• If several events are enabled in a state, then the choice of which event occurs is
nondeterministic.

• Also, if an event is enabled for several different parameter values, the choice of value for the
parameters is nondeterministic – the choice just needs to satisfy the event guards.
 For example, in the REGISTER event, the choice of value for parameter st is nondeterministic, with the

choice of value being constrained by the guards of the event to ensure that it is a fresh value.

• Treating the choice of event and parameter values as nondeterministic is an abstraction of
different ways in which the choice might be made in an implementation of the model.

Relations between sets
• Relation between sets is an important mathematical structure which is commonly used in
expressing specifications.

• Relations allow us to express complicated interconnections and relationships between
entitites formally.

Ordered pairs
• An ordered pair is an element consisting of two parts:

a first part and second part

• An ordered pair with first part 𝒙𝒙 and second part 𝒚𝒚 is written as:
𝒙𝒙 ↦ 𝒚𝒚

• Examples:
• 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 ↦ 𝒓𝒓𝒂𝒂𝒓𝒓
• (𝑫𝑫𝒂𝒂𝑫𝑫𝒂𝒂𝑫𝑫𝒂𝒂𝑫𝑫𝒂𝒂𝑫𝑫 ↦ 𝒇𝒇𝒂𝒂𝒂𝒂𝒂𝒂)
• (𝟏𝟏𝟏𝟏𝟓𝟓𝟏𝟏 ↦ 𝟑𝟑𝟎𝟎)
• (𝑺𝑺𝑺𝑺𝑺𝑺𝑫𝑫𝑺𝑺 ↦ 𝟎𝟎𝟏𝟏𝟐𝟐𝟑𝟑)

Cartesian product

• The Cartesian product of two sets is

the set of pairs whose first part is in 𝑺𝑺 and second part is in 𝑺𝑺

• The Cartesian product of 𝑺𝑺 with 𝑺𝑺 is written: 𝑺𝑺 × 𝑺𝑺

Cartesian product: example
Lets consider two sets: 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 and 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

Fall

Spring

Databases

Math

Logic

SWQuality

SWSafety

Cartesian product: example

Fall

Spring

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 × 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

Databases

Math

Logic

SWQuality

SWSafety

𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

Cartesian product:
definition and more examples

• Defining Cartesian product:

• Examples:

 ℕ × ℕ pairs of natural numbers

 1,2,3 × 𝑎𝑎, 𝑏𝑏 = 1 ↦ 𝑎𝑎, 1 ↦ 𝑏𝑏, 2 ↦ 𝑎𝑎, 2 ↦ 𝑏𝑏, 3 ↦ 𝑎𝑎, 3 ↦ 𝑏𝑏
 𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎,𝐵𝐵𝑠𝑠𝑓𝑓𝑓𝑓, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 × ∅ = ∅
 1 , 1,2 × 𝑎𝑎, 𝑏𝑏 = 1 ↦ 𝑎𝑎, 1 ↦ 𝑏𝑏, 1,2 ↦ 𝑎𝑎, 1,2 ↦ 𝑏𝑏
 card(𝑦𝑦𝑡𝑡𝑠𝑠,𝑠𝑠𝑜𝑜 × 𝑎𝑎, 𝑏𝑏) = card(𝑦𝑦𝑡𝑡𝑠𝑠 ↦ 𝑎𝑎,𝑦𝑦𝑡𝑡𝑠𝑠 ↦ 𝑏𝑏,𝑠𝑠𝑜𝑜 ↦ 𝑎𝑎,𝑠𝑠𝑜𝑜 ↦ 𝑏𝑏) = 4

Predicate Definition

𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑺𝑺 × 𝑺𝑺 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝒚𝒚 ∈ 𝑺𝑺

Cartesian product is a type constructor
• 𝑺𝑺 × 𝑺𝑺 is a new type constructed from types 𝑺𝑺 and 𝑺𝑺.

• Cartesian product is the type constructor for ordered pairs.

• Given 𝒙𝒙 ∈ 𝑺𝑺 and 𝒚𝒚 ∈ 𝑺𝑺 we have 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑺𝑺 × 𝑺𝑺

• Examples:

 4 ↦ 7 ∈ ℤ × ℤ
 2, 3 ↦ 4 ∈ ℙ ℤ × ℤ
 2 ↦ 1, 3 ↦ 3, 4 ↦ 5 ∈ ℙ(ℤ × ℤ)

Sets of order pairs
A simple database can be modelled as a set of ordered pairs:

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑪𝑪𝑪𝑪𝒔𝒔𝒓𝒓𝑫𝑫𝒂𝒂𝑫𝑫 = {𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 𝐿𝐿𝑜𝑜𝑠𝑠𝑠𝑠𝑐𝑐,𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 ↦

Relations
• A relation R between sets 𝑺𝑺 and 𝑺𝑺 expresses a relationship between elements in 𝑺𝑺 and elements in 𝑺𝑺:
 A relation is captured simply as a set of ordered pairs (𝑫𝑫 ↦ 𝑫𝑫) with 𝑫𝑫 ∈ 𝑺𝑺 and 𝑫𝑫 ∈ 𝑺𝑺 .

• A relation is a common modelling structure so Event-B has a special notation for it:
𝑺𝑺 ⟷ 𝑺𝑺 = ℙ (𝑺𝑺 × 𝑺𝑺)

• We can write then

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑪𝑪𝑪𝑪𝒔𝒔𝒓𝒓𝑫𝑫𝒂𝒂𝑫𝑫 = {𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 𝐿𝐿𝑜𝑜𝑠𝑠𝑠𝑠𝑐𝑐,𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 ↦

Domain and range
𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑪𝑪𝑪𝑪𝒔𝒔𝒓𝒓𝑫𝑫𝒂𝒂𝑫𝑫 = {𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 𝐿𝐿𝑜𝑜𝑠𝑠𝑠𝑠𝑐𝑐,𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 ↦

𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

Anna

Ben

Jack

Irum

𝑵𝑵𝟏𝟏𝑺𝑺𝑺𝑺𝑺𝑺

Alex

Databases

Math

Logic

SWQuality
SWSafety

𝑵𝑵𝟏𝟏𝑺𝑺𝑺𝑺𝑺𝑺 = 𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎,𝐵𝐵𝑡𝑡𝑠𝑠, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽,𝐴𝐴𝑓𝑓𝑡𝑡𝑥𝑥, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎𝑏𝑏𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠,𝑀𝑀𝑎𝑎𝑡𝑡𝑡, 𝐿𝐿𝑜𝑜𝑠𝑠𝑠𝑠𝑐𝑐, 𝑆𝑆𝑊𝑊𝑆𝑆𝑎𝑎𝑓𝑓𝑡𝑡𝑡𝑡𝑦𝑦, 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦

Domain
• The domain of a relation 𝑺𝑺 is the set of first parts of all the pairs in 𝑺𝑺, written 𝒓𝒓𝑪𝑪𝑺𝑺(𝑺𝑺)

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑪𝑪𝑪𝑪𝒔𝒔𝒓𝒓𝑫𝑫𝒂𝒂𝑫𝑫 = {𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 𝐿𝐿𝑜𝑜𝑠𝑠𝑠𝑠𝑐𝑐,𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 ↦

Predicate Definition

𝒙𝒙 ∈ 𝒓𝒓𝑪𝑪𝑺𝑺(𝑺𝑺) ∃ 𝒚𝒚. 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑺𝑺

Range
• The range of a relation 𝑺𝑺 is the set of second parts of all the pairs in 𝑺𝑺, written 𝒓𝒓𝒂𝒂𝒔𝒔 𝑅𝑅

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑪𝑪𝑪𝑪𝒔𝒔𝒓𝒓𝑫𝑫𝒂𝒂𝑫𝑫 = {𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 𝐿𝐿𝑜𝑜𝑠𝑠𝑠𝑠𝑐𝑐,𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 ↦

Predicate Definition

𝒚𝒚 ∈ 𝒓𝒓𝒂𝒂𝒔𝒔(𝑺𝑺) ∃ 𝒙𝒙 .𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑺𝑺

Relational image definition
• Assume 𝑺𝑺 ∈ 𝑺𝑺 ↔ 𝑺𝑺 and 𝟏𝟏 ⊆ 𝑺𝑺

• The relational image of set 𝟏𝟏 under relation 𝑺𝑺 is written 𝑺𝑺 𝟏𝟏

Predicate Definition

𝒚𝒚 ∈ 𝑺𝑺 𝟏𝟏 ∃ 𝒙𝒙. 𝒙𝒙 ∈ 𝟏𝟏 ∧ 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑺𝑺

Relational image examples
• 𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑪𝑪𝑪𝑪𝒔𝒔𝒓𝒓𝑫𝑫𝒂𝒂𝑫𝑫 = {𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 𝐿𝐿𝑜𝑜𝑠𝑠𝑠𝑠𝑐𝑐,𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 ↦ 𝑆𝑆𝑊𝑊𝑄𝑄𝑎𝑎𝑎𝑎𝑓𝑓𝑠𝑠𝑡𝑡𝑦𝑦, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 ↦

Partial functions
• Special kind of relation: each domain element has at most one range element associated with it.

• To declare 𝒇𝒇 as a partial function:
𝒇𝒇 ∈ 𝑿𝑿 𝒀𝒀

• This says that 𝒇𝒇 is a many-to-one relation.

• It is said to be partial because there may be values in the set 𝑿𝑿 that are not in the domain of 𝒇𝒇

• Each domain element is mapped to one range element:

𝒙𝒙 ∈ 𝒓𝒓𝑪𝑪𝑺𝑺 𝒇𝒇 ⟹ 𝒄𝒄𝒂𝒂𝒓𝒓𝒓𝒓 𝒇𝒇 𝒙𝒙 = 𝟏𝟏

• More usually formalised as a uniqueness constraint

𝒙𝒙 ↦ 𝒚𝒚𝟏𝟏 ∈ 𝒇𝒇 ∧ 𝒙𝒙 ↦ 𝒚𝒚𝟐𝟐 ∈ 𝒇𝒇 ⟹ 𝒚𝒚𝟏𝟏=𝒚𝒚𝟐𝟐

Function Application
We can use functional application for partial functions

• If 𝒙𝒙 ∈ 𝒓𝒓𝑪𝑪𝑺𝑺 𝒇𝒇 , then we write 𝒇𝒇 𝒙𝒙 for the unique range element associated with 𝒙𝒙 in 𝒇𝒇.

• if 𝒙𝒙 ∉ 𝒓𝒓𝑪𝑪𝑺𝑺 𝒇𝒇 , then 𝒇𝒇 𝒙𝒙 is undefined.

• if 𝒄𝒄𝒂𝒂𝒓𝒓𝒓𝒓 𝒇𝒇 𝒙𝒙 > 𝟏𝟏, then 𝒇𝒇 𝒙𝒙 is undefined.

Name Expression Meaning Well-definedness

Function application 𝒇𝒇 𝒙𝒙 𝒇𝒇 𝒙𝒙 = 𝒚𝒚 ⟺
𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝒇𝒇

𝒇𝒇 ∈ 𝑿𝑿 𝒀𝒀
∧ 𝒙𝒙 ∈ 𝒓𝒓𝑪𝑪𝑺𝑺(𝒇𝒇)

Examples
𝑆𝑆𝐴𝐴𝑀𝑀𝑆𝑆𝑆𝑆= 𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎,𝐵𝐵𝑡𝑡𝑠𝑠, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽,𝐴𝐴𝑓𝑓𝑡𝑡𝑥𝑥, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 , 𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝐵𝐵𝑆𝑆𝑅𝑅𝑆𝑆 = 0123, 1230, 2301, 3012

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑵𝑵𝒔𝒔𝑺𝑺𝑫𝑫𝒂𝒂𝒓𝒓𝟏𝟏 = 𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 0123,𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 1230, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 ↦ 3012

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑵𝑵𝒔𝒔𝑺𝑺𝑫𝑫𝒂𝒂𝒓𝒓𝟐𝟐 = 𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 0123,𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 1230, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 ↦ 2301, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 ↦ 3012

• 𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑵𝑵𝒔𝒔𝑺𝑺𝑫𝑫𝒂𝒂𝒓𝒓𝟏𝟏 ∈ 𝑆𝑆𝐴𝐴𝑀𝑀𝑆𝑆𝑆𝑆 𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝐵𝐵𝑆𝑆𝑅𝑅𝑆𝑆

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑵𝑵𝒔𝒔𝑺𝑺𝑫𝑫𝒂𝒂𝒓𝒓𝟏𝟏(𝐵𝐵𝑡𝑡𝑠𝑠)=1230

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑵𝑵𝒔𝒔𝑺𝑺𝑫𝑫𝒂𝒂𝒓𝒓𝟏𝟏(𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽) is undefined

• 𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑵𝑵𝒔𝒔𝑺𝑺𝑫𝑫𝒂𝒂𝒓𝒓𝟐𝟐 ∉ 𝑆𝑆𝐴𝐴𝑀𝑀𝑆𝑆𝑆𝑆 𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝐵𝐵𝑆𝑆𝑅𝑅𝑆𝑆

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑵𝑵𝒔𝒔𝑺𝑺𝑫𝑫𝒂𝒂𝒓𝒓𝟐𝟐(𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽) is undefined

Domain Restriction
• Given relation 𝑺𝑺 ∈ 𝑺𝑺 ⟷ 𝑺𝑺 and 𝟏𝟏 ⊆ 𝑺𝑺, the domain restriction of 𝑺𝑺 by 𝟏𝟏 is written

𝟏𝟏 𝑺𝑺

• Restrict relation 𝑺𝑺 so it only contains pairs whose first part is in the set 𝟏𝟏 (keep only those pairs
whose first element is in A)

• Example:
𝒇𝒇𝒓𝒓𝒔𝒔𝑺𝑺𝑫𝑫𝑪𝑪𝑪𝑪𝒂𝒂𝑪𝑪𝒓𝒓 = 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 ↦ 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡,𝑦𝑦𝑡𝑡𝑓𝑓𝑓𝑓𝑜𝑜𝑦𝑦 ↦ 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎, 𝑠𝑠𝑡𝑡𝑟𝑟 ↦ 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡

𝑠𝑠𝑡𝑡𝑟𝑟,𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽 𝒇𝒇𝒓𝒓𝒔𝒔𝑺𝑺𝑫𝑫𝑪𝑪𝑪𝑪𝒂𝒂𝑪𝑪𝒓𝒓= 𝑠𝑠𝑡𝑡𝑟𝑟 ↦ 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡

Domain Subtraction
• Given 𝑺𝑺 ∈ 𝑺𝑺 ⟷ 𝑺𝑺 and 𝟏𝟏 ⊆ 𝑺𝑺 the domain subtraction of 𝑺𝑺 by 𝟏𝟏 is written

𝟏𝟏 𝑺𝑺

• Remove those pairs from relation 𝑺𝑺 whose first part is in the set 𝟏𝟏 (keep only those pairs whose
first element NOT in A)

• Example:
𝒇𝒇𝒓𝒓𝒔𝒔𝑺𝑺𝑫𝑫𝑪𝑪𝑪𝑪𝒂𝒂𝑪𝑪𝒓𝒓 = 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 ↦ 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡,𝑦𝑦𝑡𝑡𝑓𝑓𝑓𝑓𝑜𝑜𝑦𝑦 ↦ 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎, 𝑠𝑠𝑡𝑡𝑟𝑟 ↦ 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡

𝑠𝑠𝑡𝑡𝑟𝑟,𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽 𝒇𝒇𝒓𝒓𝒔𝒔𝑺𝑺𝑫𝑫𝑪𝑪𝑪𝑪𝒂𝒂𝑪𝑪𝒓𝒓= 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 ↦ 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡, 𝑦𝑦𝑡𝑡𝑓𝑓𝑓𝑓𝑜𝑜𝑦𝑦 ↦ 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎

Range Restriction
• Given 𝑺𝑺 ∈ 𝑺𝑺 ⟷ 𝑺𝑺 and 𝟏𝟏 ⊆ 𝑺𝑺 the range restriction of 𝑺𝑺 by 𝟏𝟏 is written

𝑺𝑺. 𝟏𝟏

• Restrict relation R so the it only contains pairs whose second part is in the set 𝟏𝟏 (keep only
those pairs whose second element is in 𝟏𝟏)

• Example:
𝒇𝒇𝒓𝒓𝒔𝒔𝑺𝑺𝑫𝑫𝑪𝑪𝑪𝑪𝒂𝒂𝑪𝑪𝒓𝒓 = 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 ↦ 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡,𝑦𝑦𝑡𝑡𝑓𝑓𝑓𝑓𝑜𝑜𝑦𝑦 ↦ 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎, 𝑠𝑠𝑡𝑡𝑟𝑟 ↦ 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡

𝒇𝒇𝒓𝒓𝒔𝒔𝑺𝑺𝑫𝑫𝑪𝑪𝑪𝑪𝒂𝒂𝑪𝑪𝒓𝒓 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡,𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 ↦ 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡

Range Subtraction
• Given 𝑺𝑺 ∈ 𝑺𝑺 ⟷ 𝑺𝑺 and 𝟏𝟏 ⊆ 𝑺𝑺 the range subtraction of 𝑺𝑺 by 𝟏𝟏 is written

𝑺𝑺 𝟏𝟏

• Remove those pairs from relation 𝑺𝑺 whose second part is in the set 𝟏𝟏 (keep only those pairs
whose second element NOT in 𝟏𝟏)

• Example:
𝒇𝒇𝒓𝒓𝒔𝒔𝑺𝑺𝑫𝑫𝑪𝑪𝑪𝑪𝒂𝒂𝑪𝑪𝒓𝒓 = 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 ↦ 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡,𝑦𝑦𝑡𝑡𝑓𝑓𝑓𝑓𝑜𝑜𝑦𝑦 ↦ 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎, 𝑠𝑠𝑡𝑡𝑟𝑟 ↦ 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡

𝒇𝒇𝒓𝒓𝒔𝒔𝑺𝑺𝑫𝑫𝑪𝑪𝑪𝑪𝒂𝒂𝑪𝑪𝒓𝒓 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡, 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎 = 𝑠𝑠𝑡𝑡𝑟𝑟 ↦ 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡

Domain and range,
restriction and subtraction: summary
Assume 𝑺𝑺 ∈ 𝑺𝑺 ↔ 𝑺𝑺 and 𝟏𝟏 ⊆ 𝑺𝑺,𝑩𝑩 ⊆ 𝑺𝑺

Predicate Definition Name

𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝐴𝐴 𝑅𝑅 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 ∧ 𝒙𝒙 ∈ 𝐴𝐴 Domain restriction

𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝐴𝐴 𝑅𝑅 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 ∧ 𝒙𝒙 ∉ 𝐴𝐴 Domain subtraction

𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 𝐵𝐵 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 ∧ 𝒚𝒚 ∈ 𝐵𝐵 Range restriction

𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 𝐵𝐵 𝒙𝒙 ↦ 𝒚𝒚 ∈ 𝑅𝑅 ∧ 𝑦𝑦 ∉ 𝐵𝐵 Range subtraction

Function Overriding
• Override the function 𝒇𝒇 by the function 𝒈𝒈 :

𝒇𝒇 𝒈𝒈

• Function 𝒇𝒇 is updated according to 𝒈𝒈 (Override: replace existing mapping with new ones)

• 𝒇𝒇 and 𝒈𝒈 must be partial functions of the same type

Function overriding definition
• Definition in terms of function override and set union

𝒇𝒇 𝒂𝒂 ↦ 𝑫𝑫 = 𝒂𝒂 𝒇𝒇 ∪ 𝒂𝒂 ↦ 𝑫𝑫

𝒇𝒇 𝒈𝒈 = 𝒓𝒓𝑪𝑪𝑺𝑺(𝒈𝒈) 𝒇𝒇 ∪ 𝒈𝒈

• Examples:

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑵𝑵𝒔𝒔𝑺𝑺𝑫𝑫𝒂𝒂𝒓𝒓 = 𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 0123,𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 1230, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 ↦ 2301, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 ↦ 3012 ,

𝒈𝒈 = {𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 5555}

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑵𝑵𝒔𝒔𝑺𝑺𝑫𝑫𝒂𝒂𝒓𝒓 𝒈𝒈= 𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 0123,𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 5555, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 ↦ 2301, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 ↦ 3012

𝒈𝒈𝟏𝟏 = {𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 5555,𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 1111}

𝑫𝑫𝑫𝑫𝒔𝒔𝒓𝒓𝒂𝒂𝒔𝒔𝑫𝑫𝑵𝑵𝒔𝒔𝑺𝑺𝑫𝑫𝒂𝒂𝒓𝒓 𝒈𝒈𝟏𝟏= 𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ↦ 1111,𝐵𝐵𝑡𝑡𝑠𝑠 ↦ 5555, 𝐽𝐽𝑎𝑎𝑐𝑐𝐽𝐽 ↦ 2301, 𝐼𝐼𝑠𝑠𝑎𝑎𝑛𝑛 ↦ 3012

Relation and function
Any operation applicable to a relation or a set is also applicable to a function

- domain and range of a function, range restriction, etc.

If 𝒇𝒇 is a function , then 𝒇𝒇(𝒙𝒙) is the result of function 𝒇𝒇 for the argument 𝑥𝑥.

Total Functions
• A total function is a special kind of partial function. Declaration 𝒇𝒇 as a total function

𝒇𝒇 ∈ 𝑿𝑿 ⟶ 𝒀𝒀

• This means that 𝒇𝒇 is well-defined for every element in 𝑿𝑿, i.e., 𝒇𝒇 ∈ 𝑿𝑿 ⟶ 𝒀𝒀 is shorthand for
𝒇𝒇 ∈ 𝑿𝑿 𝒀𝒀 ∧ 𝒓𝒓𝑪𝑪𝑺𝑺 𝒇𝒇 = 𝑿𝑿

Total injective function
Function called total injective (or 1-1), if for every element 𝒚𝒚 from its range there exists only one
element 𝒙𝒙 in the domain and 𝒓𝒓𝑪𝑪𝑺𝑺 𝒇𝒇 = 𝑿𝑿. Declaration 𝒇𝒇

𝒇𝒇 ∈ 𝑿𝑿 ↣ 𝒀𝒀

• Example:

𝒔𝒔𝑫𝑫𝒂𝒂𝒓𝒓𝒔𝒔𝒂𝒂𝑺𝑺𝒂𝒂 ∈ 𝑪𝑪𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 ↣ 𝑪𝑪𝑵𝑵𝟏𝟏𝑺𝑺𝑺𝑺𝑺𝑺

Every user in a system has one unique user name.

Total surjective function
Function called surjective, denoted as

𝒇𝒇 ∈ 𝑿𝑿 ↠ 𝒀𝒀

if its range is the whole target and 𝒓𝒓𝒂𝒂𝒔𝒔 𝒇𝒇 = 𝒀𝒀.

• Example

𝒇𝒇 −”𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠 𝑠𝑠𝑐𝑐𝑡𝑜𝑜𝑜𝑜𝑓𝑓”
𝒇𝒇 ∈ 𝑆𝑆𝑇𝑇𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 ↠ 𝑆𝑆𝐶𝐶𝑀𝑀𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆

- No school without students (full set 𝑆𝑆𝐶𝐶𝑀𝑀𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆 is covered).

Bijective function
Function is bijective, if it is total, injective and surjective:

𝒇𝒇 ∈ 𝑿𝑿 𝒀𝒀

• Example

“Married to” – is bijective function,

𝑿𝑿 - set of “married man”

𝒀𝒀 - set of “married woman”

Example: printer access for students
The system tracks the permissions that students have with regard to the printers available at the
university network.

• A system should support adding a permission for a student in order to get an access to a
particular printer and removing a permission.

• A system should support removing a student’s access to all printers at once.

• A system should support giving the combined permissions of any two students to both of them.

Printer access
• Permissions are naturally expressed as a relation between students and printers, so the
machine makes use of a variable whose type is relation.

• Since the machine will have to keep track of changing permissions, it will make use of a variable
access whose type is a relation between STUDENTS and PRINTERS.

• As permissions are added or removed, the variable will be updated to reflect the information.

Printer access: context

CONTEXT PrinterAccess_c0
SETS STUDENTS

PRINTERS
AXIOMS

axm1: finite(STUDENTS)
axm2: finite(PRINTERS)
axm3: STUDENTS≠ ∅
axm4: PRINTERS≠ ∅

END

Printer access: machine
MACHINE PrinterAccess_m0
SEES PrinterAccess_c0
VARIABLES access
INVARIANTS

inv1: access ∈ STUDENTS ⟷ PRINTERS
EVENTS

INITIALISATION ≜
begin

act1: access := ∅
end

…

Model events
ADD ≜

any st pr
where

grd1: st ∈ STUDENTS
grd2: pr ∈ PRINTERS

then
act1: access:=access ∪ {𝑠𝑠𝑡𝑡 ↦ 𝑠𝑠𝑠𝑠}

end
BLOCK ≜

any st pr
where

grd1: st ∈ STUDENTS
grd2: pr ∈ PRINTERS
grd3: 𝑠𝑠𝑡𝑡 ↦ 𝑠𝑠𝑠𝑠 ∈ access

then
act1: access:=access \{𝑠𝑠𝑡𝑡 ↦ 𝑠𝑠𝑠𝑠}

end

Model events
BAN ≜

any st
where

grd1: st ∈ STUDENTS
then

act1: access:= 𝑠𝑠𝑡𝑡 access
end

UNIFY ≜
any st1 st2
where

grd1: st1 ∈ STUDENTS
grd2: st2 ∈ STUDENTS

then
act1: access:= access ∪ (𝑠𝑠𝑡𝑡1 × access 𝑠𝑠𝑡𝑡2) ∪ (𝑠𝑠𝑡𝑡2 ×

access 𝑠𝑠𝑡𝑡1)
end

END

Printer access rules
• Assume that we want to restrict the number of printers that a student can have access to.

For example, a student can use no more than 3 printers.

We have to reflect this new functionality into our model.

Model events: modification of ADD event

ADD ≜
any st pr
where

grd1: st ∈ STUDENTS
grd2: pr ∈ PRINTERS
grd3: ??? // we have to specify new condition here

then
act1: access:=access ∪ {𝑠𝑠𝑡𝑡 ↦ 𝑠𝑠𝑠𝑠}

end

Model events: modification of ADD event

// We restrict a domain of access relation by a set containing one element student st, i.e.,
st access. As a result of this operation we get a set of pairs, whose the first element is st.

Then by card operator we count a number of such pairs. Thus, we get a number of printers
that this particula student st has access to.

ADD ≜
any st pr
where

grd1: st ∈ STUDENTS
grd2: pr ∈ PRINTERS
grd3: card(st access) < 3 // new guard

then
act1: access:=access ∪ {𝑠𝑠𝑡𝑡 ↦ 𝑠𝑠𝑠𝑠}

end

Model events: modification of UNIFY
event
Similarly, we have to modify the event UNIFY.

However, the new guard here will be rather complex:

• Informally: we have to check, if, after the Unify operation, two students still will have
access to no more than 3 printers.

This means that the following property should be defined as a model invariant (and,
consequently preserved during events execution):

∀ 𝑠𝑠𝑡𝑡. 𝑠𝑠𝑡𝑡 ∈ 𝒓𝒓𝑪𝑪𝑺𝑺 𝒂𝒂𝒄𝒄𝒄𝒄𝒂𝒂𝑫𝑫𝑫𝑫 ⟹ 𝒄𝒄𝒂𝒂𝒓𝒓𝒓𝒓 𝑠𝑠𝑡𝑡 𝒂𝒂𝒄𝒄𝒄𝒄𝒂𝒂𝑫𝑫𝑫𝑫 ≤ 3

More examples
• Every person is either a student or a lecturer. But no person can be a student and a lecturer at
the same time.

𝑆𝑆𝑇𝑇𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 ⊆ 𝑃𝑃𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐿𝐿𝑆𝑆𝐶𝐶𝑇𝑇𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆 ⊆ 𝑃𝑃𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐿𝐿𝑆𝑆𝐶𝐶𝑇𝑇𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆 ∪ 𝑆𝑆𝑇𝑇𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 = 𝑃𝑃𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐿𝐿𝑆𝑆𝐶𝐶𝑇𝑇𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆 ∩ 𝑆𝑆𝑇𝑇𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 = ∅

• Only lecturer can teach course

𝑡𝑡.𝑠𝑠., 𝐶𝐶𝑜𝑜𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝐿𝐿𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠 ∈ 𝐶𝐶𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ⟷ 𝐿𝐿𝑆𝑆𝐶𝐶𝑇𝑇𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆

More examples
• Every course is given by at most one lecturer

𝐶𝐶𝑜𝑜𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝐿𝐿𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠 ∈ 𝐶𝐶𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ⟶ 𝐿𝐿𝑆𝑆𝐶𝐶𝑇𝑇𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆 // total function

• A lecturer has to teach at least one course and at most three courses

𝐶𝐶𝑜𝑜𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝐿𝐿𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠 ∈ 𝐶𝐶𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ⟶ 𝐿𝐿𝑆𝑆𝐶𝐶𝑇𝑇𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆 ∧ 𝒓𝒓𝒂𝒂𝒔𝒔(𝐶𝐶𝑜𝑜𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝐿𝐿𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠) = 𝐿𝐿𝑆𝑆𝐶𝐶𝑇𝑇𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆

∧ (∀ 𝑓𝑓. 𝒄𝒄𝒂𝒂𝒓𝒓𝒓𝒓 𝐶𝐶𝑜𝑜𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝐿𝐿𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠 𝑓𝑓 ≤ 3))

Comment on Initialisation event

inv1 invariant should be preserved upon INITIALISATION event.
BUT Rodin prover will fail to prove that since upon substitution 𝐶𝐶𝑜𝑜𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝐿𝐿𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠 by ∅, it will have to
prove that ∅ ∈ COURSES ⟶ LECTURERS. But it is wrong!

MACHINE CoursesRegistration_m0
SEES CoursesRegistration_m0
VARIABLES access
INVARIANTS

inv1: 𝐶𝐶𝑜𝑜𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝐿𝐿𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠 ∈ COURSES ⟶ LECTURERS
….

EVENTS
INITIALISATION ≜

begin
act1: 𝐶𝐶𝑜𝑜𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝐿𝐿𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠 := ∅ // wrong! Since 𝐶𝐶𝑜𝑜𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝐿𝐿𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠 defined as a total function

end

Simple example: seat booking system
The system allows a person to make a seat booking. Specifically:

• A system should support booking a seat by only one person;
• A system should support cancelling of a booking.

Modelling seat booking system in Event-B
• In the static part of our Event-B model – context - we will introduce required sets: SEATS and
PERSONS as well as required axioms.

• In the dynamic part of the model – machine – we will define (specify) operations by events
BOOK and CANCEL, correspondingly.

• We introduce a variable booked_seats whose type is a partial function on the sets SEATS and
PERSONS.

• booked_seats keeps a track on booked seats and persons make their booking.

• Since booking of a seat can be done or cancelled, the variable booked_seats will be updated by
the events BOOK or CANCEL to reflect this.

Seat booking system
We define a context BookingSeats_c0 as follows

CONTEXT
BookingSeats_c0

SETS
PERSONS
SEATS

AXIOMS
axm1: finite(SEATS)
axm2: finite(PERSONS)
axm3: SEATS≠ ∅
axm4: PERSONS≠ ∅

END

Machine BookingSeats_m0
MACHINE BookingSeats_m0
SEES BookingSeats_c0
VARIABLES

booked_seat
INVARIANTS

inv1: booked_seat ∈ SEATS PERSONS
// this variable is defined as a partial function (every seat can be
occupied by only one person, but not every seat from the set SEATS
is booked yet)
EVENTS
INITIALISATION ≜

then
act1: booked_seat := ∅ // empty set

end
BOOK ≜ //booking a seat

any person seat
where

grd1: person ∈ PERSONS // take any person

grd2: seat ∈ SEATS // we take any seat …
grd3: seat ∉ dom(booked_seat) // ... that is free

then
act1: booked_seat := booked_seat ∪ {seat ↦ person}

end

CANCEL ≜ // cancelation of booking
any person seat
where

grd1: seat ↦ person ∈ booked_seat // any pair
from booked_seat

then
act1: booked_seat := booked_seat \ {seat ↦ person}
// delete this pair from booked_seat

end
END

	DD2460 Software safety and security. Lecture 4
	Basic set theory
	Membership
	Set definition
	Set comprehension
	Examples on set comprehension
	More examples on set comprehension
	Subset and equality relations for sets
	More examples
	Operations on sets (set operators)
	Examples on Set Operators
	Set axioms and laws
	Power sets
	Types of sets
	Cardinality
	Expressions
	Predicates
	Predicate logic
	Examples
	Quantified Predicates
	Quantified Predicates
	Quantified Predicates
	Examples
	Free and bound variables
	Predicates on Sets
	Duality of universal and existential quantification
	Defining set operators with logic
	Event-B
	Example: access control to a building
	Example: access control to a building
	Model context
	Model machine
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Machine behaviour and nondeterminism
	Machine behaviour and nondeterminism
	Relations between sets
	Ordered pairs
	Cartesian product
	Cartesian product: example
	Cartesian product: example
	Cartesian product: �definition and more examples
	Cartesian product is a type constructor
	Sets of order pairs
	Relations
	Domain and range
	Domain
	Range
	Relational image definition
	Relational image examples
	Partial functions
	Function Application
	Examples
	Domain Restriction
	Domain Subtraction
	Range Restriction
	Range Subtraction
	Domain and range, �restriction and subtraction: summary
	Function Overriding
	Function overriding definition
	Relation and function
	Total Functions
	Total injective function
	Total surjective function
	Bijective function
	Example: printer access for students
	Printer access
	Printer access: context
	Printer access: machine
	Model events
	Model events
	Printer access rules
	Model events: modification of ADD event
	Model events: modification of ADD event
	Model events: modification of UNIFY event
	More examples
	More examples
	Comment on Initialisation event
	Simple example: seat booking system
	Modelling seat booking system in Event-B
	Seat booking system
	Machine BookingSeats_m0

