DD2460 Software safety and security. Lecture 4

ON THE USE OF SET THEORY, FUNCTIONS AND RELATIONS IN EVENTB MODELLING

Basic set theory

- A set is a collection of elements.
- Elements of a set may be numbers, names, identifiers, etc.
- E.g. the set \mathbb{N} is the collections of all natural numbers.
- Examples:
- $\{3,5,7, \ldots\}$
- \{red, green, black\}
- \{yes, no\}
- \{wait, start, process, stop\}
- But not: \{1, 2, green $\}$
- Elements of a set are not ordered.
- Set may be finite or infinite.

Membership

- Relationship between an element and a set: is the element a member of the set or not?
- For element \boldsymbol{x} and set \boldsymbol{S}, we express the membership relation as follows

$$
x \in S \quad\left({ }^{\prime} x \text { is a member of } S^{\prime}\right)
$$

where \in is a predicate over sets and elements

- Set membership is a boolean property relating an element and a set, i.e., either x is in S or x is not in S .
- This means that there is no concept of an element occurring more that once in a set, e.g.,
- $\{a, a, b, c\}=\{a, b, c\}$;
- $\{3,7\}=\{3,7,7\}$
- Conversely, the element is not a member of the set: $\boldsymbol{x} \notin \boldsymbol{S}$

Set definition

- If a set has only finite number of elements, then it can be written explicitly, by listing all of its elements within set brackets ' $\{$ ' and ' $\}$ ':
- LectureHall $=\{1 A, 1 B, 1 C, 1 D\}$
- SEMESTRS $=\{$ spring, fall $\}$
- Some sets have predefined names:
- \mathbb{N} - the set of natural numbers $\{0,1,2,3, \ldots\}$
- \mathbb{Z} - the set of integers $\{\ldots-2,-1,0,1,2, \ldots\}$
- The empty set contains no elements at all. It is the smallest possible set.

$$
\emptyset \text { or }\}
$$

Set comprehension

- Enumerating all of the elements of a set is not always possible.
- Would like to describe a set by in terms of a distinguishing property of its elements.
- Set can be defined by means of a set comprehension:

"Set of all x in T that satisfy $P(x)$ "
- Each element of a set satisfies some criterion. Criterions are defined by predicates.

Examples on set comprehension

- Examples:
- Natural numbers less than 10: $\{x \mid x \in \mathbb{N} \wedge x<10\}$
- Even integers: $\{x \mid x \in \mathbb{Z} \wedge(\exists y . y \in \mathbb{Z} \wedge 2 y=x)\}$
- Sometimes it is helpful to specify a "pattern" for the elements
$>$ E.g. $\left\{2 x \mid x \in \mathbb{N} \wedge x^{2} \geq 3\right\}$

More examples on set comprehension

- Examples:
- What is the set defined by the set comprehension:

$$
\left\{z \mid z \in \mathbb{N} \wedge z<100 \wedge\left(\exists m . m \in \mathbb{Z} \wedge m^{3}=z\right)\right\} ?
$$

Answer: $\{1,16,27,64\}$

Subset and equality relations for sets

- A set \boldsymbol{S} is said to be subset of set \boldsymbol{T} when every element of \boldsymbol{S} is also an element of \boldsymbol{T}. This is written as follows:

$$
S \subseteq T
$$

- For example:
- $\{3,7\} \subseteq\{1,2,3,5,7,9\} ;$
- \{apple, pear $\} \subseteq\{$ apple, banana, pear, grape $\}$
- - Jones, White,Jones $\} \subseteq\{$ White,Smith,Jones,Jakson $\}$
- A set S is said to be equal to set \boldsymbol{T} when $\boldsymbol{S} \subseteq \boldsymbol{T}$ and $\boldsymbol{T} \subseteq \boldsymbol{S}$

$$
S=T
$$

More examples

Set membership says nothing about the relationship between the elements of a set other than that they are members of the same set.
o the order in which we enumerate a set is not significant, e.g.,

- $\{a, b, c\}=\{b, a, c\} ;$
o there is no concept of an element occurring more that once in a set, e.g.,
- $\{a, a, b, c\}=\{a, b, c\} ;$

These two characteristics distinguish sets from data structures such as lists or arrays where elements appear in order and the same element my occur multiple times.

Operations on sets (set operators)

- Union of S and T : set of elements in either S or T :

$$
S \cup T
$$

- Intersection of S and T : set of elements in both S and T :

$$
S \cap T
$$

- Difference of S and T : set of elements in S but not in T :

$$
S \backslash T
$$

Examples on Set Operators

o Union

- $\{1,2\} \cup\{2,3,5\}=\{1,2,3,5\}$
- $\{1\} \cup\{2\}=\{1,2\}$
- $\emptyset \cup\{r e d, p i n k\}=\{r e d, p i n k\}$
o Intersection
- \{apple, pear, grape $\} \cap\{$ pear, banana $\}=\{$ pear $\}$
- $\{$ radish, onion, celery $\} \cap\{$ pumpkin, tomato, carrot $\}=\varnothing$
- $\{2,3,5\} \cap \emptyset=\varnothing$
o Difference
- $\{$ chess, tennis, football $\} \backslash\{$ tennis, golf $\}=\{$ chess, football $\}$
- \{pot,bucket,basket $\} \backslash\{$ needle, scissors $\}=\{$ pot, bucket, basket $\}$
- \{red, pink $\} \backslash \varnothing=\{r e d, p i n k\}$

Set axioms and laws

- Basic axioms
- Set membership: $\forall x \cdot x \in S$
- Empty set: $\forall x \cdot x \in \varnothing$
- Fundamental laws (can be proven)
- Commutative laws:

$$
S \cup T=T \cup S
$$

$$
S \cap T=T \cap S
$$

- Associative laws:
$(S \cup T) \cup R=S \cup(T \cup R)$
$(S \cap T) \cap R=S \cap(T \cap R)$
- Distributive laws:
$S \cap(T \cup R)=(S \cap T) \cup(S \cap R)$
$S \cup(T \cap R)=(S \cup T) \cap(S \cup R)$

Power sets

- The power set of a set \boldsymbol{S} is the set whose elements are all subsets of \boldsymbol{S}, written $\mathbb{P}(\boldsymbol{S})$
- Example,

$$
\mathbb{P}(\{1,3,5\})=\{\emptyset,\{1\},\{3\},\{5\},\{1,3\},\{1,5\},\{3,5\},\{1,3,5\}\}
$$

- $\boldsymbol{S} \in \mathbb{P}(\boldsymbol{T})$ is the same as $\boldsymbol{S} \subseteq \boldsymbol{T}$
- Sets are themselves elements - so we can have sets of sets
- Example, $\mathbb{P}(\{1,3,5\})$ is an example of a set of sets

Types of sets

- All the elements of a set must have the same type.
- For example, $\{2,3,4\}$ is a set of integers.
$\{2,3,4\} \in \mathbb{P}(\mathbb{Z})$.
So the type of $\{2,3,4\}$ is $\mathbb{P}(\mathbb{Z})$.

To declare \boldsymbol{x} to be a set of elements of type \boldsymbol{T} we write either

$$
\boldsymbol{x} \in \mathbb{P}(\boldsymbol{T}) \quad \text { or } \quad \boldsymbol{x} \subseteq \boldsymbol{T}
$$

More e.g., math \subseteq COURCES - so type of math is $\mathbb{P}($ COURCES $)$

Cardinality

- The number of elements in a set is called its cardinality
- In Event-B this is written as card(S)
- Examples:
- $\operatorname{card}(\{1,2,3\})=3$
- $\operatorname{card}(\{a, b, c, d\})=4$
- $\operatorname{card}(\{$ Bill, Anna, Anna, Bill\})=2
- $\operatorname{card}(\mathbb{P}(\{1,3,5\}))=8$
- Cardinality is only defined for finite sets.
- If S is an infinite set, then $\operatorname{card}(\mathrm{S})$ is undefined. Whenever you use the card operator, you must ensure that it is only applied to a finite set.

Expressions

- Expressions are syntactic structures for specifying values (elements or sets)
- Basic expressions are
- literals (e.g., 3, Ø);
- variables (e.g., x, a, room, registered);
- carrier sets (e.g., S, STUDENTS, FRUITS).
- Compound expressions are formed by applying expressions to operators such as

$$
\boldsymbol{x}+\boldsymbol{y} \quad \text { and } \quad \boldsymbol{S} \cup \boldsymbol{T}
$$

to any level of nesting.

Predicates

- Predicates are syntactic structures for specifying logical statements, i.e., statements that are either TRUE or FALSE (but not both!!!).
- Equality of expressions is an example predicate
- e.g., registered = registered _spring Uregistered fall.
- Set membership, e.g., $5 \in \mathbb{N}$
- Subset relations, e.g., $\boldsymbol{S} \subseteq \boldsymbol{T}$
- For integer elements we can write ordering predicates such as $\boldsymbol{x}<\boldsymbol{y}$.

Predicate logic

- Basic predicates: $x \in S, S \subseteq T, x \leq y$
- Predicate operators:

Name	Predicate	Definitions
Negation	$\neg P$	P does not hold
Conjunction	$P \wedge Q$	both P and Q hold
Disjunction	$P \vee Q$	either P or Q holds
Implication	$P \Rightarrow Q$	if P holds, then Q holds

Examples

P - Bob attends MATH course,
Q - Mary is happy

Predicate	
$\neg P$	Bob does not attend MATH course
$P \wedge Q$	Bob attends MATH course and Mary is happy
$P \vee Q$	Bob attends MATH course or Mary is happy
$P \Rightarrow Q$	If Bob attends MATH course, then Mary is happy

Quantified Predicates

We can quantify over a variable of a predicate universally or existentially:

Name	Predicate	Definition
Universal Quantification	$\forall x \cdot P$	P holds for all x
Existential Quantification	$\exists x \cdot P$	P holds for some x

Quantified Predicates

In the predicate $\forall x \cdot P$ the quantification is over all possible values in the type of the variable x.

Typically we constrain the range of values using implication.

Examples:

- $\forall x \cdot x>5 \Rightarrow x>3$
- $\forall s t \cdot$ st \in registered \Rightarrow st \in STUDENTS

Quantified Predicates

In the case of existential quantification we typically constrain the range of values using conjunction.

Example:

- we could specify that integer z has a positive square root as follows:
$\exists y . y \geq 0 \wedge y^{2}=z$

Examples

DATABASE $=\{$ Bill, Ben, Anna, Alice $\}$, MATH $=\{$ Alice, Ben $\}$

Alice \in DATABASE TRUE
Anna \in MATH FALSE
$\forall x \cdot x \in D A T A B A S E \Rightarrow x \in$ MATH FALSE
$\exists x . x \in \operatorname{MATH} \wedge x \in D A T A B A S E$ TRUE
$\forall x \cdot x \in \operatorname{MATH} \Rightarrow x \in$ DATABASE TRUE

Free and bound variables

Variables play two different roles in predicate logic:

- A variable that is universally or existentially quantified in a predicate is said to be a bound variable.
- A variable referenced in a predicate that is not bound variable is called a free variable.
- Example
$\exists y . y \geq 0 \wedge y^{2}=z$
y is bound while z is free.
This is a property of y and may be true or false depending on what z is.
The role of y is to bind the quantifier \exists and the formula together.

Predicates on Sets

Predicates on sets can be defined in terms of the logical operators as follows:

Name	Predicate	Definition
Subset	$S \subseteq \boldsymbol{T}$	$\forall \boldsymbol{x} \cdot \boldsymbol{x} \in \boldsymbol{S} \Rightarrow \boldsymbol{x} \in \boldsymbol{T}$
Set equality	$\boldsymbol{S}=\boldsymbol{T}$	$\boldsymbol{S} \subseteq \boldsymbol{T} \wedge \boldsymbol{T} \subseteq S$

Duality of universal and existential quantification

$\neg \forall x \cdot(x \in S \Rightarrow T)=\exists x \cdot(x \in S \wedge \neg T)$
$\neg \exists x \cdot(x \in S \wedge T)=\forall x \cdot(x \in S \Rightarrow \neg T)$

Defining set operators with logic

Name	Predicate	Definition
Negation	$x \notin S$	$\neg(x \in S)$
Union	$x \in S \cup T$	$x \in S \vee x \in T$
Intersection	$x \in S \cap T$	$x \in S \wedge x \in T$
Difference	$x \in S \backslash T$	$x \in S \wedge x \notin T$
Subset	$S \subseteq T$	$\forall x \cdot x \in S \Rightarrow x \in T$
Power set	$x \in \mathbb{P}(T)$	$x \subseteq T$
Empty set	$x \in \emptyset$	FALSE
Membership	$x \in\{\mathrm{a}, \ldots, \mathrm{b}\}$	$x=\mathrm{a} \vee \ldots \vee x=\mathrm{b}$

Event-B

- The invariants of an Event-B model and the guards of an event are formulated as predicates.
- The proof obligations generated by Rodin are also predicates.
- A predicate is simply an expression, the value of which is either true or false.

Example: access control to a building

A system for controlling access to a university building

- An university has some fixed number of students.
- Students can be inside or outside the university building.
- The system should allow a new student to be registered in order to get the access to the university building.
- To deny the access to the building for a student the system should support deregistration.
- The system should allow only registered students to enter the university building.

Example: access control to a building

A system for controlling access to a university building

Model context

```
CONTEXT BuildingAccess_c0
SETS STUDENTS //
CONSTANTS max_capacity // max capacity of the building is defined as a model constant
                                    (we will need it later in the course lectures)
AXIOMS
    axm1: finite(STUDENTS)
    axm2: max_capacity \in\mathbb{N}
    axm3: max_capacity > 0
END
```


Model machine

```
MACHINE BuildingAccess_m0
SEES BuildingAccess_c0
VARIABLES registered in out
//The machine state is represented by three variables, registered, in, out.
INVARIANTS
inv1: registered \subseteqSTUDENTS // registered students are of type STUDENTS
inv2: registered = in U out // registered students are either inside or outside
                                the university building
inv3: in \cap out = \emptyset // no student is both inside and outside the university building
EVENTS ...
```


EVENTS

INITIALISATION \triangleq
then
act1: registered, in, out := $\emptyset, \emptyset, \varnothing \quad / /$ initially all the variables are empty
end

ENTER $\triangleq \quad / /$ a student entering the building any st where
grd1: st \in registered // student must be registered
grd2: st \in out // student must be outside then
act1: in $:=$ in $\cup\{s t\} \quad / /$ add to in
act2: out := out $\backslash\{s t\} \quad / /$ remove from out end

```
EXIT \ // a student leaves the building
    any st
    where
        grd1: st E registered Ha student must be reg
```

Redundant guard since every student from out is registered

```
grd2: st E in // a student must be inside
then
    act1: in := in \{st} // remove st from in
    act2: out := out U{st} // remove st from in
    end
REGISTER \triangleq // registration a new student
    any st
    where
    grd1: st E STUDENTS // a new student
    grd2: st # registered // ... that is not in the set registered yet
    then
    act1: registered := registered }\textrm{U}{st}\quad// add st to registere
    act2: out:= out U {st} // add st to out
```

 end
    ```
DEREGISTER1 \triangleq // de-register a student
    any st
    where
    grd1: st \in registered // a student must be registered
    then
    act1: registered := registered \{st} // remove st from registered
    act2: in := in \{st} // remove st from in
    act3: out := out \{st} // remove st from out
    end
DEREGISTER2 \triangleq // de-register a student while he/she is outside the building
    any st
    where
    grd1: st E out // a new student
    then
        act1: registered := registered \{st} // remove st from registered
        act2: out := out \{st} // remove st from out
    end
END
```


Machine behaviour and nondeterminism

- The behaviour of an Event-B machine is defined as a transition system that moves from one state to another through execution of events.

- The states of a machine are represented by the different configurations of values for the variables:
- In our example, the state defined by the variables registered, in, out

Machine behaviour and nondeterminism

- In any state that a machine can reach, an enabled event is chosen to be executed to define the next transition.
- If several events are enabled in a state, then the choice of which event occurs is nondeterministic.
- Also, if an event is enabled for several different parameter values, the choice of value for the parameters is nondeterministic - the choice just needs to satisfy the event guards.
- For example, in the REGISTER event, the choice of value for parameter st is nondeterministic, with the choice of value being constrained by the guards of the event to ensure that it is a fresh value.
- Treating the choice of event and parameter values as nondeterministic is an abstraction of different ways in which the choice might be made in an implementation of the model.

Relations between sets

- Relation between sets is an important mathematical structure which is commonly used in expressing specifications.
- Relations allow us to express complicated interconnections and relationships between entitites formally.

Ordered pairs

- An ordered pair is an element consisting of two parts:
a first part and second part
- An ordered pair with first part \boldsymbol{x} and second part \boldsymbol{y} is written as:

$$
x \mapsto y
$$

- Examples:
- (apple \mapsto red)
- (Databases \mapsto fall)
- (115A \mapsto 30)
- (Smith \mapsto 0123)

Cartesian product

- The Cartesian product of two sets is the set of pairs whose first part is in \boldsymbol{S} and second part is in \boldsymbol{T}
- The Cartesian product of \boldsymbol{S} with \boldsymbol{T} is written: $\boldsymbol{S} \times \boldsymbol{T}$

Cartesian product: example

Lets consider two sets: COURSES and SEMESTERS

Cartesian product: example

Cartesian product: definition and more examples

- Defining Cartesian product:

| Predicate | Definition |
| :---: | :---: |
| $x \mapsto y \in S \times T$ | $x \in S \wedge y \in T$ |

- Examples:
- $\mathbb{N} \times \mathbb{N}$ pairs of natural numbers
- $\{1,2,3\} \times\{a, b\}=\{1 \mapsto a, 1 \mapsto b, 2 \mapsto a, 2 \mapsto b, 3 \mapsto a, 3 \mapsto b\}$
- \{Anna, Bill,Jack $\} \times \varnothing=\varnothing$
- $\{\{1\},\{1,2\}\} \times\{a, b\}=\{\{1\} \mapsto a,\{1\} \mapsto b,\{1,2\} \mapsto a,\{1,2\} \mapsto b\}$
- $\operatorname{card}(\{y e s, n o\} \times\{a, b\})=\operatorname{card}(\{y e s \mapsto a, y e s \mapsto b, n o \mapsto a, n o \mapsto b\})=4$

Cartesian product is a type constructor

- $\boldsymbol{S} \times \boldsymbol{T}$ is a new type constructed from types \boldsymbol{S} and \boldsymbol{T}.
- Cartesian product is the type constructor for ordered pairs.
- Given $\boldsymbol{x} \in S$ and $y \in T$ we have $\boldsymbol{x} \mapsto y \in S \times T$
- Examples:
- $4 \mapsto 7 \in \mathbb{Z} \times \mathbb{Z}$
- $\{2,3\} \mapsto 4 \in \mathbb{P}(\mathbb{Z}) \times \mathbb{Z}$
- $\{2 \mapsto 1,3 \mapsto 3,4 \mapsto 5\} \in \mathbb{P}(\mathbb{Z} \times \mathbb{Z})$

Sets of order pairs

A simple database can be modelled as a set of ordered pairs:
studentCourses $=\{$ Anna \mapsto Logic, Ben \mapsto SWQuality,Jack \mapsto SWQuality,Irum \mapsto

Relations

- A relation R between sets S and \boldsymbol{T} expresses a relationship between elements in S and elements in \boldsymbol{T} :
- A relation is captured simply as a set of ordered pairs ($\boldsymbol{s} \mapsto \boldsymbol{t})$ with $\boldsymbol{s} \in \boldsymbol{S}$ and $\boldsymbol{t} \in \boldsymbol{T}$.
- A relation is a common modelling structure so Event-B has a special notation for it:

$$
S \leftrightarrow T=\mathbb{P}(S \times T)
$$

- We can write then

$$
\text { studentCourses }=\{\text { Anna } \mapsto \text { Logic, Ben } \mapsto \text { SWQuality,Jack } \mapsto \text { SWQuality, Irum } \mapsto
$$

Domain and range

studentCourses $=\{$ Anna \mapsto Logic, Ben \mapsto SWQuality,Jack \mapsto SWQuality,Irum \mapsto

$\boldsymbol{N A M E S}=\{$ Anna,Ben,Jack,Alex, Irum $\}$
COURSES $=\{$ Databases, Math, Logic,SWSafety,SWQuality $\}$

Domain

- The domain of a relation \boldsymbol{R} is the set of first parts of all the pairs in \boldsymbol{R}, written $\operatorname{dom}(\boldsymbol{R})$

| Predicate | Definition |
| :---: | :---: |
| $x \in \operatorname{dom}(\boldsymbol{R})$ | $\exists y \cdot x \mapsto y \in R$ |

$$
\text { studentCourses }=\{\text { Anna } \mapsto \text { Logic, Ben } \mapsto \text { SWQuality,Jack } \mapsto \text { SWQuality,Irum } \mapsto
$$

Range

- The range of a relation \boldsymbol{R} is the set of second parts of all the pairs in \boldsymbol{R}, written $\boldsymbol{r a n}(R)$

| Predicate | Definition |
| :---: | :---: |
| $y \in \operatorname{ran}(\boldsymbol{R})$ | $\exists x \cdot x \mapsto y \in R$ |

studentCourses $=\{$ Anna \mapsto Logic, Ben \mapsto SWQuality,Jack \mapsto SWQuality,Irum \mapsto

Relational image definition

- Assume $\boldsymbol{R} \in \boldsymbol{S} \leftrightarrow \boldsymbol{T}$ and $\boldsymbol{A} \subseteq \boldsymbol{S}$
- The relational image of set \boldsymbol{A} under relation \boldsymbol{R} is written $\boldsymbol{R}[\boldsymbol{A}]$

| Predicate | Definition |
| :---: | :---: |
| $y \in R[A]$ | $\exists x \cdot x \in A \wedge x \mapsto y \in R$ |

Relational image examples

- studentCourses $=\{$ Anna \mapsto Logic, Ben \mapsto SWQuality,Jack \mapsto SWQuality,Irum \mapsto

Partial functions

- Special kind of relation: each domain element has at most one range element associated with it.
- To declare \boldsymbol{f} as a partial function:

$$
f \in X H Y
$$

- This says that \boldsymbol{f} is a many-to-one relation.
- It is said to be partial because there may be values in the set \boldsymbol{X} that are not in the domain of \boldsymbol{f}
- Each domain element is mapped to one range element:

$$
x \in \operatorname{dom}(f) \Rightarrow \operatorname{card}(f[\{x\}])=1
$$

- More usually formalised as a uniqueness constraint

$$
x \mapsto y_{1} \in f \wedge x \mapsto y_{2} \in f \quad \Rightarrow \quad y_{1}=y_{2}
$$

Function Application

We can use functional application for partial functions

- If $\boldsymbol{x} \in \boldsymbol{\operatorname { d o m }}(\boldsymbol{f})$, then we write $\boldsymbol{f}(\boldsymbol{x})$ for the unique range element associated with \boldsymbol{x} in \boldsymbol{f}.
- if $\boldsymbol{x} \notin \operatorname{dom}(\boldsymbol{f})$, then $\boldsymbol{f}(\boldsymbol{x})$ is undefined.
- if $\operatorname{card}(f[\{x\}])>\mathbf{1}$, then $f(x)$ is undefined.

| Name | Expression | Meaning | Well-definedness |
| :---: | :---: | :---: | :---: |
| Function application | $\boldsymbol{f}(\boldsymbol{x})$ | $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{y} \Leftrightarrow$
 $\boldsymbol{x} \mapsto \boldsymbol{y} \in \boldsymbol{f}$ | $\boldsymbol{f} \in \boldsymbol{X}+\boldsymbol{Y}$
 $\wedge \boldsymbol{x} \in \boldsymbol{\operatorname { d o m }}(\boldsymbol{f})$ |

Examples

NAMES $=\{$ Anna, Ben, Jack, Alex, Irum $\}, \operatorname{MNUMBERS}=\{0123,1230,2301,3012\}$
studentNumber $1=\{$ Anna $\mapsto 0123$, Ben $\mapsto 1230$, Irum \mapsto 3012 $\}$
studentNumber $2=\{$ Anna \mapsto 0123, Ben \mapsto 1230,Jack $\mapsto 2301$,Jack $\mapsto 3012\}$

- studentNumber $1 \in$ NAMES \rightarrow MNUMBERS
studentNumber 1 (Ben)=1230
studentNumber1(Jack) is undefined
- studentNumber $\mathbf{2} \notin N A M E S \rightarrow$ MNUMBERS
studentNumber2(Jack) is undefined

Domain Restriction

- Given relation $R \in S \leftrightarrow T$ and $A \subseteq S$, the domain restriction of R by A is written

$$
A \triangleleft R
$$

- Restrict relation \boldsymbol{R} so it only contains pairs whose first part is in the set \boldsymbol{A} (keep only those pairs whose first element is in A)
- Example:

$$
\begin{gathered}
\text { fruitColor }=\{\text { green } \mapsto \text { grape,yellow } \mapsto \text { banana, red } \mapsto \text { apple }\} \\
\{\text { red,pink }\} \triangleleft \text { fruitColor }=\{\text { red } \mapsto \text { apple }\}
\end{gathered}
$$

Domain Subtraction

- Given $\boldsymbol{R} \in \boldsymbol{S} \leftrightarrow \boldsymbol{T}$ and $\boldsymbol{A} \subseteq \boldsymbol{S}$ the domain subtraction of \boldsymbol{R} by \boldsymbol{A} is written

$$
A \notin R
$$

- Remove those pairs from relation \boldsymbol{R} whose first part is in the set \boldsymbol{A} (keep only those pairs whose first element NOT in A)
- Example:

$$
\begin{aligned}
& \text { fruitColor }=\text { \{green } \mapsto \text { grape, yellow } \mapsto \text { banana }, \text { red } \mapsto \text { apple }\} \\
& \{\text { red,pink }\} \notin \text { fruitColor }=\{\text { green } \mapsto \text { grape,yellow } \mapsto \text { banana }\}
\end{aligned}
$$

Range Restriction

- Given $\boldsymbol{R} \in S \leftrightarrow \boldsymbol{T}$ and $\boldsymbol{A} \subseteq S$ the range restriction of \boldsymbol{R} by \boldsymbol{A} is written

$$
R \triangleright A
$$

- Restrict relation R so the it only contains pairs whose second part is in the set \boldsymbol{A} (keep only those pairs whose second element is in \boldsymbol{A})
- Example:

$$
\begin{gathered}
\text { fruitColor }=\{\text { green } \mapsto \text { grape, yellow } \mapsto \text { banana, red } \mapsto \text { apple }\} \\
\text { fruitColor } \triangleright\{\text { grape, pear }\}=\{\text { green } \mapsto \text { grape }\}
\end{gathered}
$$

Range Subtraction

- Given $\boldsymbol{R} \in S \leftrightarrow \boldsymbol{T}$ and $\boldsymbol{A} \subseteq S$ the range subtraction of \boldsymbol{R} by \boldsymbol{A} is written

$$
R \triangleright A
$$

- Remove those pairs from relation \boldsymbol{R} whose second part is in the set \boldsymbol{A} (keep only those pairs whose second element NOT in A)
- Example:

$$
\begin{gathered}
\text { fruitColor }=\{\text { green } \mapsto \text { grape, yellow } \mapsto \text { banana, red } \mapsto \text { apple }\} \\
\text { fruitColor } \mapsto\{\text { grape, banana }\}=\{\text { red } \mapsto \text { apple }\}
\end{gathered}
$$

Domain and range, restriction and subtraction: summary

Assume $R \in S \leftrightarrow T$ and $A \subseteq S, B \subseteq T$

| Predicate | Definition | Name |
| :---: | :---: | :--- |
| $\boldsymbol{x} \mapsto y \in A \triangleleft R$ | $\boldsymbol{x} \mapsto \boldsymbol{y} \in R \wedge \boldsymbol{x} \in A$ | Domain restriction |
| $\boldsymbol{x} \mapsto y \in A \triangleleft R$ | $\boldsymbol{x} \mapsto y \in R \wedge \boldsymbol{y} \notin A$ | Domain subtraction |
| $\boldsymbol{x} \mapsto y \in R \triangleright B$ | $\boldsymbol{x} \mapsto y \in R \wedge \boldsymbol{y} \in B$ | Range restriction |
| $\boldsymbol{x} \mapsto y \in R \triangleright B$ | $\boldsymbol{x} \mapsto y \boldsymbol{y} \in R \wedge y \notin B$ | Range subtraction |

Function Overriding

- Override the function f by the function g :

$$
f \notin g
$$

- Function \boldsymbol{f} is updated according to g (Override: replace existing mapping with new ones)
- f and g must be partial functions of the same type

Function overriding definition

- Definition in terms of function override and set union

$$
\begin{gathered}
f \notin\{a \mapsto b\}=(\{a\} \notin f) \cup\{\boldsymbol{a} \mapsto \boldsymbol{b}\} \\
f \& g=(\operatorname{dom}(\boldsymbol{g}) \notin \boldsymbol{f}) \cup \boldsymbol{g}
\end{gathered}
$$

- Examples:

$$
\text { studentNumber }=\{\text { Anna } \mapsto 0123, \text { Ben } \mapsto 1230, \text { Jack } \mapsto 2301, \text { Irum } \mapsto 3012\}
$$

$$
\boldsymbol{g}=\{\text { Ben } \mapsto 5555\}
$$

$$
\text { studentNumber } \notin \boldsymbol{g}=\{\text { Anna } \mapsto 0123, \text { Ben } \mapsto 5555, \text { Jack } \mapsto 2301, \text { Irum } \mapsto 3012\}
$$

$$
\boldsymbol{g 1}=\{\text { Ben } \mapsto 5555, \text { Anna } \mapsto 1111\}
$$

$$
\text { studentNumber } \notin \boldsymbol{g} \mathbf{1}=\{\text { Anna } \mapsto 1111, \text { Ben } \mapsto 5555, \text { Jack } \mapsto 2301 \text {, Irum } \mapsto 3012\}
$$

Relation and function

Any operation applicable to a relation or a set is also applicable to a function

- domain and range of a function, range restriction, etc.

If \boldsymbol{f} is a function, then $\boldsymbol{f}(\boldsymbol{x})$ is the result of function \boldsymbol{f} for the argument x.

Total Functions

- A total function is a special kind of partial function. Declaration \boldsymbol{f} as a total function

$$
f \in X \rightarrow Y
$$

- This means that \boldsymbol{f} is well-defined for every element in \boldsymbol{X}, i.e., $\boldsymbol{f} \in \boldsymbol{X} \longrightarrow \boldsymbol{Y}$ is shorthand for

$$
f \in X H Y \wedge \operatorname{dom}(f)=X
$$

Total injective function

Function called total injective (or 1-1), if for every element \boldsymbol{y} from its range there exists only one element \boldsymbol{x} in the domain and $\boldsymbol{\operatorname { d o m }}(\boldsymbol{f})=\boldsymbol{X}$. Declaration \boldsymbol{f}

$$
f \in X \mapsto Y
$$

- Example:
username $\in U S E R S \rightarrow$ UNAMES
Every user in a system has one unique user name.

Total surjective function

Function called surjective, denoted as

$$
f \in X \rightarrow Y
$$

if its range is the whole target and $\boldsymbol{\operatorname { r a n }}(\boldsymbol{f})=\boldsymbol{Y}$.

- Example

f-"attends school"
$f \in S T U D E N T S \rightarrow$ SCHOOLS

- No school without students (full set SCHOOLS is covered).

Bijective function

Function is bijective, if it is total, injective and surjective:

$$
f \in X>Y
$$

- Example
"Married to" - is bijective function,
\boldsymbol{X} - set of "married man"
\boldsymbol{Y} - set of "married woman"

Example: printer access for students

The system tracks the permissions that students have with regard to the printers available at the university network.

- A system should support adding a permission for a student in order to get an access to a particular printer and removing a permission.
- A system should support removing a student's access to all printers at once.
- A system should support giving the combined permissions of any two students to both of them.

Printer access

- Permissions are naturally expressed as a relation between students and printers, so the machine makes use of a variable whose type is relation.
- Since the machine will have to keep track of changing permissions, it will make use of a variable access whose type is a relation between STUDENTS and PRINTERS.
- As permissions are added or removed, the variable will be updated to reflect the information.

Printer access: context

```
CONTEXT PrinterAccess_cO
SETS STUDENTS
    PRINTERS
AXIOMS
    axm1: finite(STUDENTS)
    axm2: finite(PRINTERS)
    axm3: STUDENTS= \emptyset
    axm4: PRINTERS = \emptyset
END
```


Printer access: machine

```
MACHINE PrinterAccess_m0
SEES PrinterAccess_c0
VARIABLES access
INVARIANTS
    inv1: access \in STUDENTS }\leftrightarrow\mathrm{ PRINTERS
EVENTS
INITIALISATION \triangleq
    begin
        act1: access := \emptyset
    end
```

...

Model events

```
ADD\triangleq
    any st pr
    where
        grd1: st \in STUDENTS
        grd2: pr E PRINTERS
    then
        act1: access:=access \cup {st \mapsto pr}
    end
BLOCK \triangleq
    any st pr
    where
        grd1: st E STUDENTS
        grd2: pr E PRINTERS
        grd3: st }\mapstopr\in\mathrm{ access
    then
        act1: access:=access \{st\mapstopr}
```


Model events

```
BAN \triangleq
    any st
    where
        grd1: st \in STUDENTS
    then
        act1: access:={st} }\forall\mathrm{ access
    end
UNIFY \triangleq
    any st1 st2
    where
        grd1: st1 \in STUDENTS
        grd2: st2 \in STUDENTS
    then
        act1: access:= access \cup ({st1} }\times\mathrm{ access[{st2}]) U ({st2} }
access[{st1}])
    end

\section*{Printer access rules}
- Assume that we want to restrict the number of printers that a student can have access to.

For example, a student can use no more than 3 printers.
We have to reflect this new functionality into our model.

\section*{Model events: modification of ADD event}
```

ADD\triangleq
any st pr
where
grd1: st \in STUDENTS
grd2: pr E PRINTERS
grd3: ??? // we have to specify new condition here
then
act1: access:=access \cup {st \mapsto pr}
end

```

\section*{Model events: modification of ADD event}
```

ADD\triangleq
any st pr
where
grd1: st \in STUDENTS
grd2: pr P PRINTERS
grd3: card({st}}\triangleleft\mathrm{ access) < 3 // new guard
then
act1: access:=access \cup{st\mapstopr}
end

```
// We restrict a domain of access relation by a set containing one element student st, i.e., \(\{s t\} \triangleleft a c c e s s\). As a result of this operation we get a set of pairs, whose the first element is st. Then by card operator we count a number of such pairs. Thus, we get a number of printers that this particula student st has access to.

\section*{Model events: modification of UNIFY event}

Similarly, we have to modify the event UNIFY.
However, the new guard here will be rather complex
- Informally: we have to check, if, after the Unify operation, two students still will have access to no more than 3 printers.

This means that the following property should be defined as a model invariant (and, consequently preserved during events execution):
\(\forall s t . s t \in \operatorname{dom}(\boldsymbol{a c c e s s}) \Rightarrow \boldsymbol{c a r d}(\{s t\} \triangleleft \boldsymbol{a c c e s s}) \leq 3\)

\section*{More examples}
- Every person is either a student or a lecturer. But no person can be a student and a lecturer at the same time.
\(S T U D E N T S \subseteq P E R S O N S, L E C T U R E R S \subseteq P E R S O N S\)
LECTURERS \(\cup\) STUDENTS \(=\) PERSONS
LECTURERS \(\cap\) STUDENTS \(=\varnothing\)
- Only lecturer can teach course
e.g., CourseLecturer \(\in\) COURSES \(\leftrightarrow\) LECTURERS

\section*{More examples}
- Every course is given by at most one lecturer

CourseLecturer \(\in\) COURSES \(\rightarrow\) LECTURERS // total function
- A lecturer has to teach at least one course and at most three courses

CourseLecturer \(\in\) COURSES \(\rightarrow\) LECTURERS ^ ran(CourseLecturer \()=\) LECTURERS \(\wedge(\forall l . \operatorname{card}(\) CourseLecturer \(\triangleright\{l\}) \leq 3))\)

\section*{Comment on Initialisation event}
```

MACHINE CoursesRegistration_m0
SEES CoursesRegistration_mO
VARIABLES access
INVARIANTS
inv1:CourseLecturer \in COURSES }->\mathrm{ LECTURERS
EVENTS
INITIALISATION \triangleq
begin
act1: CourseLecturer := \emptyset // wrong! Since CourseLecturer defined as a total function
end

```
inv1 invariant should be preserved upon INITIALISATION event.
BUT Rodin prover will fail to prove that since upon substitutionCourseLecturer by \(\emptyset\), it will have to prove that \(\varnothing \in\) COURSES \(\rightarrow\) LECTURERS. But it is wrong!

\section*{Simple example: seat booking system}

The system allows a person to make a seat booking. Specifically:
- A system should support booking a seat by only one person;
- A system should support cancelling of a booking.

\section*{Modelling seat booking system in Event-B}
- In the static part of our Event-B model - context - we will introduce required sets: SEATS and PERSONS as well as required axioms.
- In the dynamic part of the model - machine - we will define (specify) operations by events BOOK and CANCEL, correspondingly.
- We introduce a variable booked_seats whose type is a partial function on the sets SEATS and PERSONS.
- booked_seats keeps a track on booked seats and persons make their booking.
- Since booking of a seat can be done or cancelled, the variable booked_seats will be updated by the events BOOK or CANCEL to reflect this.

\section*{Seat booking system}

We define a context BookingSeats_c0 as follows
```

CONTEXT
BookingSeats_c0
SETS
PERSONS
SEATS
AXIOMS
axm1: finite(SEATS)
axm2: finite(PERSONS)
axm3: SEATS = \varnothing
axm4: PERSONS }=
END

```

\section*{Machine BookingSeats_m0}
```

MACHINE BookingSeats_m0
SEES BookingSeats_c0
VARIABLES
booked_seat
INVARIANTS
inv1: booked_seat \in SEATS HPERSONS
// this variable is defined as a partial function (every seat can be
occupied by only one person, but not every seat from the set SEATS
is booked yet)
EVENTS
INITIALISATION \triangleq
then
act1:booked_seat := \emptyset // empty set
end
BOOK \& //booking a seat
any person seat
where
grd1: person }\in\mathrm{ PERSONS // take any person

```
```

