DD2370HT191
    Finite Difference & FDTD
    Hoppa över till innehåll
    Översikt
    • Logga in
    • Översikt
    • Kalender
    • Inkorg
    • Hjälp
    Stäng
    • Min översikt
    • DD2370HT191
    • Uppgifter
    • Finite Difference & FDTD
    • Startsida
    • Uppgifter
    • Kursöversikt
    • Media Gallery
    • Video Recording

    Finite Difference & FDTD

    • Inlämningsdatum 10 nov 2019 av 23.59
    • Poäng 1
    • Lämnar in en filuppladdning
    • Filtyper pdf

    Prepare a .pdf file presenting your work in this assignment and upload it to Canvas.

    1. The finite difference for Poisson Equation and Capacitance of Square Coaxial Cable

    Objective: Reformulate the equations for Poisson Equation as a linear system in matrix form. Your task is to create the A matrix and g vector, and then solve the linear system using Phi = A\g Matlab command

    Instructions:

    • Check the slides, the Matlab code and Section 3.1.3 of the Textbook where we solved the problem using the Gauss-Seidel iteration that doesn't require matrix formulation
    • Formulate the problem as matrix problem (it might be helpful to check the slides on finite differences)
      • What is the equivalent of symmetry BC in matrix form?
    • Plot the Potential on the grid and compare it with the result of the last iteration from the code we used in class.
    • Perform a convergence test and plot it
    • Determine experimentally the order of truncation error

    2. FDTD

    Objective: implement in Matlab the discretization of the second-order (or curl-curl) formulation of Maxwell's equations in 1D for the propagation of two light waves from a pulse source. Compare the results obtained with the Yee Scheme. Determine experimentally the numerical dispersion relations.

    Instructions:

    • Download and run the code using the Yee scheme describing for the propagation of two light waves from a pulse source. A pulse is initialized in the central point of the simulation domain.  The pulse amplitude increases exponentially in time until t=t0 and then decreases exponentially after that.
    • Read Section 5.1 of the Textbook
    • Remove the calculation of E and H in the code and implement the computation of the E using the curl-curl formulation (Section 5.1 of the Textbook)
    • Plot E at different time steps for the two methods using
      1. a time step matching the Courant condition
      2. a time step allowing stable simulation but not perfectly matching the Courant condition
    • Determine experimentally the dispersion relation using a 2D FFT (space and time) of the history of Ez. For doing that, you can
    ExHist = [];
    % Start loop
    for t=1:nsteps
       % E field loop
       for k=2:ke-1
        Ez(k)=Ez(k)+cc*(Hy(k-1)-Hy(k));
       end

    % Source
       Ez(ks)=exp(-.5*((t-t0)/spread)^2);
       % H field loop
       for k=1:ke-1
          Hy(k)=Hy(k)+cc*(Ez(k)-Ez(k+1));
       end
       ExHist = [ExHist; Ez];
    end

    spectrum = fft2(ExHist);
    plot_spectrum = log(abs(spectrum));
    pcolor(plot_spectrum(1:ke/2,1:nsteps/2))
    shading interp
    • How do you calculate the x and y-axis values? Hint: You need to check fft2 function online or check the textbook where it presents FFT with Matlab (Sections 4.4.2 and 4.4.3)
    • Compare the numerical dispersion relations obtained experimentally with the two methods and with time steps 1) and 2).
      • What is the impact of the two techniques on the numerical dispersion relation if any? 
      • What is the impact of the Courant number on the numerical dispersion relation if any?
    1573426799 11/10/2019 11:59pm
    Ytterligare kommentarer:
    Maxresultat för gradering till > poäng

    Matris

     
     
     
     
     
     
     
         
    Det går inte att ändra en matris efter att du börjat använda den.  
    Hitta en matris
    Hitta matris
    Titel
    Du har redan bedömt studenter med den här matrisen. Större ändringar kan påverka resultaten för deras uppgifter.
    Titel
    Kriterier Bedömningar Poäng
    Redigera beskrivning av kriterium Ta bort kriterium rad
    Det här kriteriet är länkat till ett lärandemål Beskrivning av kriterium
    tröskel: 5 poäng
    Redigera ranking Radera ranking
    5 till >0 poäng
    Full poäng
    blank
    Redigera ranking Radera ranking
    0 till >0 poäng
    Inga poäng
    blank_2
    Det här området kommer användas av utvärderaren för kommentarer relaterade till det här kriteriet.
    poäng
      / 5 poäng
    --
    Ytterligare kommentarer
    Poängsumma: 5 av 5