
Optimizing Host-Device 
Data Communication I -

Pinned Host Memory
Stefano Markidis



Four Key-Points

1. Communication between the host and device are the slowest link of 
data movement involved in GPU computing, so we optimize transfers

2. Pinned host memory allows us to avoid intermediate transfers 
3. For allocating pinned memory, instead of using malloc we use 

cudaHostAlloc

4. When using pinned memory, we could batch all the small transfers in 
one large data transfer



CPU-GPU Data Communication with DMA

• DMA (Direct Memory Access) 
hardware is used for 
cudaMemcpy()for increased 
efficiency
• Frees CPU for other tasks
• Transfers a number of bytes 

requested by OS
• Uses system interconnect, typically 

PCIe / NVLink

GPU Global Memory DMA

GPU

CPU Memory (DRAM)

PCIe



Virtual Memory Management 
• Hosts uses virtual memory management
• Many virtual memory spaces mapped into a 

single physical memory 
• Virtual addresses (pointer values) are translated into 

physical addresses 
• Not all variables and data structures are always in 

the physical memory 

• Each virtual address space is divided into pages 
when mapped into physical memory 

• Memory pages can be paged out to make room 
• If a variable is in the physical memory is 

checked at address translation time 
• Whether a variable is in the physical memory is 

checked at address translation time https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html


Data Transfer and Virtual Memory 

• DMA uses physical addresses 
• When cudaMemcpy()copies an array, it is implemented as one or more DMA 

transfers 
• Address is translated and page presence checked at the beginning of each DMA 

transfer 
• No address translation for the rest of the same DMA transfer so that high 

efficiency can be achieved 

• The OS could accidentally page-out the data that is being read or written 
by a DMA and page-in another virtual page into the same physical 
location 



Pinned Memory and DMA Data Transfer
• Pinned memory are virtual memory pages 

that are specially marked so that they cannot 
be paged out 
• Allocated with a special system API function 

call 
• Page Locked Memory, Locked Pages, etc. 

• CPU memory that serve as the source of 
destination of a DMA transfer must be 
allocated as pinned memory 



CUDA Data Transfer uses Pinned Memory

• If a source or destination of a 
cudaMemcpy() in the host 
memory is not allocated in pinned 
memory, it needs to be first 
copied to a pinned memory à
extra overhead 
• cudaMemcpy()is faster if the 

host memory source or 
destination is allocated in pinned 
memory since no extra copy is 
needed 



Allocate/Free Pinned Memory

• cudaHostAlloc()takes 3 parameters: 
1. Address of pointer to the allocated memory 
2. Size of the allocated memory in bytes 
3. Option – use cudaHostAllocDefault for now 

• cudaFreeHost()takes one parameter:
• Pointer to the memory to be freed 



Code Example
instead of malloc()



Using Pinned Memory in CUDA

• Use the allocated pinned memory and its pointer the same way as those 
returned by malloc(); 
• The only difference is that the allocated memory cannot be paged by the OS 
• The cudaMemcpy()function should be faster with pinned memory but it 

depends …
• Pinned memory is a limited resource 
• It is possible for pinned memory allocation to fail
• we should check for errors! 



Performance Advantages
• Pinned memory is much more 

expensive to allocate and 
deallocate but provides higher 
transfer throughput for large 
memory transfers.
• The speed-up with pinned memory 

depends on device compute 
capability
• Batching many smaller transfers 

into one larger transfer improves 
performance of pinned memory.



Batching Small Size Transfers

• Due to the overhead associated 
with each transfer
• it is preferable to batch many small 

transfers together into a single 
transfer

• We can use a temporary pinned 
array and pack it with the data to 
be transferred

malloc

cudaHostAlloc

packing

a b c

pack_a_b_c



To Summarize

• Transfers between the host and device are the slowest link of data 
movement so we should optimize data transfers.
• Pinned memory on the host allows us to avoid intermediate transfers 

and achieve higher data transfer rate (bandwidth) 
• For allocating pinned memory, instead of using malloc we use 
cudaHostAlloc and cudaMallocHost
• When using pinned memory, we batch all the small transfers in one 

large data transfer to avoid the overhead of small data transfers.


