

Problems for Seminar 3

Check the canvas page of the course for information on how seminars are run and what you are expected to do before and during the seminars.

The seminar starts with a test. The problem will be about computing a determinant by cofactor expansion and/or Gauss elimination.

In the seminar, the following problems will be discussed.
Problem 1. Let $A x=b$ be a system of linear equations, where A is an $m \times n$-matrix (that is, m equations in n variables), and $A x=0$ the associated homogeneous system of equations. Explain why each one of the following claims is true or false:

- If $A x=0$ has a nonzero solution then $A x=b$ also has a solution, irrespective of m and n.
- If $A x=b$ has a solution then $A x=0$ has a nonzero solution, irrespective of m and n.
- If $m<n$ then $A x=b$ cannot have a unique solution.
- If $m>n$ then $A x=b$ cannot have a unique solution.
- If $A x=b$ has a unique solutions then $x=0$ is the only solution for $A x=0$.

A simple counterexample is the best explanations for why a claim is false!

Problem 2. Matrisen

$$
A=\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right]
$$

är ett speciallfall av en typ av matriser som ofta förekommer i olika tillämpningar, exempelvis i samband med diskretisering av differentialekvationer för numerisk lösning. Använd rad- eller kolonnoperationer för att beräkna determinanten av matrisen A.

Problem 3. The four vectors

$$
\vec{u}_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1 \\
2
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{r}
1 \\
2 \\
2 \\
-1
\end{array}\right], \quad \vec{u}_{3}=\left[\begin{array}{l}
2 \\
3 \\
2 \\
0
\end{array}\right] \quad \text { och } \quad \vec{u}_{4}=\left[\begin{array}{l}
3 \\
5 \\
3 \\
0
\end{array}\right]
$$

in \mathbb{R}^{4} are linearly dependent. Write on of them as a linear combimation of the others.

Problem 4. Tetrahedron is a three dimensional object with four vertices whose sides are triangles. The four points $O=(0,0,0), A=(1,2,-3), B=(3,1,0)$ and $C=(0,2,1)$ are the vertices of the tetrahedron. Volume of tetrahedron can be computed as one sixth of the absolute value of the tripple product, $(\vec{u} \times \vec{v}) \cdot \vec{w}$, of the three vectors which go from one vertex of the tetrahedron to the three others.
(a) Compute the cross product of the two vectors $\vec{u}=\overrightarrow{O A}$ and $\vec{v}=\overrightarrow{O B}$
(b) Compute the volume of the tetrahedron which has vertices at points O, A, B och C.

Miscellaneous

Here are some other topics that are important and interesting to discuss.

- What is the definition of linear independence? What are equivalent ways of expressing this?
- Which method is best for computing a determinant?
- Is is possible to define the cross product for vectors of length other than 3 in a reasonable way?

