Problems for Seminar 2

Check the canvas page of the course for information on how seminars are run and what you are expected to do before and during the seminars.

The seminar starts with a test. The problem will be about solving a system of linear equations or converting a matrix to row echelon form.

In the seminar, the following problems will be discussed.
Problem 1. For each number a, vi have a system of equations in three variables x, y, och z, given by

$$
(\star)\left\{\begin{aligned}
(a-3) y & =1, \\
2 x-a x+a y-3 y+2 z-a z & =1, \\
(4-2 a) x+(2 a-6) y+5 z-2 a z & =3 .
\end{aligned}\right.
$$

Show the the system of equations (\star) has a unique solution if and only if $a \neq 2$ and $a \neq 3$. Solve the system (\star) for $a=2$ using row operations on the matrix for the system.

Problem 2. Consider the system of linear equations

$$
\left\{\begin{array}{r}
17 x-13 y+2 z-7 w=5 \tag{1}\\
13 x+6 y-z+11 w=3
\end{array}\right.
$$

(a) Determine a solution for the system when $x=0$ and $w=1$.
(b) Explain why the system (1) has infinitely many solutions.
(c) Does there exist a solution to the system when $y=-2 x$ and $w=-3 x$?

Problem 3. Let

$$
A=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
5 & 0 \\
0 & 9
\end{array}\right] .
$$

(a) A matrix S is said to be a square root of a matrix M if $S S=M$. Find two square roots of A.
(b) How many different square roots of B can you find?
(c) Do you think that every matrix has a square root? Explain your reasoning.
from Anton-Busby, Ex. 3.1.D6

Miscellaneous

Here are some other topics that are important and interesting to discuss.

- Comments on Seminar 1: Anything that was unclear (theory, grading)?
- How does Gauss-Jordan elimination affect the solution set? What is the purpose of Gauss-Jordan elimination?
- What is the connection between solutions of inhomogeneous systems of equations and solutions of the associated homogeneous system?
- Pivots cannot be zero, otherwise one has to perform a change of rows. What happens if a pivot is not zero but very small? Is it okay to change rows even if the pivot is nonzero? Can this be advantageous?

