

Problems for Seminar 1

Check the canvas page of the course for information on how seminars are run and what you are expected to do before and during the seminars.

The seminar starts with a test. The problem will be about finding an equation for a line or a plane in \mathbb{R}^{3} with certain properties.

In the seminar, the following problems will be discussed.
Problem 1. The points P, Q, and R have coordinates

$$
P=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad Q=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \quad R=\left[\begin{array}{c}
4 \\
6 \\
-1
\end{array}\right]
$$

and the plane Π is given by the equation

$$
2 x-y+2 z=3 .
$$

(a) Compute a parameter form for the line L through P and Q.
(b) Does the line L contain the point R ?
(c) Determine the intersection of Π and L.
(d) Compute an equation for the plane which is orthogonal to L and contains P.

Problem 2. For each number t, we are given a triangle T with vertices

$$
A=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad B=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{l}
t \\
t \\
1
\end{array}\right] .
$$

(a) For which value of t is T right-angled at A ?
(b) Compute the other two angles for this value of t (use a calculator).
(c) Find a value for t such that the point C is closest to A.

Problem 3. Find an equation for the plane consisting of all points with equal distance to the point $A=(-1,1,2)$ and to the point $B=(1,5,-4)$. (Hint: The mid point of the line segment between A and B lies in the plane.)

Miscellaneous

Here are some other topics that are important and interesting to discuss.

- How many equations does one need to define an m-dimensional subspace of \mathbb{R}^{n} ? How many free variables are needed in a parametric form?
- What is the expected intersection between two planes in \mathbb{R}^{3}, in \mathbb{R}^{4}, and in \mathbb{R}^{5} ?
- What might the angle between a line and a plane or between two planes in \mathbf{R}^{3} mean? How can one compute this angle?

