SF1684 Algebra and Geometry

Lecture 4 Linear transformations, kernel and range

Bao Nguyen

SF1	

Outline

1 Matrices and linear transformations

2 Kernel and range

3 Inverse linear transformations

Outline

1 Matrices and linear transformations

2 Kernel and range

Inverse linear transformations

Transformations

Definition

A **transformation** *T* from \mathbb{R}^n to \mathbb{R}^m is a function that maps each vector $\mathbf{x} \in \mathbb{R}^n$ into a vector $\mathbf{y} \in \mathbb{R}^m$. We can write either

$$\mathbf{y} = T(\mathbf{x}), \quad \mathbf{x} \xrightarrow{T} \mathbf{y} \quad \text{or} \quad T \colon \mathbb{R}^n \to \mathbb{R}^m.$$

• \mathbb{R}^n is called the **domain** and \mathbb{R}^m the **codomain** of *T*.

- The vector $T(\mathbf{x})$ is the image of \mathbf{x} under T.
- The set of all images $\{T(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^n\}$ is the **range** of *T* (may actually be smaller than the codomain of *T*).

Example

If \mathbf{x}_0 is a fixed vector, then the translation $T_{\mathbf{x}_0} \colon \mathbb{R}^n \to \mathbb{R}^n$ is defined as $T_{\mathbf{x}_0}(\mathbf{x}) = \mathbf{x} + \mathbf{x}_0$.

Matrix transformations

We are primarily interested in transformations that can be defined using matrices. Let *A* be an $m \times n$ matrix, we can define a transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ such that T_A maps $\mathbf{x} \in \mathbb{R}^n$ into $A\mathbf{x} \in \mathbb{R}^m$. That is $T_A(\mathbf{x}) = A\mathbf{x}$.

Linear transformation

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear transformation if

1
$$T(c\mathbf{u}) = cT(\mathbf{u})$$
 and

2
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and all scalars *c*.

In the case where m = n, *T* is called a **linear operator** on \mathbb{R}^n .

Some properties

If T is a linear transformation then

i T(0) = 0.

Every matrix transformation from \mathbb{R}^n to \mathbb{R}^m is linear. Conversely, all linear transformations can be performed by matrix multiplications.

Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ be standard unit vectors in \mathbb{R}^n . If **x** is a vector in \mathbb{R}^n , then *T* can be expressed as

$$T(\mathbf{x}) = A\mathbf{x},$$

where $A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$.

The $m \times n$ matrix A is called the **standard matrix of** T and T is the **transformation corresponding to** A.

Remark

It follows that $T(\mathbf{x}) = \mathbf{y}$ is a linear transformation if and only if the equations relating the components of \mathbf{x} and \mathbf{y} are linear equations.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Linear operators on \mathbb{R}^2

Rotation through θ about the origin

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

Let L be a line through 0 and making an angle θ with the positive x-axis

Reflection through the line *L*

$$H_{ heta} = \begin{bmatrix} \cos(2 heta) & \sin(2 heta) \\ \sin(2 heta) & -\cos(2 heta) \end{bmatrix}.$$

Projection onto the line L

$$P_{\theta} = \begin{bmatrix} \cos^{2}(\theta) & \sin(\theta)\cos(\theta) \\ \sin(\theta)\cos(\theta) & \sin^{2}(\theta) \end{bmatrix}$$

Composition of linear transformations

Definition

Let $T_1: \mathbb{R}^n \to \mathbb{R}^k$ and $T_2: \mathbb{R}^k \to \mathbb{R}^m$ be linear transformations. Their composition is the linear transformation $T_2 \circ T_1: \mathbb{R}^n \to \mathbb{R}^m$ defined by

 $T_2 \circ T_1(\mathbf{x}) = T_2(T_1(\mathbf{x})).$

Theorem

If *A* is the standard matrix for $T_A : \mathbb{R}^n \to \mathbb{R}^k$ and *B* is the standard matrix for $T_B : \mathbb{R}^k \to \mathbb{R}^m$ then *BA* is the standard matrix for $T_B \circ T_A$

$$T_B \circ T_A = T_{BA}.$$

Note that *A* has size $k \times n$, *B* has size $m \times k$, therefore *BA* has size $m \times n$.

SF1684	

Composing rotations

$$R_{\theta_2}R_{\theta_1} = \begin{bmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{bmatrix} \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix} = R_{\theta_1 + \theta_2}.$$

Composing reflections

$$\begin{split} H_{\theta_2}H_{\theta_1} &= \begin{bmatrix} \cos(2\theta_2) & \sin(2\theta_2) \\ \sin(2\theta_2) & -\cos(2\theta_2) \end{bmatrix} \begin{bmatrix} \cos(2\theta_1) & \sin(2\theta_1) \\ \sin(2\theta_1) & -\cos(2\theta_1) \end{bmatrix} \\ &= \begin{bmatrix} \cos(2\theta_2 - 2\theta_1) & -\sin(2\theta_2 - 2\theta_1) \\ \sin(2\theta_2 - 2\theta_1) & \cos(2\theta_2 - 2\theta_1) \end{bmatrix} = R_{2(\theta_2 - \theta_1)}. \end{split}$$

Warning

Composition of two transformations is not commutative.

SF1	

イロト イヨト イヨト イヨ

Orthogonal operators

Definition

A linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^n$ is said to be orthogonal (or linear isometry) if $||T(\mathbf{x})|| = ||\mathbf{x}||$ (length preserving) for all $\mathbf{x} \in \mathbb{R}^n$.

Theorem

 $T \colon \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal if and only if $T(\mathbf{x}) \cdot T(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x} and \mathbf{y} in \mathbb{R}^n .

Since the angles between vectors are defined through the inner product, orthogonal operators also **preserve angles** between vectors.

Orthogonal matrices

Definition

A square matrix A is said to be orthogonal if $A^{T}A = I$, or equivalently, $A^{-1} = A^{T}$.

Theorem

If A and B are orthogonal matrices, then

- i A^T is orthogonal.
- (i) A^{-1} is orthogonal.
- is orthogonal.
- $iv \det(A) = 1 \text{ or } \det(A) = -1.$

Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent

- a A is orthogonal.
- **b** $||A\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$.
- **c** $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- **d** The column vectors of A are orthonormal.
- e The row vectors of A are orthonormal.

Since a linear operator *T* is orthogonal if and only if its standard matrix has the property $||A\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$, we have the result

Theorem

 $T \colon \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal if and only if its standard matrix is orthogonal.

	68	

Orthogonal linear operators on \mathbb{R}^2

Rotations and reflections

The standard matrix of an orthogonal linear operator $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ is always expressed as

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \quad \text{or} \quad H_{\theta/2} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix},$$

for some $\theta \in \mathbb{R}$. That is, *T* is either a rotation about the origin or a reflection about a line through the origin.

Remark

Since $\det(R_{\theta}) = 1$ and $\det(H_{\theta/2}) = -1$, we observe that a 2 × 2 orthogonal matrix *A* represents a rotation if $\det(A) = 1$ and a reflection if $\det(A) = -1$.

Example

See Example 4 on page 285 of the textbook.

SF1684

Some important non-length-preserving linear operators on \mathbb{R}^2

Scaling operators

Scaling operator with factor k: T(x, y) = (kx, ky) (called a contraction if $k \in [0, 1)$ and a dilation if k > 1).

Expansions and compressions

Expansion or compression with factor k in

- the *x*-direction: T(x, y) = (kx, y).
- the y-direction: T(x, y) = (x, ky).

Shears

Shear with factor k in

• the x-direction:
$$T(x, y) = (x + ky, y)$$
.

• the y-direction:
$$T(x, y) = (x, y + kx)$$
.

Linear operators on \mathbb{R}^3

Orthogonal projections onto coordinate planes

Orthogonal projections on

- the *xy*-plane: T(x, y, z) = (x, y, 0).
- the *xz*-plane: T(x, y, z) = (x, 0, z).
- the *yz*-plane: T(x, y, z) = (0, y, z).

Reflections about coordinate planes

Reflections about

- the *xy*-plane: T(x, y, z) = (x, y, -z).
- the *xz*-plane: T(x, y, z) = (x, -y, z).

• the *yz*-plane:
$$T(x, y, z) = (-x, y, z)$$
.

Rotations in \mathbb{R}^3

A three-dimensional rotation is determined by an axis \mathbf{u} (through the origin), the direction of rotation about that axis, and an angle θ . The positive rotation direction satisfies the **right-hand rule**: If your right thumb points in the direction of \mathbf{u} , then your fingers curl in the direction of the positive rotation.

The standard matrix of rotation $R_{u,\theta}$ is given by Theorem 6.2.8 in the textbook.

Rotation matrix

A 3 × 3 matrix *A* represents a rotation if and only if *A* is orthogonal and det(A) = 1.

All points lying on the axis of rotation must satisfy the linear system $A\mathbf{x} = \mathbf{x}$ (fixed points of the rotation).

Composing rotations

A composition of two rotations in R^3 (around axes through the origin) is another rotation (around some appropriate axis through the origin).

Determining the axis and angle of rotation from a matrix *A*

The steps are as follows

- **1** Show that *A* is orthogonal and det(A) = 1.
- 2 Find the axis of rotation: The vector equation of the axis is the solution of the linear system $(I A)\mathbf{x} = \mathbf{0}$.
- 3 Choose an orientation of the axis: Select a vector w perpendicular to the axis, then we can orient the axis using the vector $\mathbf{u} = \mathbf{w} \times A\mathbf{w}$.
- 4 The rotation angle θ, relative to u, is the angle between w and Aw (satisfying 0 ≤ θ ≤ π) and can be computed from the formula

$$\cos(\theta) = \frac{\mathbf{w} \cdot A\mathbf{w}}{\|\mathbf{w}\| \|A\mathbf{w}\|}.$$

Example

See Example 7 on page 292 of the textbook.

s			

Rotations about the coordinate axes

Rotation about the positive *x*-axis through an angle θ

$$R_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Rotation about the positive *y*-axis through an angle θ

$$R_{y, heta} = egin{bmatrix} \cos(heta) & 0 & \sin(heta) \ 0 & 1 & 0 \ -\sin(heta) & 0 & \cos(heta) \end{bmatrix}$$

Rotation about the positive *z*-axis through an angle θ

$$R_{z,\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Outline

Matrices and linear transformations

2 Kernel and range

Inverse linear transformations

Kernel and range of a linear transformation

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

Kernel of a linear transformation

The set of all vectors $\mathbf{x} \in \mathbb{R}^n$ for which $T(\mathbf{x}) = \mathbf{0}$ is a subspace of \mathbb{R}^n . It is called the kernel of *T* and is denoted by $\ker(T)$,

 $\ker(T) = \left\{ \mathbf{x} \in \mathbb{R}^n \mid T(\mathbf{x}) = \mathbf{0} \right\}.$

Image of a linear transformation

If *S* is a subspace of \mathbb{R}^n , then the image of *S* under the transformation *T*,

$$T(S) = \{T(\mathbf{x}) \mid \mathbf{x} \in S\},\$$

is a subspace of \mathbb{R}^m . In particular, if $S = \mathbb{R}^n$ then the set $T(\mathbb{R}^n)$ is called the range of T and is denoted by ran(T).

SF1684	

Kernel and range of a matrix transformation

Let *A* be an $m \times n$ matrix and $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the corresponding transformation, that is $T_A(\mathbf{x}) = A\mathbf{x}$.

Kernel of a matrix transformation

The kernel of T_A is the solution space of $A\mathbf{x} = \mathbf{0}$. It is called the null space of A and is denoted by $\operatorname{null}(A)$

$$\ker(T_A) = \operatorname{null}(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}.$$

Range of a matrix transformation

The range of T_A is the column space of A

$$\operatorname{ran}(T_A) = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\} = \operatorname{span}\{\mathbf{c}_1(A), \mathbf{c}_2(A), \dots, \mathbf{c}_n(A)\}.$$

	68	

Onto and one-to-one transformations

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

Onto transformation

T is onto if its range is the entire codomain \mathbb{R}^m ; that is, the equation $T(\mathbf{x}) = \mathbf{b}$ has **at least** one solution for every $\mathbf{b} \in \mathbb{R}^m$.

One-to-one transformation

T is one-to-one if *T* maps distinct vectors in \mathbb{R}^n into distinct vectors in \mathbb{R}^m ; that is, the equation $T(\mathbf{x}) = \mathbf{b}$ has **at most** one solution for every $\mathbf{b} \in \mathbb{R}^m$.

Theorem

The following statements are equivalent

a T is one-to-one.

$$\mathbf{b} \ \ker(T) = \{\mathbf{0}\}.$$

Onto and one-to-one matrix transformations

Let *A* be an $m \times n$ matrix and $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the corresponding transformation.

Onto matrix transformation

 T_A is onto if and only if the linear system $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^m$.

One-to-one matrix transformation

 T_A is one-to-one if and only if the linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

One-to-one linear operator

If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator on \mathbb{R}^n , then *T* is one-to-one if and only if it is onto.

Fundamental theorem of invertible matrices (cont.)

If *A* is an $n \times n$ matrix, and if T_A is a linear operator on \mathbb{R}^n corresponding to *A*, then the following statements are equivalent

- a The reduced echelon form of A is I_n .
- **b** A is a product of elementary matrices.
- c A is invertible.
- **d** $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **e** $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$.
- **f** $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$.
- g The column vectors of A are linearly independent.
- h The row vectors of A are linearly independent.
- i $det(A) \neq 0$.
- (j) $\lambda = 0$ is not an eigenvalue of A.
- k T_A is one-to-one.
- \bullet T_A is onto.

Outline

Matrices and linear transformations

2 Kernel and range

3 Inverse linear transformations

(日)

Inverse linear transformations

Definition

If $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one, then it has an inverse transformation T^{-1} . For each vector $\mathbf{u} \in \operatorname{ran}(T)$, the value of $T^{-1}(\mathbf{u})$ is the unique vector \mathbf{x} in the domain of T for which $T(\mathbf{x}) = \mathbf{u}$. Thus

$$T^{-1}(\mathbf{u}) = \mathbf{x}$$
 if and only if $T(\mathbf{x}) = \mathbf{u}$.

Theorem

 T^{-1} : ran $(T) \to \mathbb{R}^n$ is a one-to-one linear transformation.

Inverse linear operators

If *T* is a one-to-one linear operator on \mathbb{R}^n , then *T* is onto and hence that the domain of T^{-1} is all of \mathbb{R}^n . Thus T^{-1} is also a one-to-one linear operator on \mathbb{R}^n .

Standard matrix for inverse operator

If T_A is a one-to-one linear operator on \mathbb{R}^n with standard matrix A, then A is invertible and its inverse is the standard matrix for T_A^{-1} , that is

$$T_A^{-1} = T_{A^{-1}}.$$

A one-to-one linear operator is also called an **invertible linear operator**.

Decomposition of linear transformations on \mathbb{R}^2

An invertible 2×2 matrix *A* can be expressed as a product of elementary matrices which are corresponding to basic operators on \mathbb{R}^2 . Thus, we have

Theorem

Any invertible linear operator on \mathbb{R}^2 can be decomposed into shears, compressions, and expansions in the coordinate directions, and reflections about the coordinate axes and about the line y = x.

Transforming with a diagonal matrix

Since we can factor
$$A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
 as $\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & 1 \end{bmatrix}$,

the geometric effect of multiplication by *A* is to scale by a factor of λ_1 in the *x*-direction and scale by a factor of λ_2 in the *y*-direction.

Example

See Example 8 on page 311 of the textbook.

684