SF1684 Algebra and Geometry

Lecture 4
Linear transformations, kernel and range

Bao Nguyen

Outline

1 Matrices and linear transformations

2 Kernel and range

3 Inverse linear transformations

Outline

1 Matrices and linear transformations

2 Kernel and range

3 Inverse linear transformations

Transformations

Definition

A transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a function that maps each vector $\mathbf{x} \in \mathbb{R}^{n}$ into a vector $\mathbf{y} \in \mathbb{R}^{m}$. We can write either

$$
\mathbf{y}=T(\mathbf{x}), \quad \mathbf{x} \xrightarrow{T} \mathbf{y} \quad \text { or } \quad T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} .
$$

- \mathbb{R}^{n} is called the domain and \mathbb{R}^{m} the codomain of T.
- The vector $T(\mathbf{x})$ is the image of \mathbf{x} under T.
- The set of all images $\left\{T(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^{n}\right\}$ is the range of T (may actually be smaller than the codomain of T).

Example

If \mathbf{x}_{0} is a fixed vector, then the translation $T_{\mathbf{x}_{0}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined as $T_{\mathbf{x}_{0}}(\mathbf{x})=\mathbf{x}+\mathbf{x}_{0}$.

Matrix transformations

We are primarily interested in transformations that can be defined using matrices. Let A be an $m \times n$ matrix, we can define a transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that T_{A} maps $\mathbf{x} \in \mathbb{R}^{n}$ into $A \mathbf{x} \in \mathbb{R}^{m}$. That is $T_{A}(\mathbf{x})=A \mathbf{x}$.

Linear transformation

A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation if
(1) $T(c \mathbf{u})=c T(\mathbf{u})$ and
(2) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and all scalars c.

In the case where $m=n, T$ is called a linear operator on \mathbb{R}^{n}.

Some properties

If T is a linear transformation then
(i) $T(\mathbf{0})=\mathbf{0}$.
(ii $T\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}\right)=c_{1} T\left(\mathbf{u}_{1}\right)+c_{2} T\left(\mathbf{u}_{2}\right)+\cdots+c_{k} T\left(\mathbf{u}_{k}\right)$.

Every matrix transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is linear. Conversely, all linear transformations can be performed by matrix multiplications.

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ be standard unit vectors in \mathbb{R}^{n}. If \mathbf{x} is a vector in \mathbb{R}^{n}, then T can be expressed as

$$
T(\mathbf{x})=A \mathbf{x}
$$

where $A=\left[\begin{array}{llll}T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)\end{array}\right]$.
The $m \times n$ matrix A is called the standard matrix of T and T is the transformation corresponding to \boldsymbol{A}.

Remark

It follows that $T(\mathbf{x})=\mathbf{y}$ is a linear transformation if and only if the equations relating the components of \mathbf{x} and \mathbf{y} are linear equations.

Linear operators on \mathbb{R}^{2}

Rotation through θ about the origin

$$
R_{\theta}=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] .
$$

Let L be a line through $\mathbf{0}$ and making an angle θ with the positive x-axis
Reflection through the line L

$$
H_{\theta}=\left[\begin{array}{rr}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right] .
$$

Projection onto the line L

$$
P_{\theta}=\left[\begin{array}{cc}
\cos ^{2}(\theta) & \sin (\theta) \cos (\theta) \\
\sin (\theta) \cos (\theta) & \sin ^{2}(\theta)
\end{array}\right] .
$$

Composition of linear transformations

Definition

Let $T_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $T_{2}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ be linear transformations. Their composition is the linear transformation $T_{2} \circ T_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by

$$
T_{2} \circ T_{1}(\mathbf{x})=T_{2}\left(T_{1}(\mathbf{x})\right) .
$$

Theorem

If A is the standard matrix for $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and B is the standard matrix for $T_{B}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ then $B A$ is the standard matrix for $T_{B} \circ T_{A}$

$$
T_{B} \circ T_{A}=T_{B A} .
$$

Note that A has size $k \times n, B$ has size $m \times k$, therefore $B A$ has size $m \times n$.

Composing rotations

$$
\begin{aligned}
R_{\theta_{2}} R_{\theta_{1}} & =\left[\begin{array}{rr}
\cos \left(\theta_{2}\right) & -\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{2}\right) & \cos \left(\theta_{2}\right)
\end{array}\right]\left[\begin{array}{rr}
\cos \left(\theta_{1}\right) & -\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{1}\right) & \cos \left(\theta_{1}\right)
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]=R_{\theta_{1}+\theta_{2}} .
\end{aligned}
$$

Composing reflections

$$
\begin{aligned}
H_{\theta_{2}} H_{\theta_{1}} & =\left[\begin{array}{rr}
\cos \left(2 \theta_{2}\right) & \sin \left(2 \theta_{2}\right) \\
\sin \left(2 \theta_{2}\right) & -\cos \left(2 \theta_{2}\right)
\end{array}\right]\left[\begin{array}{rr}
\cos \left(2 \theta_{1}\right) & \sin \left(2 \theta_{1}\right) \\
\sin \left(2 \theta_{1}\right) & -\cos \left(2 \theta_{1}\right)
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos \left(2 \theta_{2}-2 \theta_{1}\right) & -\sin \left(2 \theta_{2}-2 \theta_{1}\right) \\
\sin \left(2 \theta_{2}-2 \theta_{1}\right) & \cos \left(2 \theta_{2}-2 \theta_{1}\right)
\end{array}\right]=R_{2\left(\theta_{2}-\theta_{1}\right)} .
\end{aligned}
$$

Warning

Composition of two transformations is not commutative.

Orthogonal operators

Definition

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be orthogonal (or linear isometry) if $\|T(\mathbf{x})\|=\|\mathbf{x}\|$ (length preserving) for all $\mathbf{x} \in \mathbb{R}^{n}$.

Theorem

$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal if and only if $T(\mathbf{x}) \cdot T(\mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x} and \mathbf{y} in \mathbb{R}^{n}.
Since the angles between vectors are defined through the inner product, orthogonal operators also preserve angles between vectors.

Orthogonal matrices

Definition

A square matrix A is said to be orthogonal if $A^{T} A=I$, or equivalently, $A^{-1}=A^{T}$.

Theorem

If A and B are orthogonal matrices, then
(i) A^{T} is orthogonal.
(ii) A^{-1} is orthogonal.
(iii) $A B$ is orthogonal.
(iv $\operatorname{det}(A)=1$ or $\operatorname{det}(A)=-1$.

Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent
a A is orthogonal.
b $\|A \mathbf{x}\|=\|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
(c) $A \mathbf{x} \cdot A \mathbf{y}=\mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
(d) The column vectors of A are orthonormal.
e The row vectors of A are orthonormal.
Since a linear operator T is orthogonal if and only if its standard matrix has the property $\|A \mathbf{x}\|=\|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbb{R}^{n}$, we have the result

Theorem

$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal if and only if its standard matrix is orthogonal.

Orthogonal linear operators on \mathbb{R}^{2}

Rotations and reflections

The standard matrix of an orthogonal linear operator $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is always expressed as

$$
R_{\theta}=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \quad \text { or } \quad H_{\theta / 2}=\left[\begin{array}{rr}
\cos (\theta) & \sin (\theta) \\
\sin (\theta) & -\cos (\theta)
\end{array}\right]
$$

for some $\theta \in \mathbb{R}$. That is, T is either a rotation about the origin or a reflection about a line through the origin.

Remark

Since $\operatorname{det}\left(R_{\theta}\right)=1$ and $\operatorname{det}\left(H_{\theta / 2}\right)=-1$, we observe that a 2×2 orthogonal matrix A represents a rotation if $\operatorname{det}(A)=1$ and a reflection if $\operatorname{det}(A)=-1$.

Example

See Example 4 on page 285 of the textbook.

Some important non-length-preserving linear operators on \mathbb{R}^{2}

Scaling operators

Scaling operator with factor $k: T(x, y)=(k x, k y)$ (called a contraction if $k \in[0,1)$ and a dilation if $k>1$).

Expansions and compressions

Expansion or compression with factor k in

- the x-direction: $T(x, y)=(k x, y)$.
- the y-direction: $T(x, y)=(x, k y)$.

Shears

Shear with factor k in

- the x-direction: $T(x, y)=(x+k y, y)$.
- the y-direction: $T(x, y)=(x, y+k x)$.

Linear operators on \mathbb{R}^{3}

Orthogonal projections onto coordinate planes

Orthogonal projections on

- the $x y$-plane: $T(x, y, z)=(x, y, 0)$.
- the $x z$-plane: $T(x, y, z)=(x, 0, z)$.
- the $y z$-plane: $T(x, y, z)=(0, y, z)$.

Reflections about coordinate planes

Reflections about

- the $x y$-plane: $T(x, y, z)=(x, y,-z)$.
- the $x z$-plane: $T(x, y, z)=(x,-y, z)$.
- the $y z$-plane: $T(x, y, z)=(-x, y, z)$.

Rotations in \mathbb{R}^{3}

A three-dimensional rotation is determined by an axis \mathbf{u} (through the origin), the direction of rotation about that axis, and an angle θ. The positive rotation direction satisfies the right-hand rule: If your right thumb points in the direction of \mathbf{u}, then your fingers curl in the direction of the positive rotation.
The standard matrix of rotation $R_{\mathbf{u}, \theta}$ is given by Theorem 6.2.8 in the textbook.

Rotation matrix

A 3×3 matrix A represents a rotation if and only if A is orthogonal and $\operatorname{det}(A)=1$.
All points lying on the axis of rotation must satisfy the linear system $A \mathbf{x}=\mathbf{x}$ (fixed points of the rotation).

Composing rotations

A composition of two rotations in R^{3} (around axes through the origin) is another rotation (around some appropriate axis through the origin).

Determining the axis and angle of rotation from a matrix A

The steps are as follows
(1) Show that A is orthogonal and $\operatorname{det}(A)=1$.

2 Find the axis of rotation: The vector equation of the axis is the solution of the linear system $(I-A) \mathbf{x}=\mathbf{0}$.
(3) Choose an orientation of the axis: Select a vector w perpendicular to the axis, then we can orient the axis using the vector $\mathbf{u}=\mathbf{w} \times A \mathbf{w}$.
(4) The rotation angle θ, relative to \mathbf{u}, is the angle between \mathbf{w} and $A \mathbf{w}$ (satisfying $0 \leq \theta \leq \pi$) and can be computed from the formula

$$
\cos (\theta)=\frac{\mathbf{w} \cdot A \mathbf{w}}{\|\mathbf{w}\|\|A \mathbf{w}\|}
$$

Example

See Example 7 on page 292 of the textbook.

Rotations about the coordinate axes

Rotation about the positive x-axis through an angle θ

$$
R_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Rotation about the positive y-axis through an angle θ

$$
R_{y, \theta}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] .
$$

Rotation about the positive z-axis through an angle θ

$$
R_{z, \theta}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Outline

1 Matrices and linear transformations

2 Kernel and range

3 Inverse linear transformations

Kernel and range of a linear transformation

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.

Kernel of a linear transformation

The set of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ for which $T(\mathbf{x})=\mathbf{0}$ is a subspace of \mathbb{R}^{n}. It is called the kernel of T and is denoted by $\operatorname{ker}(T)$,

$$
\operatorname{ker}(T)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid T(\mathbf{x})=\mathbf{0}\right\}
$$

Image of a linear transformation

If S is a subspace of \mathbb{R}^{n}, then the image of S under the transformation T,

$$
T(S)=\{T(\mathbf{x}) \mid \mathbf{x} \in S\},
$$

is a subspace of \mathbb{R}^{m}. In particular, if $S=\mathbb{R}^{n}$ then the set $T\left(\mathbb{R}^{n}\right)$ is called the range of T and is denoted by $\operatorname{ran}(T)$.

Kernel and range of a matrix transformation

Let A be an $m \times n$ matrix and $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the corresponding transformation, that is $T_{A}(\mathbf{x})=A \mathbf{x}$.

Kernel of a matrix transformation

The kernel of T_{A} is the solution space of $A \mathbf{x}=\mathbf{0}$. It is called the null space of A and is denoted by $\operatorname{null}(A)$

$$
\operatorname{ker}\left(T_{A}\right)=\operatorname{null}(A)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} .
$$

Range of a matrix transformation

The range of T_{A} is the column space of A

$$
\operatorname{ran}\left(T_{A}\right)=\left\{A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{n}\right\}=\operatorname{span}\left\{\mathbf{c}_{1}(A), \mathbf{c}_{2}(A), \ldots, \mathbf{c}_{n}(A)\right\} .
$$

Onto and one-to-one transformations

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.

Onto transformation

T is onto if its range is the entire codomain \mathbb{R}^{m}; that is, the equation $T(\mathbf{x})=\mathbf{b}$ has at least one solution for every $\mathbf{b} \in \mathbb{R}^{m}$.

One-to-one transformation

T is one-to-one if T maps distinct vectors in \mathbb{R}^{n} into distinct vectors in \mathbb{R}^{m}; that is, the equation $T(\mathbf{x})=\mathbf{b}$ has at most one solution for every $\mathbf{b} \in \mathbb{R}^{m}$.

Theorem

The following statements are equivalent
a T is one-to-one.
(b) $\operatorname{ker}(T)=\{\mathbf{0}\}$.

Onto and one-to-one matrix transformations

Let A be an $m \times n$ matrix and $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the corresponding transformation.

Onto matrix transformation

T_{A} is onto if and only if the linear system $A \mathbf{x}=\mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^{m}$.

One-to-one matrix transformation

T_{A} is one-to-one if and only if the linear system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

One-to-one linear operator

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear operator on \mathbb{R}^{n}, then T is one-to-one if and only if it is onto.

Fundamental theorem of invertible matrices (cont.)

If A is an $n \times n$ matrix, and if T_{A} is a linear operator on \mathbb{R}^{n} corresponding to A, then the following statements are equivalent
a The reduced echelon form of A is I_{n}.
b A is a product of elementary matrices.
(c) A is invertible.
d $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) $A \mathbf{x}=\mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^{n}$.
(f) $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^{n}$.
(g) The column vectors of A are linearly independent.
(h) The row vectors of A are linearly independent.
(i) $\operatorname{det}(A) \neq 0$.
(i) $\lambda=0$ is not an eigenvalue of A.
(k) T_{A} is one-to-one.
(1) T_{A} is onto.

Outline

1 Matrices and linear transformations

2 Kernel and range

3 Inverse linear transformations

Inverse linear transformations

Definition

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one, then it has an inverse transformation T^{-1}. For each vector $\mathbf{u} \in \operatorname{ran}(T)$, the value of $T^{-1}(\mathbf{u})$ is the unique vector \mathbf{x} in the domain of T for which $T(\mathbf{x})=\mathbf{u}$. Thus

$$
T^{-1}(\mathbf{u})=\mathbf{x} \text { if and only if } T(\mathbf{x})=\mathbf{u} .
$$

Theorem

$T^{-1}: \operatorname{ran}(T) \rightarrow \mathbb{R}^{n}$ is a one-to-one linear transformation.

Inverse linear operators

If T is a one-to-one linear operator on \mathbb{R}^{n}, then T is onto and hence that the domain of T^{-1} is all of \mathbb{R}^{n}. Thus T^{-1} is also a one-to-one linear operator on \mathbb{R}^{n}.

Standard matrix for inverse operator

If T_{A} is a one-to-one linear operator on \mathbb{R}^{n} with standard matrix A, then A is invertible and its inverse is the standard matrix for T_{A}^{-1}, that is

$$
T_{A}^{-1}=T_{A^{-1}} .
$$

A one-to-one linear operator is also called an invertible linear operator.

Decomposition of linear transformations on \mathbb{R}^{2}

An invertible 2×2 matrix A can be expressed as a product of elementary matrices which are corresponding to basic operators on \mathbb{R}^{2}. Thus, we have

Theorem

Any invertible linear operator on \mathbb{R}^{2} can be decomposed into shears, compressions, and expansions in the coordinate directions, and reflections about the coordinate axes and about the line $y=x$.

Transforming with a diagonal matrix

Since we can factor $A=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ as $\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & \lambda_{2}\end{array}\right]\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & 1\end{array}\right]$,
the geometric effect of multiplication by A is to scale by a factor of λ_{1} in the x-direction and scale by a factor of λ_{2} in the y-direction.

Example

See Example 8 on page 311 of the textbook.

