
SF1684 Algebra and Geometry

Lecture 4

Linear transformations, kernel and range

Bao Nguyen

SF1684 Lecture 4 Nov 2018 1 / 28



Outline

1 Matrices and linear transformations

2 Kernel and range

3 Inverse linear transformations

SF1684 Lecture 4 Nov 2018 2 / 28



Outline

1 Matrices and linear transformations

2 Kernel and range

3 Inverse linear transformations

SF1684 Lecture 4 Nov 2018 3 / 28



Transformations

Definition
A transformation T from Rn to Rm is a function that maps each vector x ∈ Rn

into a vector y ∈ Rm. We can write either

y = T(x), x T−→ y or T : Rn → Rm.

Rn is called the domain and Rm the codomain of T.
The vector T(x) is the image of x under T.
The set of all images {T(x) | x ∈ Rn} is the range of T (may actually be
smaller than the codomain of T).

Example
If x0 is a fixed vector, then the translation Tx0 : Rn → Rn is defined as
Tx0(x) = x + x0.
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Matrix transformations

We are primarily interested in transformations that can be defined using
matrices. Let A be an m× n matrix, we can define a transformation
TA : Rn → Rm such that TA maps x ∈ Rn into Ax ∈ Rm. That is TA(x) = Ax.

Linear transformation
A function T : Rn → Rm is called a linear transformation if

1 T(cu) = cT(u) and
2 T(u + v) = T(u) + T(v) for all u, v ∈ Rn and all scalars c.

In the case where m = n, T is called a linear operator on Rn.

Some properties
If T is a linear transformation then

i T(0) = 0.
ii T(c1u1 + c2u2 + · · ·+ ckuk) = c1T(u1) + c2T(u2) + · · ·+ ckT(uk).
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Every matrix transformation from Rn to Rm is linear. Conversely, all linear
transformations can be performed by matrix multiplications.

Theorem
Let T : Rn → Rm be a linear transformation and e1, e2, . . . , en be standard unit
vectors in Rn. If x is a vector in Rn, then T can be expressed as

T(x) = Ax,

where A =
[
T(e1) T(e2) · · · T(en)

]
.

The m× n matrix A is called the standard matrix of T and T is the
transformation corresponding to A.

Remark
It follows that T(x) = y is a linear transformation if and only if the equations
relating the components of x and y are linear equations.
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Linear operators on R2

Rotation through θ about the origin

Rθ =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Let L be a line through 0 and making an angle θ with the positive x-axis

Reflection through the line L

Hθ =
[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
.

Projection onto the line L

Pθ =
[

cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) sin2(θ)

]
.
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Composition of linear transformations

Definition
Let T1 : Rn → Rk and T2 : Rk → Rm be linear transformations. Their
composition is the linear transformation T2 ◦ T1 : Rn → Rm defined by

T2 ◦ T1(x) = T2(T1(x)).

Theorem
If A is the standard matrix for TA : Rn → Rk and B is the standard matrix for
TB : Rk → Rm then BA is the standard matrix for TB ◦ TA

TB ◦ TA = TBA.

Note that A has size k × n, B has size m× k, therefore BA has size m× n.
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Composing rotations

Rθ2 Rθ1 =

[
cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

][
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
=

[
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
= Rθ1+θ2 .

Composing reflections

Hθ2 Hθ1 =

[
cos(2θ2) sin(2θ2)
sin(2θ2) − cos(2θ2)

][
cos(2θ1) sin(2θ1)
sin(2θ1) − cos(2θ1)

]
=

[
cos(2θ2 − 2θ1) − sin(2θ2 − 2θ1)
sin(2θ2 − 2θ1) cos(2θ2 − 2θ1)

]
= R2(θ2−θ1).

Warning
Composition of two transformations is not commutative.
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Orthogonal operators

Definition
A linear transformation T : Rn → Rn is said to be orthogonal (or linear
isometry) if ‖T(x)‖ = ‖x‖ (length preserving) for all x ∈ Rn.

Theorem
T : Rn → Rn is orthogonal if and only if T(x) · T(y) = x · y for all x and y in Rn.

Since the angles between vectors are defined through the inner product,
orthogonal operators also preserve angles between vectors.
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Orthogonal matrices

Definition
A square matrix A is said to be orthogonal if ATA = I, or equivalently,
A−1 = AT .

Theorem
If A and B are orthogonal matrices, then

i AT is orthogonal.
ii A−1 is orthogonal.
iii AB is orthogonal.
iv det(A) = 1 or det(A) = −1.
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Theorem
If A is an n× n matrix, then the following statements are equivalent

a A is orthogonal.
b ‖Ax‖ = ‖x‖ for all x ∈ Rn.
c Ax · Ay = x · y for all x, y ∈ Rn.
d The column vectors of A are orthonormal.
e The row vectors of A are orthonormal.

Since a linear operator T is orthogonal if and only if its standard matrix has
the property ‖Ax‖ = ‖x‖ for all x ∈ Rn, we have the result

Theorem
T : Rn → Rn is orthogonal if and only if its standard matrix is orthogonal.
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Orthogonal linear operators on R2

Rotations and reflections
The standard matrix of an orthogonal linear operator T : R2 → R2 is always
expressed as

Rθ =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
or Hθ/2 =

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
,

for some θ ∈ R. That is, T is either a rotation about the origin or a reflection
about a line through the origin.

Remark
Since det(Rθ) = 1 and det(Hθ/2) = −1, we observe that a 2× 2 orthogonal
matrix A represents a rotation if det(A) = 1 and a reflection if det(A) = −1.

Example
See Example 4 on page 285 of the textbook.
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Some important non-length-preserving linear
operators on R2

Scaling operators
Scaling operator with factor k: T(x, y) = (kx, ky) (called a contraction if
k ∈ [0, 1) and a dilation if k > 1).

Expansions and compressions
Expansion or compression with factor k in

the x-direction: T(x, y) = (kx, y).
the y-direction: T(x, y) = (x, ky).

Shears
Shear with factor k in

the x-direction: T(x, y) = (x + ky, y).
the y-direction: T(x, y) = (x, y + kx).
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Linear operators on R3

Orthogonal projections onto coordinate planes
Orthogonal projections on

the xy-plane: T(x, y, z) = (x, y, 0).
the xz-plane: T(x, y, z) = (x, 0, z).
the yz-plane: T(x, y, z) = (0, y, z).

Reflections about coordinate planes
Reflections about

the xy-plane: T(x, y, z) = (x, y,−z).
the xz-plane: T(x, y, z) = (x,−y, z).
the yz-plane: T(x, y, z) = (−x, y, z).
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Rotations in R3

A three-dimensional rotation is determined by an axis u (through the origin),
the direction of rotation about that axis, and an angle θ. The positive rotation
direction satisfies the right-hand rule: If your right thumb points in the
direction of u, then your fingers curl in the direction of the positive rotation.

The standard matrix of rotation Ru,θ is given by Theorem 6.2.8 in the textbook.

Rotation matrix
A 3× 3 matrix A represents a rotation if and only if A is orthogonal and
det(A) = 1.

All points lying on the axis of rotation must satisfy the linear system Ax = x
(fixed points of the rotation).

Composing rotations
A composition of two rotations in R3 (around axes through the origin) is
another rotation (around some appropriate axis through the origin).
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Determining the axis and angle of rotation from a matrix A
The steps are as follows

1 Show that A is orthogonal and det(A) = 1.
2 Find the axis of rotation: The vector equation of the axis is the solution of

the linear system (I − A)x = 0.
3 Choose an orientation of the axis: Select a vector w perpendicular to the

axis, then we can orient the axis using the vector u = w× Aw.
4 The rotation angle θ, relative to u, is the angle between w and Aw

(satisfying 0 ≤ θ ≤ π) and can be computed from the formula

cos(θ) =
w · Aw
‖w‖ ‖Aw‖

.

Example
See Example 7 on page 292 of the textbook.

SF1684 Lecture 4 Nov 2018 17 / 28



Rotations about the coordinate axes

Rotation about the positive x-axis through an angle θ

Rx,θ =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 .
Rotation about the positive y-axis through an angle θ

Ry,θ =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 .
Rotation about the positive z-axis through an angle θ

Rz,θ =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .
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Kernel and range of a linear transformation

Let T : Rn → Rm be a linear transformation.

Kernel of a linear transformation
The set of all vectors x ∈ Rn for which T(x) = 0 is a subspace of Rn. It is called
the kernel of T and is denoted by ker(T),

ker(T) = {x ∈ Rn | T(x) = 0} .

Image of a linear transformation
If S is a subspace of Rn, then the image of S under the transformation T,

T(S) = {T(x) | x ∈ S} ,

is a subspace of Rm. In particular, if S = Rn then the set T(Rn) is called the
range of T and is denoted by ran(T).
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Kernel and range of a matrix transformation

Let A be an m× n matrix and TA : Rn → Rm be the corresponding
transformation, that is TA(x) = Ax.

Kernel of a matrix transformation
The kernel of TA is the solution space of Ax = 0. It is called the null space of A
and is denoted by null(A)

ker(TA) = null(A) = {x ∈ Rn | Ax = 0} .

Range of a matrix transformation
The range of TA is the column space of A

ran(TA) = {Ax | x ∈ Rn} = span
{

c1(A), c2(A), . . . , cn(A)
}
.
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Onto and one-to-one transformations

Let T : Rn → Rm be a linear transformation.

Onto transformation
T is onto if its range is the entire codomain Rm; that is, the equation T(x) = b
has at least one solution for every b ∈ Rm.

One-to-one transformation
T is one-to-one if T maps distinct vectors in Rn into distinct vectors in Rm; that
is, the equation T(x) = b has at most one solution for every b ∈ Rm.

Theorem
The following statements are equivalent

a T is one-to-one.
b ker(T) = {0}.
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Onto and one-to-one matrix transformations

Let A be an m× n matrix and TA : Rn → Rm be the corresponding
transformation.

Onto matrix transformation
TA is onto if and only if the linear system Ax = b is consistent for every b ∈ Rm.

One-to-one matrix transformation
TA is one-to-one if and only if the linear system Ax = 0 has only the trivial
solution.

One-to-one linear operator
If T : Rn → Rn is a linear operator on Rn, then T is one-to-one if and only if it is
onto.
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Fundamental theorem of invertible matrices (cont.)
If A is an n× n matrix, and if TA is a linear operator on Rn corresponding to A,
then the following statements are equivalent

a The reduced echelon form of A is In.
b A is a product of elementary matrices.
c A is invertible.
d Ax = 0 has only the trivial solution.
e Ax = b is consistent for every b ∈ Rn.
f Ax = b has a unique solution for every b ∈ Rn.
g The column vectors of A are linearly independent.
h The row vectors of A are linearly independent.
i det(A) 6= 0.
j λ = 0 is not an eigenvalue of A.
k TA is one-to-one.
l TA is onto.
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Inverse linear transformations

Definition
If T : Rn → Rm is one-to-one, then it has an inverse transformation T−1. For
each vector u ∈ ran(T), the value of T−1(u) is the unique vector x in the
domain of T for which T(x) = u. Thus

T−1(u) = x if and only if T(x) = u.

Theorem
T−1 : ran(T)→ Rn is a one-to-one linear transformation.
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Inverse linear operators

If T is a one-to-one linear operator on Rn, then T is onto and hence that the
domain of T−1 is all of Rn. Thus T−1 is also a one-to-one linear operator on Rn.

Standard matrix for inverse operator
If TA is a one-to-one linear operator on Rn with standard matrix A, then A is
invertible and its inverse is the standard matrix for T−1

A , that is

T−1
A = TA−1 .

A one-to-one linear operator is also called an invertible linear operator.
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Decomposition of linear transformations on R2

An invertible 2× 2 matrix A can be expressed as a product of elementary
matrices which are corresponding to basic operators on R2. Thus, we have

Theorem
Any invertible linear operator on R2 can be decomposed into shears,
compressions, and expansions in the coordinate directions, and reflections
about the coordinate axes and about the line y = x.

Transforming with a diagonal matrix

Since we can factor A =

[
λ1 0
0 λ2

]
as
[
λ1 0
0 λ2

]
=

[
1 0
0 λ2

][
λ1 0
0 1

]
,

the geometric effect of multiplication by A is to scale by a factor of λ1 in the
x-direction and scale by a factor of λ2 in the y-direction.

Example
See Example 8 on page 311 of the textbook.
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