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Matrices

Matrix
A general m× n matrix A has the form

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 = [aij]m×n ∈ Rm×n.

Alternative notations for the entry aij are (A)ij or A[i, j].

Square matrix
If n = m then A is called a square matrix. The diagonal entries of A are
a11, a22, . . . , ann.
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Row and column vectors
We may represent A as the list of n column vectors or m row vectors

A =
[
c1 c2 · · · cn

]
=


r1
r2
...

rm


where

cj(A) =


a1j

a2j
...

amj

 ∈ Rm and ri(A) =
[
ai1 ai2 · · · ain

]
∈ Rn.
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Matrices with special forms

Let A be a square matrix.

Diagonal matrix
A is called a diagonal matrix if all entries outside the main diagonal are zero.
In addition, if the diagonal entries are all 1 then A is called an identity matrix.

Triangular matrix
A is called an upper triangular if all entries below the main diagonal are zero
and called a lower triangular if all entries above the main diagonal are zero.

Symmetric and skew-symmetric matrix
A is called symmetric if all entries are symmetric with respect to the main
diagonal, that is (A)ij = (A)ji, and called skew-symmetric if (A)ij = −(A)ji.
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Operations on matrices

Let A = [aij] and B = [bij] be two matrices.

Equal matrices
A = B if and only if they have the same size and aij = bij for all i, j.

Matrix addition and subtraction
If A and B have the same size then

(A + B)ij = aij + bij,

(A− B)ij = aij − bij.

Scalar multiplication
If c ∈ R then

(cA)ij = caij.
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Matrix multiplication
If A is an m× s matrix and B is an s× n matrix, then the product AB is the m× n
matrix defined as

(AB)ij = ri(A) · cj(B) =
s∑

k=1

aik bkj.

Matrix power
If A is a square matrix, then we define the nonnegative integer powers of A to
be

A0 = I and Am = AA · · ·A (matrix product of m copies of A).

Matrix polynomial
If A is a square matrix, then the matrix polynomial in A has form

p(A) = a0I + a1A + a2A2 + · · ·+ amAm.
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Matrix transpose
If A is an m× n matrix then the transpose of A, denoted by AT , is the n× m
matrix defined as

(AT)ij = aji.

Trace
If A is a square matrix of order n, that is A = [aij]n×n, then the trace of A is
defined as

tr(A) =
n∑

i=1

aii.
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Let u =

u1
...

un

 ∈ Rn and v =

v1
...

vm

 ∈ Rm be two column vectors.

Matrix inner product
If u and v have the same size, that is n = m, then

uTv =
[
u1 u2 · · · un

]


v1
v2
...

vn

 =

n∑
i=1

uivi = u · v ∈ R.

Matrix outer product

uvT =


u1
u2
...

un

 [v1 v2 · · · vm
]
= [uivj]n×m ∈ Rn×m.
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Matrix products as linear combinations

If A is an m× s matrix, B is an s× n matrix, and u, v ∈ Rs are two column
vectors then

Au =
[
c1 c2 · · · cs

]


u1
u2
...

us

 = u1c1(A) + u2c2(A) + · · ·+ uscs(A)

which is a linear combination of the column vectors of A with coefficients from
u. Similarly

vTB =
[
v1 v2 · · · vs

]


r1
r2
...
rs

 = v1r1(B) + v2r2(B) + · · ·+ vsrs(B)

which is a linear combination of the row vectors of B with coefficients from v.
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Theorem
Columns and rows of the product AB as linear combinations

AB =
[
Ac1(B) Ac2(B) · · · Acn(B)

]
=


r1(A)B
r2(A)B

...
rm(A)B

 .
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Algebraic properties

If A, B, and C are matrices and a, b are scalars, then

Addition and scalar multiplication
i A + B = B + A [Commutative law for addition]
ii A + (B + C) = (A + B) + C [Associative law for addition]
iii (ab)A = a(bA)

iv (a± b)A = aA± bA

v a(A± B) = aA± aB

Matrix multiplication
i A(BC) = (AB)C [Associative law for multiplication]
ii A(B± C) = AB± AC [Left distributive law]
iii (B± C)A = BA± CA [Right distributive law]
iv a(AB) = (aA)B = A(aB)
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Warning
In general, the commutative law and cancellation law do not hold for matrix
multiplication.

Example

A =

[
1 2
−1 −2

]
, B =

[
2 4
−1 −2

]
, C =

[
2 2
−1 −1

]
.

AB =

[
0 0
0 0

]
6= BA =

[
−2 −4

1 2

]
.

AB = AC = 0 but all A,B,C 6= 0 and B 6= C.

Remark
Powers of a square matrix A commute, that is AmAn = AnAm = An+m for
n,m ∈ N ∪ {0}.
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Properties of the transpose
i (AT)T = A

ii (A± B)T = AT ± BT

iii (cA)T = cAT

iv (AB)T = BTAT

Transpose and dot product
If A ∈ Rm×n and u ∈ Rn and v ∈ Rm are column vectors then

v (Au) · v = u · (ATv)
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Properties of the trace
If A and B are square matrices with the same size then

i tr(AT) = tr(A)

ii tr(A± B) = tr(A)± tr(B)

iii tr(cA) = c tr(A)

Trace of matrix product
If A is an m× n matrix and B is an n× m matrix then

iv tr(AB) = tr(BA)

In particular, if u and v are n× 1 column vectors then
v tr(uvT) = vTu = u · v
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Identity matrix

Definition
The identity matrix of size n, denoted In, is the n× n square matrix with ones
on the main diagonal and zeros elsewhere.

Important property: If A is any m× n matrix, then

AIn = A and ImA = A.

Echelon form of a square matrix
If R is the reduced row echelon form of an n× n matrix, then either R has a
zero row or R is the identity matrix In.
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Inverse of a matrix

Definition
If A is an n× n is square matrix, an inverse of A is an n× n matrix B with the
property that

AB = BA = In.

If such an B exists, then A is called invertible (or nonsingular). Otherwise, A
is called singular.

Uniqueness of inverse
If A is an invertible matrix, then its inverse is unique. We will denote the
inverse by A−1.
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Properties of inverses
If A and B are invertible matrices with the same size then

i A−1 is invertible and (A−1)−1 = A.
ii kA is invertible and (kA)−1 = k−1A−1 for k ∈ R, k 6= 0.
iii AT is invertible and (AT)−1 = (A−1)T .
iv Am is invertible and (Am)−1 = (A−1)m = A−m for m ∈ N.
v AB is invertible and (AB)−1 = B−1A−1.

Inverse of a 2× 2 matrix

The matrix A =

[
a b
c d

]
is invertible if and only if det(A) = ad − bc 6= 0, and the

inverse is given by

A−1 =
1

ad − bc

[
d −b
−c a

]
.
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Elementary matrices

Our goal is to find matrices that emulate the elementary row operations on a
matrix. For any m× n matrix A, and a matrix B equal to A after a row
operation, we wish to find a matrix E of size m× m such that B = EA.

→ E is called the elementary matrix, and can be obtained by performing the
same row operation on Im.

Invertibility of elementary matrices
Each elementary matrix E is invertible, and its inverse is an elementary matrix
results by performing the inverse of the elementary row operation which
produced E from I.
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Finding inverses

If A is a n× n matrix and R is denoted the reduced row echelon form of A then
there exists a sequence of elementary matrices E1,E2, . . . ,Ek such that

EkEk−1 · · ·E2E1A = R.

1 If R is the identity matrix In then A = E−1
1 E−2

2 · · ·E
−1
k . Also A is invertible

and A−1 = (E−1
1 E−2

2 · · ·E
−1
k )−1 = Ek · · ·E2E1.

2 If R is not In (R has a row of zeros), then A is not invertible and cannot be
represented as a product of elementary matrices.

Theorem
If a sequence of elementary row operations reduces a square matrix A to I,
then the same sequence of elementary row operations transforms I into A−1.
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Gauss-Jordan method for finding inverse matrix
1 Form n× 2n matrix with left half A and right half In.
2 Apply Gauss-Jordan elimination to the whole matrix (to rows of length 2n)

until the matrix A (in the left half) is in reduced row echelon form.
3 If the left half is In then A is invertible and the right half is A−1. Otherwise

(the left half is not In), A is not invertible (and the right half is of no use).

Example

Find the inverse of A =

[
−1 0

2 3

]
.

[A | I ] =
[
−1 0 1 0

2 3 0 1

]
R1 7→ (−1)R1−−−−−−−−−−→

[
1 0 −1 0
2 3 0 1

]
R2 7→ R2 + (−2)R1−−−−−−−−−−−−−−→[

1 0 −1 0
0 3 2 1

]
R2 7→ (1/3)R2−−−−−−−−−−→

[
1 0 −1 0
0 1 2/3 1/3

]
. Thus, A−1 =

[
−1 0
2/3 1/3

]
.
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Fundamental theorem of invertible matrices
If A is an n× n matrix, then the following statements are equivalent

a The reduced echelon form of A is In.
b A is a product of elementary matrices.
c A is invertible.

Theorem
Let A and B be square matrices of the same size

i If AB = I or BA = I then A and B are both invertible and each is the
inverse of the other.

ii If the product AB is invertible then A and B are both invertible.
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Row equivalent

Two matrices that can be obtained from one another by finite sequences of
elementary row operations are said to be row equivalent.

Theorem
If A and B are square matrices of the same size, then the following statements
are equivalent

a A and B are row equivalent.
b There is an invertible matrix E such that B = EA.
c There is an invertible matrix F such that A = FB.

Remark
An n× n matrix A is invertible if and only if it is row equivalent to the identity
matrix In.
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Solving linear systems using matrices

Matrix equation
a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

←→ Ax = b

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 x =


x1
x2
...

xm

 b =


b1
b2
...

bm

 .
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Theorem
If Ax = b is a linear system of n equations in n unknowns then the system has
exactly one solution if and only if A is invertible, in which case the solution is
given by x = A−1b.

Fundamental theorem of invertible matrices (cont.)
If A is an n× n matrix, then the following statements are equivalent

a The reduced echelon form of A is In.
b A is a product of elementary matrices.
c A is invertible.
d Ax = 0 has only the trivial solution.
e Ax = b is consistent for every b ∈ Rn.
f Ax = b has a unique solution for every b ∈ Rn.
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Subspaces of Rn

Subspace
Let S be a collection vectors in Rn. Then S is called a subspace of Rn if

1 The zero vector 0 is in S.
2 If u and v are in S, then u + v is in S (S is closed under addition).
3 If u is in S and c is a scalar, then cu is in S (S is closed under scalar

multiplication).
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Linear combinations
If v1, . . . , vk are vectors in Rn, and S is the set of all linear combinations of
these vectors

S = {t1v1 + · · ·+ tkvk | t1, . . . , tk ∈ R} ,

then S is a subspace of Rn.

Span and spanning set
The subspace S is called the span of B = {v1, . . . , vk}, and we also say that B
spans S. The set B is called a spanning set for the subspace S. We denote S
by

S = span{v1, v2, . . . , vk} .

Example
If e1, e2, . . . , en are the standard unit vectors in Rn then

Rn = span{e1, e2, . . . , en} .
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Theorem
Every subspace of Rn is the span of at most n vectors.

Subspaces of R2 and R3

The zero subspace The zero subspace
Lines through 0 Lines through 0

All of R2 Planes through 0
All of R3
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Linear independence

Linear independence
A set of vectors S = {v1, . . . , vk} in Rn is said to be linearly independent if the
only solution to the equation

t1v1 + t2v2 + · · ·+ tkvk = 0

is t1 = · · · = tk = 0; otherwise, S is said to be linearly dependent.

Linear dependence
A set S = {v1, . . . , vk} with k ≥ 2 in Rn is linearly dependent if and only if at
least one of the vectors in S is a linear combination of the other vectors in S.
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Solution space of a homogeneous linear system
Theorem
If Ax = 0 is a homogeneous linear system with n unknowns, then its solution
set is a subspace of Rn.

The solution space must be expressible in the form

x = t1v1 + t2v2 + · · ·+ tkvk

which we call a general solution of the system. This expression is not
unique. However the Gauss-Jordan elimination always produce the same
general solution and the spanning vectors vi in this case are linearly
independent. The number of vectors (or the number of parameters ti) is call
the dimension of the solution space.

Equal matrices
Let A and B be m× n matrices

i The solution space of Ax = 0 is all of Rn if and only if A = 0.
ii A = B if and only if Ax = Bx for all x ∈ Rn.
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Relationship between Ax = b and Ax = 0

Translated solution space
If W is the solution space of Ax = 0 then the solution set of the consistent
linear system Ax = b is the translated subspace x0 + W where x0 is any
solution of Ax = b.

Solution sets in R2 and R3

A point A point
A line A line

All of R2 A plane
All of R3

Corollary
A general solution of a consistent linear system Ax = b can be obtained by
adding any specific solution of this system to a general solution Ax = 0.
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Number of solutions
If A is an m× n matrix, then the following statements are equivalent

a Ax = 0 has only the trivial solution.
b Ax = b has at most one solution for every b ∈ Rm.

It follows that if Ax = 0 has infinitely many solution then Ax = b is either
inconsistent or has infinitely many solutions.

Corollary
A nonhomogeneous linear system with more unknowns than equations is
either inconsistent or has infinitely many solutions.
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Solving linear systems using vectors

Vector equation
a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

←→ x1c1 + x2c2 + · · ·+ xncn = b

where cj denotes the jth column vector of A

cj(A) =


a1j

a2j
...

amj

 ∈ Rm.
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Theorem
A homogeneous linear system Ax = 0 only has the trivial solution if and only if
the column vectors of A are linearly independent.

The subspace of Rm spanned by the column vectors of an m× n matrix A is
called the column space of A and is denoted by col(A)

col(A) = span
{

c1(A), c2(A), . . . , cn(A)
}
= {Ax | x ∈ Rn} .

Theorem
A linear system Ax = b is consistent if and only if b is in the column space of A.
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Fundamental theorem of invertible matrices (cont.)
If A is an n× n matrix, then the following statements are equivalent

a The reduced echelon form of A is In.
b A is a product of elementary matrices.
c A is invertible.
d Ax = 0 has only the trivial solution.
e Ax = b is consistent for every b ∈ Rn.
f Ax = b has a unique solution for every b ∈ Rn.
g The column vectors of A are linearly independent.
h The row vectors of A are linearly independent.
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Hyperplanes

If a = (a1, a2, . . . , an) ∈ Rn is a nonzero vector and b is a scalar, then the set of
points x = (x1, x2, . . . , xn) ∈ Rn that satisfy the linear equation of the form

a · x = a1x1 + a2x2 + · · ·+ anxn = b,

is called a hyperplane in Rn.

If b = 0, then the hyperplane passes through the origin 0 and consists of all
vectors x ∈ Rn orthogonal to the vector a. Accordingly, we say that the
hyperplane through the origin with normal a or the orthogonal
complement of a. We denote this hyperplane by the symbol a⊥ (read “a
perp”)

a⊥ = {x ∈ Rn | x · a = 0} .
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Geometric interpretations of solution space

If r1(A), r2(A), . . . , rm(A) are row vectors of A, then the solution space of the
linear system Ax = 0 can be viewed as the intersection of these hyperplanes

r1(A) · x = 0
r1(A) · x = 0

...
rm(A) · x = 0

Thus, we have the result

Theorem
The solution space of Ax = 0 consists of all vectors in Rn that are orthogonal
to every row vector of A.
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