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Matrices

Matrix
A general m x n matrix A has the form
ap ap - A
az] an o Aaon SR
A: : : 5 : = [aij]an ER o
aml  Am2 - Amn

Alternative notations for the entry a; are (A);; or Ai, j].

Square matrix

If n = mthen A is called a square matrix. The diagonal entries of A are
ai, az, - - -, dnn-
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Row and column vectors
We may represent A as the list of n column vectors or m row vectors

Iy
I
A=fer ¢ - ¢ =
'y
where
ajj
ay;
Cj(A) = . eR™ and l'i(A) = [Cl“ ap - a,-n] e R".
Ay
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Matrices with special forms

Let A be a square matrix.

Diagonal matrix

A is called a diagonal matrix if all entries outside the main diagonal are zero.
In addition, if the diagonal entries are all 1 then A is called an identity matrix.

Triangular matrix

A is called an upper triangular if all entries below the main diagonal are zero
and called a lower triangular if all entries above the main diagonal are zero.

v

Symmetric and skew-symmetric matrix

A is called symmetric if all entries are symmetric with respect to the main
diagonal, that is (4); = (A);;, and called skew-symmetric if (A); = —(4);:.
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Operations on matrices

Let A = [¢;] and B = [b;;] be two matrices.

Equal matrices
A = B if and only if they have the same size and a;; = b;; for all i, ;.

Matrix addition and subtraction
If A and B have the same size then

(A +B)ij = ajj + bij7
(A — B);j = aj — by.

Scalar multiplication

If c € R then
(cA)y = cay.
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Matrix multiplication

If Ais an m x s matrix and B is an s x n matrix, then the product AB is the m x n
matrix defined as

(AB); =ri(A) - ¢(B) = Y _ ai by.

Matrix power

If A is a square matrix, then we define the nonnegative integer powers of A to
be

A’=1 and A™ =AA-..A (matrix product of m copies of A).

Matrix polynomial
If A is a square matrix, then the matrix polynomial in A has form

P(A) = aol + a1A + A% + -+ + a,A".
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Matrix transpose

If A is an m x n matrix then the transpose of A, denoted by A7, is the n x m

matrix defined as
A"y = aj.

Trace
If A is a square matrix of order n, that is A = [a;],xx, then the trace of A is

defined as .
tI‘(A) = Zai,’.
i=1
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U Vi
Letu=|:| eR"andv= | : | € R" be two column vectors.

Un Vm

Matrix inner product
If w and v have the same size, that is n = m, then

Vi

n
T V2
u'v=(uyuy - ouy | :E v =u-v e R.
. i=1

Vn
Matrix outer product
uj
T __ o _ nxm
w’ = | | [vive o V] = [wivi]esm € R
Uy
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Matrix products as linear combinations

If Ais an m x s matrix, B is an s x n matrix, and u, v € R* are two column
vectors then

Au=[c; ¢ - ¢ | .| =wei(A) +ucr(A) + - + useg(A)
U

which is a linear combination of the column vectors of A with coefficients from
u. Similarly

which is a linear combination of the row vectors of B with coefficients from v.
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Columns and rows of the product AB as linear combinations

r (A)B
AB = [Ac|(B) Acy(B)

Aen(B)] = r (1.4)3

rn(A)B

o F = DA
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Algebraic properties
If A, B, and C are matrices and a, b are scalars, then

Addition and scalar multiplication

i A+B=B+A [Commutative law for addition]
i A+(B+C)=(A+B)+C [Associative law for addition]

i (ab)A = a(bA)

iv (a£b)A =aA+bA

v a(A+B)=daA +aB

Matrix multiplication

i A(BC) = (AB)C [Associative law for multiplication]
i A(BB+C)=AB+AC [Left distributive law]
i (B+C)A=BA+CA [Right distributive law]

iv a(AB) = (aA)B = A(aB)
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Warning

In general, the commutative law and cancellation law do not hold for matrix
multiplication.

Example

@ AB = {8 8} # BA = [_f _3].

@ AB=AC=0butallA,B,C #0andB # C.

Remark

Powers of a square matrix A commute, that is A”A" = A"A™ = A"+ for
n,m € NU{0}.
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If A e R"™" and u € R" and v € R™ are column vectors then
v (Au)-v=u-(ATv)

o F = = DA
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Properties of the trace

If A and B are square matrices with the same size then
i tr(AT) = tr(A)
i tr(A £ B) =tr(A) £ tr(B)
i tr(cA) = ctr(A)

Trace of matrix product

If A'is an m x n matrix and B is an n x m matrix then
iv tr(AB) = tr(BA)

In particular, if u and v are n x 1 column vectors then

v tr(uv’) =viu=u-v
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Identity matrix

Definition
The identity matrix of size n, denoted I,, is the n x n square matrix with ones
on the main diagonal and zeros elsewhere.

Important property: If A is any m x n matrix, then

Al,=A and I,A=A.

Echelon form of a square matrix

If R is the reduced row echelon form of an n x n matrix, then either R has a
zero row or R is the identity matrix 7,.
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Inverse of a matrix

Definition
If Ais an n x n is square matrix, an inverse of A is an n x n matrix B with the

property that
AB=BA =1,.

If such an B exists, then A is called invertible (or nonsingular). Otherwise, A
is called singular.

Uniqueness of inverse

If A is an invertible matrix, then its inverse is unique. We will denote the
inverse by A=
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Properties of inverses

If A and B are invertible matrices with the same size then
i A=lis invertible and (A —‘)‘1 =A.

i kA is invertible and (kA)~!' = k~'A~! for k € R, k # 0.
i AT is invertible and (AT)~! = (A*I)T.

iv A™ is invertible and (A™)~! ( Dm — A=™ for m € N.
v ABis invertible and (AB)~! = B~'A~1.

Inverse of a 2 x 2 matrix

The matrix A = {‘Cl Z} is invertible if and only if det(A) = ad — bc # 0, and the

inverse is given by
1 d —-b
A7l = }
ad — bc {—C a}
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Elementary matrices

Our goal is to find matrices that emulate the elementary row operations on a
matrix. For any m x n matrix A, and a matrix B equal to A after a row
operation, we wish to find a matrix E of size m x m such that B = EA.

— E is called the elementary matrix, and can be obtained by performing the
same row operation on I,,,.

Invertibility of elementary matrices

Each elementary matrix E is invertible, and its inverse is an elementary matrix
results by performing the inverse of the elementary row operation which
produced E from I.
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Finding inverses

If Ais a n x n matrix and R is denoted the reduced row echelon form of A then
there exists a sequence of elementary matrices E1, Ey, . . ., E; such that

E:E._, - E2E;A = R.
O If Ris the identity matrix 7, then A = E; 'E; - E; ', Also A is invertible

andA~' = (E['E;* - E;Y) ' = By EE.

® If Ris not I, (R has a row of zeros), then A is not invertible and cannot be
represented as a product of elementary matrices.

Theorem

If a sequence of elementary row operations reduces a square matrix A to I,
then the same sequence of elementary row operations transforms I into A~".
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Gauss-Jordan method for finding inverse matrix
1 Form n x 2n matrix with left half A and right half 7,.

2 Apply Gauss-Jordan elimination to the whole matrix (to rows of length 2n)
until the matrix A (in the left half) is in reduced row echelon form.

s If the left half is I, then A is invertible and the right half is A~!. Otherwise
(the left half is not I,,), A is not invertible (and the right half is of no use).

v

Example

Find the inverse of A = [_é (3)} .

[AII]=[_; (3’1 O}M}[l 0] -1 o} Ry Ry + (—2)R,

0 1 2 3| 01
1 0]—1 O] RR—=>(1/3)R; [1 0] -1 0 q_[-1 o0

5 = .
[0 3| 2 1} lo 1|23 13 TS AT =13 13
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Fundamental theorem of invertible matrices

If A'is an n x n matrix, then the following statements are equivalent
a The reduced echelon form of A is I,.
b A is a product of elementary matrices.
¢ Ais invertible.

Theorem
Let A and B be square matrices of the same size

i IfAB =1or BA =1then A and B are both invertible and each is the
inverse of the other.

i If the product AB is invertible then A and B are both invertible.
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Row equivalent

Two matrices that can be obtained from one another by finite sequences of
elementary row operations are said to be row equivalent.

Theorem

If A and B are square matrices of the same size, then the following statements
are equivalent

a A and B are row equivalent.
b There is an invertible matrix E such that B = EA.
¢ There is an invertible matrix F such that A = FB.

Remark

An n x n matrix A is invertible if and only if it is row equivalent to the identity
matrix I,.
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Solving linear systems using matrices

Matrix equation

apx; + apxy + -
aixy + anxy + - -

am1X1 + QX2 + - -

where
app  a
az; a4
A =
aml  Am2

-+ ax, = by

-+ ayx, = b
2. .2 +<—— Ax=Db

“ + ApnXn = b

ain x| by

Ao X2 by
X = b=

Gmn X b,
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Theorem

If Ax = b is a linear system of n equations in n unknowns then the system has
exactly one solution if and only if A is invertible, in which case the solution is
given by x = A~ 'b.

Fundamental theorem of invertible matrices (cont.)
If A'is an n x n matrix, then the following statements are equivalent
a The reduced echelon form of A is I,.
b A is a product of elementary matrices.
¢ A is invertible.
d Ax = 0 has only the trivial solution.
e Ax = b is consistent for every b € R".
f Ax = b has a unique solution for every b € R".
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Subspaces of R”

Subspace

Let S be a collection vectors in R”. Then S is called a subspace of R” if
© The zero vector 0 is in S.
@® lfuandvarein S, thenu+visin S (S is closed under addition).

® Ifuisin S andcis a scalar, then cuis in S (S is closed under scalar
multiplication).
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Linear combinations

If vi,..., v, are vectors in R”, and S is the set of all linear combinations of
these vectors
S:{t1v1+---+tkvk | tl,...,l‘kGR},

then S is a subspace of R”.

Span and spanning set

The subspace S is called the span of B = {vy,..., v}, and we also say that B
spans S. The set B is called a spanning set for the subspace S. We denote S
by

S = span{vy,va,..., Vi }.

Example
If e, e, ..., e, are the standard unit vectors in R” then

R" = span{e;,e;,...,€,}.
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Theorem
Every subspace of R” is the span of at most n vectors.

Subspaces of R? and R?

The zero subspace The zero subspace
Lines through 0 Lines through 0
All of R? Planes through 0
All of R3
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Linear independence

Linear independence

A set of vectors S = {vy,...,v;} in R" is said to be linearly independent if the
only solution to the equation

nvi+nvo+ -+ 6v =0

ist =--- =t = 0; otherwise, S is said to be linearly dependent.

Linear dependence

AsetS={vy,...,v} with k > 2in R" is linearly dependent if and only if at
least one of the vectors in S is a linear combination of the other vectors in S.
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Solution space of a homogeneous linear system

Theorem

If Ax = 0 is a homogeneous linear system with n unknowns, then its solution
set is a subspace of R”".

The solution space must be expressible in the form
X =HV]F+HVy+ -+ [V,

which we call a general solution of the system. This expression is not
unique. However the Gauss-Jordan elimination always produce the same
general solution and the spanning vectors v; in this case are linearly
independent. The number of vectors (or the number of parameters ;) is call
the dimension of the solution space.

Equal matrices

Let A and B be m x n matrices
i The solution space of Ax = 0 is all of R” if and only if A = 0.
i A= B if and only if Ax = Bx for all x € R".
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Relationship between Ax = b and Ax = 0

Translated solution space

If W is the solution space of Ax = 0 then the solution set of the consistent
linear system Ax = b is the translated subspace x, + W where x is any
solution of Ax = b.

Solution sets in R? and R?

A point A point
A line Aline
All of R? A plane

All of R3

Corollary

A general solution of a consistent linear system Ax = b can be obtained by
adding any specific solution of this system to a general solution Ax = 0.
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Number of solutions

If A is an m x n matrix, then the following statements are equivalent
a Ax = 0 has only the trivial solution.
b Ax = b has at most one solution for every b € R™.

It follows that if Ax = 0 has infinitely many solution then Ax = b is either
inconsistent or has infinitely many solutions.

Corollary

A nonhomogeneous linear system with more unknowns than equations is
either inconsistent or has infinitely many solutions.
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Solving linear systems using vectors

Vector equation
ayxy + apxy + -+ apx, = by

ax(x1 + apxy + - -+ apx, = by
. . . . — xicit+txe+--+x,c,=Db

a1 X1 + @G X + -+ - + AupXn = bm

where ¢; denotes the jth column vector of A
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Theorem

A homogeneous linear system Ax = 0 only has the trivial solution if and only if
the column vectors of A are linearly independent.

The subspace of R™ spanned by the column vectors of an m x n matrix A is
called the column space of A and is denoted by col(A)

col(A) = span{c|(A),c2(A),...,¢,(A)} = {Ax | x € R"}.

Theorem
A linear system Ax = b is consistent if and only if b is in the column space of A.J

SF1684 Lecture 2 Nov 2018 37/40



Fundamental theorem of invertible matrices (cont.)
If A'is an n x n matrix, then the following statements are equivalent
a The reduced echelon form of A is I,.
b A is a product of elementary matrices.
¢ Ais invertible.
d Ax = 0 has only the trivial solution.
e Ax = b is consistent for every b € R".
f Ax = b has a unique solution for every b € R".
g The column vectors of A are linearly independent.
h The row vectors of A are linearly independent.
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Hyperplanes

Ifa=(ar,a,...,a,) € R"is a nonzero vector and b is a scalar, then the set of
points x = (x,x2,...,x,) € R" that satisfy the linear equation of the form

a-Xx=ajx; +ax;+---+a,x, =b,

is called a hyperplane in R".

If b = 0, then the hyperplane passes through the origin 0 and consists of all
vectors x € R" orthogonal to the vector a. Accordingly, we say that the
hyperplane through the origin with normal a or the orthogonal
complement of a. We denote this hyperplane by the symbol a* (read “a

perp”)
at = {xcR"|x-a=0}.
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Geometric interpretations of solution space

Ifri(A),r2(A),...,rn(A) are row vectors of A, then the solution space of the
linear system Ax = 0 can be viewed as the intersection of these hyperplanes

I'](A)’XZO
ri(A)-x=0
En(A) - x =0

Thus, we have the result

Theorem

The solution space of Ax = 0 consists of all vectors in R” that are orthogonal
to every row vector of A.
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