SF1684 Algebra and Geometry

Lecture 2 Matrix operations, inverse matrices, subspaces

Bao Nguyen

F		

Outline

1 Matrix operations

2 Inverse matrices

3 Subspaces, linear independence

Outline

1 Matrix operations

2 Inverse matrices

3 Subspaces, linear independence

Matrices

Matrix

A general $m \times n$ matrix A has the form

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}]_{m \times n} \in \mathbb{R}^{m \times n}.$$

Alternative notations for the entry a_{ij} are $(A)_{ij}$ or A[i,j].

Square matrix

If n = m then A is called a **square matrix**. The **diagonal entries** of A are $a_{11}, a_{22}, \ldots, a_{nn}$.

Row and column vectors

We may represent A as the list of n column vectors or m row vectors

$$A = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \mathbf{r}_m \end{bmatrix}$$

г ¬

where

$$\mathbf{c}_{j}(A) = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix} \in \mathbb{R}^{m} \text{ and } \mathbf{r}_{i}(A) = \begin{bmatrix} a_{i1} \ a_{i2} \ \cdots \ a_{in} \end{bmatrix} \in \mathbb{R}^{n}.$$

Matrices with special forms

Let A be a square matrix.

Diagonal matrix

A is called a **diagonal matrix** if all entries outside the main diagonal are zero. In addition, if the diagonal entries are all 1 then *A* is called an **identity matrix**.

Triangular matrix

A is called an **upper triangular** if all entries below the main diagonal are zero and called a **lower triangular** if all entries above the main diagonal are zero.

Symmetric and skew-symmetric matrix

A is called **symmetric** if all entries are symmetric with respect to the main diagonal, that is $(A)_{ij} = (A)_{ji}$, and called **skew-symmetric** if $(A)_{ij} = -(A)_{ji}$.

s			

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Operations on matrices

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be two matrices.

Equal matrices

A = B if and only if they have the same size and $a_{ij} = b_{ij}$ for all i, j.

Matrix addition and subtraction

If A and B have the same size then

$$(A+B)_{ij} = a_{ij} + b_{ij},$$

$$(A-B)_{ij} = a_{ij} - b_{ij}.$$

Scalar multiplication

If $c \in \mathbb{R}$ then

$$(cA)_{ij}=ca_{ij}.$$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Matrix multiplication

If *A* is an $m \times s$ matrix and *B* is an $s \times n$ matrix, then the product *AB* is the $m \times n$ matrix defined as

$$(AB)_{ij} = \mathbf{r}_i(A) \cdot \mathbf{c}_j(B) = \sum_{k=1}^{s} a_{ik} b_{kj}.$$

Matrix power

If *A* is a square matrix, then we define the nonnegative integer powers of *A* to be

 $A^0 = I$ and $A^m = AA \cdots A$ (matrix product of *m* copies of *A*).

Matrix polynomial

If A is a square matrix, then the matrix polynomial in A has form

$$p(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_m A^m.$$

・ロト ・回ト ・ヨト ・ヨト

Matrix transpose

If *A* is an $m \times n$ matrix then the transpose of *A*, denoted by A^T , is the $n \times m$ matrix defined as

$$(A^T)_{ij}=a_{ji}.$$

Trace

If *A* is a square matrix of order *n*, that is $A = [a_{ij}]_{n \times n}$, then the trace of *A* is defined as

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \in \mathbb{R}^n$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix} \in \mathbb{R}^m$ be two column vectors.

Matrix inner product

If **u** and **v** have the same size, that is n = m, then

$$\mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \sum_{i=1}^n u_i v_i = \mathbf{u} \cdot \mathbf{v} \in \mathbb{R}.$$

Matrix outer product

$$\mathbf{u}\mathbf{v}^{T} = \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{n} \end{bmatrix} \begin{bmatrix} v_{1} \ v_{2} \ \cdots \ v_{m} \end{bmatrix} = [u_{i}v_{j}]_{n \times m} \in \mathbb{R}^{n \times m}.$$

SF1684

・ロト ・回ト ・ヨト ・ヨト

Matrix products as linear combinations

If *A* is an $m \times s$ matrix, *B* is an $s \times n$ matrix, and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{s}$ are two column vectors then

$$A\mathbf{u} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_s \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_s \end{bmatrix} = u_1 \mathbf{c}_1(A) + u_2 \mathbf{c}_2(A) + \cdots + u_s \mathbf{c}_s(A)$$

which is a linear combination of the column vectors of A with coefficients from **u**. Similarly

$$\mathbf{v}^T B = \begin{bmatrix} v_1 & v_2 & \cdots & v_s \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \mathbf{r}_s \end{bmatrix} = v_1 \mathbf{r}_1(B) + v_2 \mathbf{r}_2(B) + \cdots + v_s \mathbf{r}_s(B)$$

which is a linear combination of the row vectors of B with coefficients from v.

SF1684	
--------	--

(D) (A) (A) (A)

Theorem

Columns and rows of the product AB as linear combinations

$$AB = \begin{bmatrix} A\mathbf{c}_1(B) & A\mathbf{c}_2(B) & \cdots & A\mathbf{c}_n(B) \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1(A)B \\ \mathbf{r}_2(A)B \\ \vdots \\ \mathbf{r}_m(A)B \end{bmatrix}.$$

・ロト ・回ト ・ヨト ・ヨト

Algebraic properties

If A, B, and C are matrices and a, b are scalars, then

Addition and scalar multiplication	ation
i A + B = B + A	[Commutative law for addition]
(i) $A + (B + C) = (A + B) + C$	[Associative law for addition]
(ab)A = a(bA)	
$\mathbf{iv} \ (a \pm b)A = aA \pm bA$	
$\mathbf{v} \ a(A \pm B) = aA \pm aB$	

Matrix multiplication

- $\bullet A(BC) = (AB)C$
- $(i) A(B \pm C) = AB \pm AC$
- $(B \pm C)A = BA \pm CA$

iv a(AB) = (aA)B = A(aB)

[Associative law for multiplication] [Left distributive law] [Right distributive law]

Warning

In general, the **commutative law** and **cancellation law** do not hold for matrix multiplication.

Example

$$A = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix}$$

•
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \neq BA = \begin{bmatrix} -2 & -4 \\ 1 & 2 \end{bmatrix}$$
.
• $AB = AC = 0$ but all $A, B, C \neq 0$ and $B \neq C$.

Remark

SF16

Powers of a square matrix *A* commute, that is $A^m A^n = A^n A^m = A^{n+m}$ for $n, m \in \mathbb{N} \cup \{0\}$.

684	
-----	--

Properties of the transpose

$$(A^T)^T = A$$

$$ii (A \pm B)^T = A^T \pm B^T$$

$$(cA)^T = cA^T$$

$$\mathbf{iv} \ (AB)^T = B^T A^T$$

Transpose and dot product

If $A \in \mathbb{R}^{m \times n}$ and $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^m$ are column vectors then $\mathbf{v} \quad (A\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (A^T \mathbf{v})$

(日)

Properties of the trace

If A and B are square matrices with the same size then

$$i tr(A^T) = tr(A)$$

(i)
$$\operatorname{tr}(A \pm B) = \operatorname{tr}(A) \pm \operatorname{tr}(B)$$

$$\lim \operatorname{tr}(cA) = c \operatorname{tr}(A)$$

Trace of matrix product

If A is an $m \times n$ matrix and B is an $n \times m$ matrix then

$$\operatorname{iv} \operatorname{tr}(AB) = \operatorname{tr}(BA)$$

In particular, if **u** and **v** are $n \times 1$ column vectors then

$$\mathbf{v}$$
 tr($\mathbf{u}\mathbf{v}^T$) = $\mathbf{v}^T\mathbf{u}$ = $\mathbf{u}\cdot\mathbf{v}$

Outline

Matrix operations

2 Inverse matrices

3 Subspaces, linear independence

Identity matrix

Definition

The identity matrix of size *n*, denoted I_n , is the $n \times n$ square matrix with ones on the main diagonal and zeros elsewhere.

Important property: If A is any $m \times n$ matrix, then

 $AI_n = A$ and $I_m A = A$.

Echelon form of a square matrix

If *R* is the reduced row echelon form of an $n \times n$ matrix, then either *R* has a zero row or *R* is the identity matrix I_n .

Inverse of a matrix

Definition

If A is an $n \times n$ is square matrix, an inverse of A is an $n \times n$ matrix B with the property that

$$AB = BA = I_n$$
.

If such an *B* exists, then *A* is called **invertible** (or **nonsingular**). Otherwise, *A* is called **singular**.

Uniqueness of inverse

If A is an invertible matrix, then its inverse is unique. We will denote the inverse by A^{-1} .

Properties of inverses

If A and B are invertible matrices with the same size then

- (i) A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- ii kA is invertible and $(kA)^{-1} = k^{-1}A^{-1}$ for $k \in \mathbb{R}, k \neq 0$.
- iii A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.
- \bigvee A^m is invertible and $(A^m)^{-1} = (A^{-1})^m = A^{-m}$ for $m \in \mathbb{N}$.
- AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Inverse of a 2×2 matrix

The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $\det(A) = ad - bc \neq 0$, and the inverse is given by $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$

・ロト ・回 ト ・ヨト ・ヨト

Elementary matrices

Our goal is to find matrices that emulate the elementary row operations on a matrix. For any $m \times n$ matrix A, and a matrix B equal to A after a row operation, we wish to find a matrix E of size $m \times m$ such that B = EA.

 \rightarrow *E* is called the **elementary matrix**, and can be obtained by performing the same row operation on *I*_m.

Invertibility of elementary matrices

Each elementary matrix E is invertible, and its inverse is an elementary matrix results by performing the inverse of the elementary row operation which produced E from I.

Finding inverses

If *A* is a $n \times n$ matrix and *R* is denoted the reduced row echelon form of *A* then there exists a sequence of elementary matrices E_1, E_2, \ldots, E_k such that

$$E_k E_{k-1} \cdots E_2 E_1 A = R.$$

- 1 If *R* is the identity matrix I_n then $A = E_1^{-1}E_2^{-2}\cdots E_k^{-1}$. Also *A* is invertible and $A^{-1} = (E_1^{-1}E_2^{-2}\cdots E_k^{-1})^{-1} = E_k\cdots E_2E_1$.
- 2 If *R* is not I_n (*R* has a row of zeros), then *A* is not invertible and cannot be represented as a product of elementary matrices.

Theorem

If a sequence of elementary row operations reduces a square matrix A to I, then the same sequence of elementary row operations transforms I into A^{-1} .

A D A A B A A B A A B A

Gauss-Jordan method for finding inverse matrix

- **1** Form $n \times 2n$ matrix with left half A and right half I_n .
- 2 Apply Gauss-Jordan elimination to the whole matrix (to rows of length 2n) until the matrix A (in the left half) is in reduced row echelon form.
- **3** If the left half is I_n then A is invertible and the right half is A^{-1} . Otherwise (the left half is not I_n), A is not invertible (and the right half is of no use).

Example

Find the inverse of
$$A = \begin{bmatrix} -1 & 0 \\ 2 & 3 \end{bmatrix}$$
.

$$\begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \frac{R_1 \mapsto (-1)R_1}{2} \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \frac{R_2 \mapsto R_2 + (-2)R_1}{2}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} \frac{R_2 \mapsto (1/3)R_2}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 2/3 & 1/3 \end{bmatrix}$$
Thus, $A^{-1} = \begin{bmatrix} -1 & 0 \\ 2/3 & 1/3 \end{bmatrix}$.

Fundamental theorem of invertible matrices

If A is an $n \times n$ matrix, then the following statements are equivalent

- a The reduced echelon form of A is I_n .
- **b** A is a product of elementary matrices.
- c A is invertible.

Theorem

Let A and B be square matrices of the same size

- If AB = I or BA = I then A and B are both invertible and each is the inverse of the other.
- ii If the product *AB* is invertible then *A* and *B* are both invertible.

Row equivalent

Two matrices that can be obtained from one another by finite sequences of elementary row operations are said to be **row equivalent**.

Theorem

If A and B are square matrices of the same size, then the following statements are equivalent

- a A and B are row equivalent.
- **b** There is an invertible matrix E such that B = EA.
- c There is an invertible matrix F such that A = FB.

Remark

An $n \times n$ matrix A is invertible if and only if it is row equivalent to the identity matrix I_n .

(D) (A) (A) (A)

Solving linear systems using matrices

Matrix equation

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \longleftrightarrow A\mathbf{x} = \mathbf{b}$$

where

	a_{11}	a_{12}	• • •	a_{1n}	$\begin{bmatrix} x_1 \end{bmatrix}$	$\begin{bmatrix} b_1 \end{bmatrix}$	
	a_{21}	a_{22}	• • •	a_{2n}	x_2	b_2	
A =	:	:	•.	:	$\mathbf{x} = $	$\mathbf{b} = \cdot $.
	•	·	•	•	·		
	a_{m1}	a_{m2}	• • •	a_{mn}	$\lfloor x_m \rfloor$	$\lfloor b_m \rfloor$	

(D) (A) (A) (A)

Theorem

If $A\mathbf{x} = \mathbf{b}$ is a linear system of *n* equations in *n* unknowns then the system has exactly one solution if and only if *A* is invertible, in which case the solution is given by $\mathbf{x} = A^{-1}\mathbf{b}$.

Fundamental theorem of invertible matrices (cont.)

If A is an $n \times n$ matrix, then the following statements are equivalent

- a The reduced echelon form of A is I_n .
- **b** A is a product of elementary matrices.
- c A is invertible.
- **d** $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **e** $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$.
- **f** $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$.

Outline

Matrix operations

2 Inverse matrices

3 Subspaces, linear independence

Subspaces of \mathbb{R}^n

Subspace

Let *S* be a collection vectors in \mathbb{R}^n . Then *S* is called a subspace of \mathbb{R}^n if

- **1** The zero vector **0** is in *S*.
- **2** If **u** and **v** are in *S*, then $\mathbf{u} + \mathbf{v}$ is in *S* (*S* is closed under addition).
- **3** If **u** is in *S* and *c* is a scalar, then c**u** is in *S* (*S* is closed under scalar multiplication).

Linear combinations

If $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are vectors in \mathbb{R}^n , and *S* is the set of all linear combinations of these vectors

$$S = \{t_1\mathbf{v}_1 + \cdots + t_k\mathbf{v}_k \mid t_1, \ldots, t_k \in \mathbb{R}\},\$$

then *S* is a subspace of \mathbb{R}^n .

Span and spanning set

The subspace *S* is called the span of $B = {\mathbf{v}_1, ..., \mathbf{v}_k}$, and we also say that *B* spans *S*. The set *B* is called a spanning set for the subspace *S*. We denote *S* by

$$S = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}.$$

Example

If $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ are the standard unit vectors in \mathbb{R}^n then

$$\mathbb{R}^n = \operatorname{span}\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}.$$

(D) (A) (A) (A)

Theorem

Every subspace of \mathbb{R}^n is the span of at most *n* vectors.

Subspaces of \mathbb{R}^2 and \mathbb{R}^3

The zero subspace Lines through $\mathbf{0}$ All of \mathbb{R}^2 The zero subspace Lines through $\mathbf{0}$ Planes through $\mathbf{0}$ All of \mathbb{R}^3

Linear independence

Linear independence

A set of vectors $S = {\mathbf{v}_1, ..., \mathbf{v}_k}$ in \mathbb{R}^n is said to be linearly independent if the only solution to the equation

$$t_1\mathbf{v}_1+t_2\mathbf{v}_2+\cdots+t_k\mathbf{v}_k=\mathbf{0}$$

is $t_1 = \cdots = t_k = 0$; otherwise, *S* is said to be linearly dependent.

Linear dependence

A set $S = {\mathbf{v}_1, ..., \mathbf{v}_k}$ with $k \ge 2$ in \mathbb{R}^n is linearly dependent if and only if at least one of the vectors in *S* is a linear combination of the other vectors in *S*.

Solution space of a homogeneous linear system

Theorem

If $A\mathbf{x} = \mathbf{0}$ is a homogeneous linear system with *n* unknowns, then its solution set is a subspace of \mathbb{R}^n .

The solution space must be expressible in the form

 $\mathbf{x} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \dots + t_k \mathbf{v}_k$

which we call a **general solution** of the system. This expression is not unique. However the Gauss-Jordan elimination always produce the same general solution and the spanning vectors \mathbf{v}_i in this case are **linearly independent**. The number of vectors (or the number of parameters t_i) is call the **dimension** of the solution space.

Equal matrices

Let A and B be $m \times n$ matrices

- i The solution space of $A\mathbf{x} = \mathbf{0}$ is all of \mathbb{R}^n if and only if A = 0.
- ii A = B if and only if $A\mathbf{x} = B\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

Relationship between $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$

Translated solution space

If *W* is the solution space of $A\mathbf{x} = \mathbf{0}$ then the solution set of the consistent linear system $A\mathbf{x} = \mathbf{b}$ is the translated subspace $\mathbf{x}_0 + W$ where \mathbf{x}_0 is any solution of $A\mathbf{x} = \mathbf{b}$.

Solution sets in \mathbb{R}^2 and \mathbb{R}^3	
A point A line All of \mathbb{R}^2	A point A line A plane All of \mathbb{R}^3

Corollary

A general solution of a consistent linear system $A\mathbf{x} = \mathbf{b}$ can be obtained by adding any specific solution of this system to a general solution $A\mathbf{x} = \mathbf{0}$.

s	F	6	в	4

Number of solutions

If A is an $m \times n$ matrix, then the following statements are equivalent

- **a** $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **b** $A\mathbf{x} = \mathbf{b}$ has at most one solution for every $\mathbf{b} \in \mathbb{R}^m$.

It follows that if $A\mathbf{x} = \mathbf{0}$ has infinitely many solution then $A\mathbf{x} = \mathbf{b}$ is either inconsistent or has infinitely many solutions.

Corollary

A nonhomogeneous linear system with more unknowns than equations is either inconsistent or has infinitely many solutions.

Solving linear systems using vectors

Vector equation

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \longleftrightarrow x_1 \mathbf{c}_1 + x_2 \mathbf{c}_2 + \dots + x_n \mathbf{c}_n = \mathbf{b}$$

where \mathbf{c}_j denotes the *j*th column vector of A

$$\mathbf{c}_{j}(A) = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix} \in \mathbb{R}^{m}.$$

	84	

Theorem

A homogeneous linear system $A\mathbf{x} = \mathbf{0}$ only has the trivial solution if and only if the column vectors of *A* are linearly independent.

The subspace of \mathbb{R}^m spanned by the column vectors of an $m \times n$ matrix A is called the **column space** of A and is denoted by col(A)

$$\operatorname{col}(A) = \operatorname{span}\left\{\mathbf{c}_1(A), \mathbf{c}_2(A), \dots, \mathbf{c}_n(A)\right\} = \left\{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\right\}.$$

Theorem

A linear system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A.

Fundamental theorem of invertible matrices (cont.)

If A is an $n \times n$ matrix, then the following statements are equivalent

- a The reduced echelon form of A is I_n .
- **b** A is a product of elementary matrices.
- c A is invertible.
- **d** $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **e** $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$.
- **f** $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$.
- g The column vectors of A are linearly independent.
- h The row vectors of A are linearly independent.

Hyperplanes

If $\mathbf{a} = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ is a nonzero vector and *b* is a scalar, then the set of points $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ that satisfy the linear equation of the form

$$\mathbf{a} \cdot \mathbf{x} = a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b,$$

is called a **hyperplane** in \mathbb{R}^n .

If b = 0, then the hyperplane passes through the origin **0** and consists of all vectors $\mathbf{x} \in \mathbb{R}^n$ orthogonal to the vector \mathbf{a} . Accordingly, we say that the **hyperplane through the origin with normal** \mathbf{a} or the **orthogonal complement of** \mathbf{a} . We denote this hyperplane by the symbol \mathbf{a}^{\perp} (read " \mathbf{a} perp")

$$\mathbf{a}^{\perp} = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{a} = 0 \right\}.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Geometric interpretations of solution space

If $\mathbf{r}_1(A), \mathbf{r}_2(A), \dots, \mathbf{r}_m(A)$ are row vectors of *A*, then the solution space of the linear system $A\mathbf{x} = \mathbf{0}$ can be viewed as the intersection of these hyperplanes

$$\mathbf{r}_{1}(A) \cdot \mathbf{x} = 0$$

$$\mathbf{r}_{1}(A) \cdot \mathbf{x} = 0$$

$$\vdots$$

$$\mathbf{r}_{m}(A) \cdot \mathbf{x} = 0$$

Thus, we have the result

Theorem

The solution space of $A\mathbf{x} = \mathbf{0}$ consists of all vectors in \mathbb{R}^n that are orthogonal to every row vector of A.