Department of Mathematics

SF1624/SF1684 Algebra and Geometry Year 2018/2019

Problems for Seminar 6

Check the canvas page of the course for information on how seminars are run and what you are expected to do before and during the seminars.

The seminar starts with a test. The problem will be about diagonalising a square matrix.

In the seminar, the following problems will be discussed.

Problem 1. Let $T = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$ be the base change matrix from the basis \mathcal{V} to the basis \mathcal{W} of a subspace U of \mathbb{R}^4 .

- (a) Find a base change matrix from the basis \mathcal{W} to the basis \mathcal{V} .
- (b) Let $f: U \to U$ be a linear map such that $[f]_{\mathcal{W}} = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix}$. Find $[f]_{\mathcal{V}}$.

(Here $[f]_{\mathcal{B}}$ denotes the matrix for the map f with respect to the basis \mathcal{B} .)

Problem 2. Consider the following map:

$$F : \mathbb{R}^2 \to \mathbb{R}^2, \quad F(x,y) = (0,x)$$

- (a) Find all eigenvalues and corresponding eigenspaces of F.
- (b) Determine if the matrix for F is diagonalizable.

Problem 3. Let

$$A = \begin{bmatrix} 3 & a & 0 \\ 0 & 4 & 1 \\ 0 & 2 & 5 \end{bmatrix},$$

where a is a real parameter.

- (a) Find the eigenvalues of A and eigenspaces corresponding to each eigenvalue.
- (b) For which a is A diagonalisable?
- (c) For a = 0, find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

Problem 4. We are given the matrix

$$A = \begin{bmatrix} 1 & 6\\ 3 & -2 \end{bmatrix}.$$

- (a) Find all eigenvalues and corresponding eigenvectors for A.
- (b) Find a matrix U and a diagonal matrix D such that $A = UDU^{-1}$.

(c) Compute $A^{123} \begin{bmatrix} -1\\ 1 \end{bmatrix}$.

Problem 5. The quadratic form Q on \mathbb{R}^2 is given by

$$Q(\vec{x}) = x_1^2 + x_1 x_2 + x_2^2$$

- (a) Determine the symmetric matrix A which satisfies $Q(\vec{x}) = \vec{x}^T A \vec{x}$.
- (b) Determine whether Q is positive definite, negative definite, positive semidefinite, negative semidefinite, or indefinite.

Problem 6. Which of the following sets are vektor spaces? Find a basis and the dimension for those that are.

- (a) All vectors $\begin{vmatrix} x \\ y \\ z \\ w \end{vmatrix}$ i \mathbf{R}^4 such that x + y + z w = 1
- (b) All polynomial functions $f \colon \mathbb{R} \to \mathbb{R}$ of degree ≤ 5 (i.e. $f(x) = a + bx + cx^2 + dx^3 + fx^4 + gx^5$)
- (c) All invertible 3×3 -matrices
- (d) All 3×3 -matrices that satisfy $A^T = -A$. Here, A^T denotes the transpose matrix of A.

MISCELLANEOUS

Here are some other topics that are important and interesting to discuss.

- What is the relationship between symmetric and orthogonal matrices?
- Why are symmetric matrices diagonalizable?
- What is a quadratic form and how does one classify them?