Problems for Seminar 6

Check the canvas page of the course for information on how seminars are run and what you are expected to do before and during the seminars.

The seminar starts with a test. The problem will be about diagonalising a square matrix.

In the seminar, the following problems will be discussed.
Problem 1. Let $T=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]$ be the base change matrix from the basis \mathcal{V} to the basis \mathcal{W} of a subspace U of \mathbb{R}^{4}.
(a) Find a base change matrix from the basis \mathcal{W} to the basis \mathcal{V}.
(b) Let $f: U \rightarrow U$ be a linear map such that $[f]_{\mathcal{W}}=\left[\begin{array}{cc}2 & 1 \\ 2 & -1\end{array}\right]$. Find $[f]_{\mathcal{V}}$.
(Here $[f]_{\mathcal{B}}$ denotes the matrix for the map f with respect to the basis \mathcal{B}.)

Problem 2. Consider the following map:

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad F(x, y)=(0, x)
$$

(a) Find all eigenvalues and corresponding eigenspaces of F.
(b) Determine if the matrix for F is diagonalizable.

Problem 3. Let

$$
A=\left[\begin{array}{lll}
3 & a & 0 \\
0 & 4 & 1 \\
0 & 2 & 5
\end{array}\right],
$$

where a is a real parameter.
(a) Find the eigenvalues of A and eigenspaces corresponding to each eigenvalue.
(b) For which a is A diagonalisable?
(c) For $a=0$, find an invertible matrix P and a diagonal matrix D such that $A=$ $P D P^{-1}$.

Problem 4. We are given the matrix

$$
A=\left[\begin{array}{cc}
1 & 6 \\
3 & -2
\end{array}\right]
$$

(a) Find all eigenvalues and corresponding eigenvectors for A.
(b) Find a matrix U and a diagonal matrix D such that $A=U D U^{-1}$.
(c) Compute $A^{123}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

Problem 5. The quadratic form Q on \mathbb{R}^{2} is given by

$$
Q(\vec{x})=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2} .
$$

(a) Determine the symmetric matrix A which satisfies $Q(\vec{x})=\vec{x}^{T} A \vec{x}$.
(b) Determine whether Q is positive definite, negative definite, positive semidefinite, negative semidefinite, or indefinite.

Problem 6. Which of the following sets are vektor spaces? Find a basis and the dimension for those that are.
(a) All vectors $\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$ i \mathbf{R}^{4} such that $x+y+z-w=1$
(b) All polynomial functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of degree ≤ 5 (i.e. $f(x)=a+b x+c x^{2}+$ $\left.d x^{3}+f x^{4}+g x^{5}\right)$
(c) All invertible 3×3-matrices
(d) All 3×3-matrices that satisfy $A^{T}=-A$. Here, A^{T} denotes the transpose matrix of A.

Miscellaneous

Here are some other topics that are important and interesting to discuss.

- What is the relationship between symmetric and orthogonal matrices?
- Why are symmetric matrices diagonalizable?
- What is a quadratic form and how does one classify them?

